def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True prepare_seed(args.rand_seed) logstr = 'seed-{:}-time-{:}'.format(args.rand_seed, time_for_file()) logger = Logger(args.save_path, logstr) logger.log('Main Function with logger : {:}'.format(logger)) logger.log('Arguments : -------------------------------') for name, value in args._get_kwargs(): logger.log('{:16} : {:}'.format(name, value)) logger.log("Python version : {}".format(sys.version.replace('\n', ' '))) logger.log("Pillow version : {}".format(PIL.__version__)) logger.log("PyTorch version : {}".format(torch.__version__)) logger.log("cuDNN version : {}".format(torch.backends.cudnn.version())) # General Data Argumentation mean_fill = tuple( [int(x*255) for x in [0.485, 0.456, 0.406] ] ) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) assert args.arg_flip == False, 'The flip is : {}, rotate is {}'.format(args.arg_flip, args.rotate_max) train_transform = [transforms.PreCrop(args.pre_crop_expand)] train_transform += [transforms.TrainScale2WH((args.crop_width, args.crop_height))] train_transform += [transforms.AugScale(args.scale_prob, args.scale_min, args.scale_max)] #if args.arg_flip: # train_transform += [transforms.AugHorizontalFlip()] if args.rotate_max: train_transform += [transforms.AugRotate(args.rotate_max)] train_transform += [transforms.AugCrop(args.crop_width, args.crop_height, args.crop_perturb_max, mean_fill)] train_transform += [transforms.ToTensor(), normalize] train_transform = transforms.Compose( train_transform ) eval_transform = transforms.Compose([transforms.PreCrop(args.pre_crop_expand), transforms.TrainScale2WH((args.crop_width, args.crop_height)), transforms.ToTensor(), normalize]) assert (args.scale_min+args.scale_max) / 2 == args.scale_eval, 'The scale is not ok : {},{} vs {}'.format(args.scale_min, args.scale_max, args.scale_eval) # Model Configure Load model_config = load_configure(args.model_config, logger) args.sigma = args.sigma * args.scale_eval logger.log('Real Sigma : {:}'.format(args.sigma)) # Training Dataset train_data = Dataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) train_data.load_list(args.train_lists, args.num_pts, True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # Evaluation Dataloader eval_loaders = [] if args.eval_vlists is not None: for eval_vlist in args.eval_vlists: eval_vdata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_vdata.load_list(eval_vlist, args.num_pts, True) eval_vloader = torch.utils.data.DataLoader(eval_vdata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_vloader, True)) if args.eval_ilists is not None: for eval_ilist in args.eval_ilists: eval_idata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_idata.load_list(eval_ilist, args.num_pts, True) eval_iloader = torch.utils.data.DataLoader(eval_idata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_iloader, False)) # Define network logger.log('configure : {:}'.format(model_config)) net = obtain_model(model_config, args.num_pts + 1) assert model_config.downsample == net.downsample, 'downsample is not correct : {} vs {}'.format(model_config.downsample, net.downsample) logger.log("=> network :\n {}".format(net)) logger.log('Training-data : {:}'.format(train_data)) for i, eval_loader in enumerate(eval_loaders): eval_loader, is_video = eval_loader logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format(i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset)) logger.log('arguments : {:}'.format(args)) opt_config = load_configure(args.opt_config, logger) if hasattr(net, 'specify_parameter'): net_param_dict = net.specify_parameter(opt_config.LR, opt_config.Decay) else: net_param_dict = net.parameters() optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger) logger.log('criterion : {:}'.format(criterion)) net, criterion = net.cuda(), criterion.cuda() net = torch.nn.DataParallel(net) last_info = logger.last_info() if last_info.exists(): logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) assert last_info['epoch'] == checkpoint['epoch'], 'Last-Info is not right {:} vs {:}'.format(last_info, checkpoint['epoch']) net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done" .format(logger.last_info(), checkpoint['epoch'])) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch = 0 if args.eval_once: logger.log("=> only evaluate the model once") eval_results = eval_all(args, eval_loaders, net, criterion, 'eval-once', logger, opt_config) logger.close() ; return # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, opt_config.epochs): scheduler.step() need_time = convert_secs2time(epoch_time.avg * (opt_config.epochs-epoch), True) epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs) LRs = scheduler.get_lr() logger.log('\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config)) # train for one epoch train_loss, train_nme = train(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config) # log the results logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}, NME = {:.2f}'.format(time_string(), epoch_str, train_loss, train_nme*100)) # remember best prec@1 and save checkpoint save_path = save_checkpoint({ 'epoch': epoch, 'args' : deepcopy(args), 'arch' : model_config.arch, 'state_dict': net.state_dict(), 'scheduler' : scheduler.state_dict(), 'optimizer' : optimizer.state_dict(), }, logger.path('model') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger) last_info = save_checkpoint({ 'epoch': epoch, 'last_checkpoint': save_path, }, logger.last_info(), logger) eval_results = eval_all(args, eval_loaders, net, criterion, epoch_str, logger, opt_config) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.close()
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.set_num_threads( args.workers ) print ('Training Base Detector : prepare_seed : {:}'.format(args.rand_seed)) prepare_seed(args.rand_seed) temporal_main, eval_all = procedures['{:}-train'.format(args.procedure)], procedures['{:}-test'.format(args.procedure)] logger = prepare_logger(args) # General Data Argumentation normalize, train_transform, eval_transform, robust_transform = prepare_data_augmentation(transforms, args) recover = transforms.ToPILImage(normalize) args.tensor2imageF = recover assert (args.scale_min+args.scale_max) / 2 == 1, 'The scale is not ok : {:} ~ {:}'.format(args.scale_min, args.scale_max) # Model Configure Load model_config = load_configure(args.model_config, logger) sbr_config = load_configure(args.sbr_config, logger) shape = (args.height, args.width) logger.log('--> {:}\n--> Sigma : {:}, Shape : {:}'.format(model_config, args.sigma, shape)) logger.log('--> SBR Configuration : {:}\n'.format(sbr_config)) # Training Dataset train_data = VDataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, shape, args.use_gray, args.mean_point, \ args.data_indicator, sbr_config, transforms.ToPILImage(normalize, 'cv2gray')) train_data.load_list(args.train_lists, args.num_pts, args.boxindicator, args.normalizeL, True) batch_sampler = SbrBatchSampler(train_data, args.i_batch_size, args.v_batch_size, args.sbr_sampler_use_vid) train_loader = torch.utils.data.DataLoader(train_data, batch_sampler=batch_sampler, num_workers=args.workers, pin_memory=True) # Evaluation Dataloader eval_loaders = [] if args.eval_ilists is not None: for eval_ilist in args.eval_ilists: eval_idata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, shape, args.use_gray, args.mean_point, args.data_indicator) eval_idata.load_list(eval_ilist, args.num_pts, args.boxindicator, args.normalizeL, True) eval_iloader = torch.utils.data.DataLoader(eval_idata, batch_size=args.i_batch_size+args.v_batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_iloader, False)) if args.eval_vlists is not None: for eval_vlist in args.eval_vlists: eval_vdata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, shape, args.use_gray, args.mean_point, args.data_indicator) eval_vdata.load_list(eval_vlist, args.num_pts, args.boxindicator, args.normalizeL, True) eval_vloader = torch.utils.data.DataLoader(eval_vdata, batch_size=args.i_batch_size+args.v_batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_vloader, True)) # from 68 points to 49 points, removing the face contour if args.x68to49: assert args.num_pts == 68, 'args.num_pts is not 68 vs. {:}'.format(args.num_pts) if train_data is not None: train_data = convert68to49( train_data ) for eval_loader, is_video in eval_loaders: convert68to49( eval_loader.dataset ) args.num_pts = 49 # define the temporal model (accelerated SBR) net = obtain_pro_temporal(model_config, sbr_config, args.num_pts, args.sigma, args.use_gray) assert model_config.downsample == net.downsample, 'downsample is not correct : {:} vs {:}'.format(model_config.downsample, net.downsample) logger.log("=> network :\n {}".format(net)) logger.log('Training-data : {:}'.format(train_data)) for i, eval_loader in enumerate(eval_loaders): eval_loader, is_video = eval_loader logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format(i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset)) logger.log('arguments : {:}'.format(args)) opt_config = load_configure(args.opt_config, logger) if hasattr(net, 'specify_parameter'): net_param_dict = net.specify_parameter(opt_config.LR, opt_config.weight_decay) else : net_param_dict = net.parameters() optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger) logger.log('criterion : {:}'.format(criterion)) net, criterion = net.cuda(), criterion.cuda() net = torch.nn.DataParallel(net) last_info = logger.last_info() if last_info.exists(): logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) test_accuracies = checkpoint['test_accuracies'] assert last_info['epoch'] == checkpoint['epoch'], 'Last-Info is not right {:} vs {:}'.format(last_info, checkpoint['epoch']) net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done" .format(logger.last_info(), checkpoint['epoch'])) elif args.init_model is not None: last_checkpoint = load_checkpoint(args.init_model) checkpoint = remove_module_dict(last_checkpoint['state_dict'], False) net.module.detector.load_state_dict( checkpoint ) logger.log("=> initialize the detector : {:}".format(args.init_model)) start_epoch, test_accuracies = 0, {'best': 10000} else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, test_accuracies = 0, {'best': 10000} detector = torch.nn.DataParallel(net.module.detector) if args.skip_first_eval == False: logger.log('===>>> First Time Evaluation') eval_results, eval_metas = eval_all(args, eval_loaders, detector, criterion, 'Before-Training', logger, opt_config, None) save_path = save_checkpoint(eval_metas, logger.path('meta') / '{:}-first.pth'.format(model_config.arch), logger) logger.log('===>>> Before Training : {:}'.format(eval_results)) # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, opt_config.epochs): need_time = convert_secs2time(epoch_time.avg * (opt_config.epochs-epoch), True) epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs) LRs = scheduler.get_lr() logger.log('\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config)) # train for one epoch train_loss, train_nme = temporal_main(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config, sbr_config, epoch>=sbr_config.start, 'train') scheduler.step() # log the results logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}, NME = {:.2f}'.format(time_string(), epoch_str, train_loss, train_nme*100)) save_path = save_checkpoint({ 'epoch': epoch, 'args' : deepcopy(args), 'arch' : model_config.arch, 'detector' : detector.state_dict(), 'test_accuracies': test_accuracies, 'state_dict': net.state_dict(), 'scheduler' : scheduler.state_dict(), 'optimizer' : optimizer.state_dict(), }, logger.path('model') / 'ckp-seed-{:}-last-{:}.pth'.format(args.rand_seed, model_config.arch), logger) last_info = save_checkpoint({ 'epoch': epoch, 'last_checkpoint': save_path, }, logger.last_info(), logger) if (args.eval_freq is None) or (epoch+1 == opt_config.epochs) or (epoch%args.eval_freq == 0): if epoch+1 == opt_config.epochs: _robust_transform = robust_transform else : _robust_transform = None logger.log('') eval_results, eval_metas = eval_all(args, eval_loaders, detector, criterion, epoch_str, logger, opt_config, _robust_transform) # check whether it is the best and save with copyfile(src, dst) try: cur_eval_nme = float( eval_results.split('NME = ')[1].split(' ')[0] ) except: cur_eval_nme = 1e9 test_accuracies[epoch] = cur_eval_nme if test_accuracies['best'] > cur_eval_nme: # find the lowest error dest_path = logger.path('model') / 'ckp-seed-{:}-best-{:}.pth'.format(args.rand_seed, model_config.arch) copyfile(save_path, dest_path) logger.log('==>> find lowest error = {:}, save into {:}'.format(cur_eval_nme, dest_path)) meta_save_path = save_checkpoint(eval_metas, logger.path('meta') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger) logger.log('==>> evaluation results : {:}'.format(eval_results)) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('Final checkpoint into {:}'.format(logger.last_info())) logger.close()
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True prepare_seed(args.rand_seed) logstr = 'seed-{:}-time-{:}'.format(args.rand_seed, time_for_file()) logger = Logger(args.save_path, logstr) logger.log('Main Function with logger : {:}'.format(logger)) logger.log('Arguments : -------------------------------') for name, value in args._get_kwargs(): logger.log('{:16} : {:}'.format(name, value)) logger.log("Python version : {}".format(sys.version.replace('\n', ' '))) logger.log("Pillow version : {}".format(PIL.__version__)) logger.log("PyTorch version : {}".format(torch.__version__)) logger.log("cuDNN version : {}".format(torch.backends.cudnn.version())) # General Data Argumentation mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) assert args.arg_flip == False, 'The flip is : {}, rotate is {}'.format( args.arg_flip, args.rotate_max) train_transform = [transforms.PreCrop(args.pre_crop_expand)] train_transform += [ transforms.TrainScale2WH((args.crop_width, args.crop_height)) ] train_transform += [ transforms.AugScale(args.scale_prob, args.scale_min, args.scale_max) ] #if args.arg_flip: # train_transform += [transforms.AugHorizontalFlip()] if args.rotate_max: train_transform += [transforms.AugRotate(args.rotate_max)] train_transform += [ transforms.AugCrop(args.crop_width, args.crop_height, args.crop_perturb_max, mean_fill) ] train_transform += [transforms.ToTensor(), normalize] train_transform = transforms.Compose(train_transform) eval_transform = transforms.Compose([ transforms.PreCrop(args.pre_crop_expand), transforms.TrainScale2WH((args.crop_width, args.crop_height)), transforms.ToTensor(), normalize ]) assert ( args.scale_min + args.scale_max ) / 2 == args.scale_eval, 'The scale is not ok : {},{} vs {}'.format( args.scale_min, args.scale_max, args.scale_eval) # Model Configure Load model_config = load_configure(args.model_config, logger) args.sigma = args.sigma * args.scale_eval logger.log('Real Sigma : {:}'.format(args.sigma)) # Training Dataset train_data = VDataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator, args.video_parser) train_data.load_list(args.train_lists, args.num_pts, True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # Evaluation Dataloader eval_loaders = [] if args.eval_vlists is not None: for eval_vlist in args.eval_vlists: eval_vdata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_vdata.load_list(eval_vlist, args.num_pts, True) eval_vloader = torch.utils.data.DataLoader( eval_vdata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_vloader, True)) if args.eval_ilists is not None: for eval_ilist in args.eval_ilists: eval_idata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_idata.load_list(eval_ilist, args.num_pts, True) eval_iloader = torch.utils.data.DataLoader( eval_idata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_iloader, False)) # Define network lk_config = load_configure(args.lk_config, logger) logger.log('model configure : {:}'.format(model_config)) logger.log('LK configure : {:}'.format(lk_config)) net = obtain_model(model_config, lk_config, args.num_pts + 1) assert model_config.downsample == net.downsample, 'downsample is not correct : {} vs {}'.format( model_config.downsample, net.downsample) logger.log("=> network :\n {}".format(net)) logger.log('Training-data : {:}'.format(train_data)) for i, eval_loader in enumerate(eval_loaders): eval_loader, is_video = eval_loader logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format( i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset)) logger.log('arguments : {:}'.format(args)) opt_config = load_configure(args.opt_config, logger) if hasattr(net, 'specify_parameter'): net_param_dict = net.specify_parameter(opt_config.LR, opt_config.Decay) else: net_param_dict = net.parameters() optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger) logger.log('criterion : {:}'.format(criterion)) net, criterion = net.cuda(), criterion.cuda() net = torch.nn.DataParallel(net) last_info = logger.last_info() if last_info.exists(): logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) assert last_info['epoch'] == checkpoint[ 'epoch'], 'Last-Info is not right {:} vs {:}'.format( last_info, checkpoint['epoch']) net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done".format( logger.last_info(), checkpoint['epoch'])) elif args.init_model is not None: init_model = Path(args.init_model) assert init_model.exists(), 'init-model {:} does not exist'.format( init_model) checkpoint = torch.load(init_model) checkpoint = remove_module_dict(checkpoint['state_dict'], True) net.module.detector.load_state_dict(checkpoint) logger.log("=> initialize the detector : {:}".format(init_model)) start_epoch = 0 else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch = 0 detector = torch.nn.DataParallel(net.module.detector) eval_results = eval_all(args, eval_loaders, detector, criterion, 'start-eval', logger, opt_config) if args.eval_once: logger.log("=> only evaluate the model once") logger.close() return # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, opt_config.epochs): scheduler.step() need_time = convert_secs2time( epoch_time.avg * (opt_config.epochs - epoch), True) epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs) LRs = scheduler.get_lr() logger.log( '\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'. format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config)) # train for one epoch train_loss = train(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config, lk_config, epoch >= lk_config.start) # log the results logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}'.format( time_string(), epoch_str, train_loss)) # remember best prec@1 and save checkpoint save_path = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'arch': model_config.arch, 'state_dict': net.state_dict(), 'detector': detector.state_dict(), 'scheduler': scheduler.state_dict(), 'optimizer': optimizer.state_dict(), }, logger.path('model') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger) last_info = save_checkpoint( { 'epoch': epoch, 'last_checkpoint': save_path, }, logger.last_info(), logger) eval_results = eval_all(args, eval_loaders, detector, criterion, epoch_str, logger, opt_config) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.close()
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.set_num_threads(args.workers) print('Training Base Detector : prepare_seed : {:}'.format(args.rand_seed)) prepare_seed(args.rand_seed) basic_main, eval_all = procedures['{:}-train'.format( args.procedure)], procedures['{:}-test'.format(args.procedure)] logger = prepare_logger(args) # General Data Augmentation normalize, train_transform, eval_transform, robust_transform = prepare_data_augmentation( transforms, args) #data_cache = get_path2image( args.shared_img_cache ) data_cache = None recover = transforms.ToPILImage(normalize) args.tensor2imageF = recover assert (args.scale_min + args.scale_max) / 2 == 1, 'The scale is not ok : {:} ~ {:}'.format( args.scale_min, args.scale_max) logger.log('robust_transform : {:}'.format(robust_transform)) # Model Configure Load model_config = load_configure(args.model_config, logger) shape = (args.height, args.width) logger.log('--> {:}\n--> Sigma : {:}, Shape : {:}'.format( model_config, args.sigma, shape)) # Training Dataset if args.train_lists: train_data = Dataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, shape, args.use_gray, args.mean_point, args.data_indicator, data_cache) safex_data = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, shape, args.use_gray, args.mean_point, args.data_indicator, data_cache) train_data.set_cutout(args.cutout_length) safex_data.set_cutout(args.cutout_length) train_data.load_list(args.train_lists, args.num_pts, args.boxindicator, args.normalizeL, True) safex_data.load_list(args.train_lists, args.num_pts, args.boxindicator, args.normalizeL, True) if args.sampler is None: train_loader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True, pin_memory=True) safex_loader = torch.utils.data.DataLoader( safex_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True, pin_memory=True) else: train_sampler = SpecialBatchSampler(train_data, args.batch_size, args.sampler) safex_sampler = SpecialBatchSampler(safex_data, args.batch_size, args.sampler) logger.log('Training-sampler : {:}'.format(train_sampler)) train_loader = torch.utils.data.DataLoader( train_data, batch_sampler=train_sampler, num_workers=args.workers, pin_memory=True) safex_loader = torch.utils.data.DataLoader( safex_data, batch_sampler=safex_sampler, num_workers=args.workers, pin_memory=True) logger.log('Training-data : {:}'.format(train_data)) else: train_data, safex_loader = None, None #train_data[0] # Evaluation Dataloader eval_loaders = [] if args.eval_ilists is not None: for eval_ilist in args.eval_ilists: eval_idata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, shape, args.use_gray, args.mean_point, args.data_indicator, data_cache) eval_idata.load_list(eval_ilist, args.num_pts, args.boxindicator, args.normalizeL, True) eval_iloader = torch.utils.data.DataLoader( eval_idata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_iloader, False)) if args.eval_vlists is not None: for eval_vlist in args.eval_vlists: eval_vdata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, shape, args.use_gray, args.mean_point, args.data_indicator, data_cache) eval_vdata.load_list(eval_vlist, args.num_pts, args.boxindicator, args.normalizeL, True) eval_vloader = torch.utils.data.DataLoader( eval_vdata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_vloader, True)) # from 68 points to 49 points, removing the face contour if args.x68to49: assert args.num_pts == 68, 'args.num_pts is not 68 vs. {:}'.format( args.num_pts) if train_data is not None: train_data = convert68to49(train_data) for eval_loader, is_video in eval_loaders: convert68to49(eval_loader.dataset) args.num_pts = 49 # define the detector detector = obtain_pro_model(model_config, args.num_pts, args.sigma, args.use_gray) assert model_config.downsample == detector.downsample, 'downsample is not correct : {:} vs {:}'.format( model_config.downsample, detector.downsample) logger.log("=> detector :\n {:}".format(detector)) logger.log("=> Net-Parameters : {:} MB".format( count_parameters_in_MB(detector))) for i, eval_loader in enumerate(eval_loaders): eval_loader, is_video = eval_loader logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format( i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset)) logger.log('arguments : {:}\n'.format(args)) logger.log('train_transform : {:}'.format(train_transform)) logger.log('eval_transform : {:}'.format(eval_transform)) opt_config = load_configure(args.opt_config, logger) if hasattr(detector, 'specify_parameter'): net_param_dict = detector.specify_parameter(opt_config.LR, opt_config.weight_decay) else: net_param_dict = detector.parameters() optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger) logger.log('criterion : {:}'.format(criterion)) detector, criterion = detector.cuda(), criterion.cuda() net = torch.nn.DataParallel(detector) last_info = logger.last_info() if last_info.exists(): logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) assert last_info['epoch'] == checkpoint[ 'epoch'], 'Last-Info is not right {:} vs {:}'.format( last_info, checkpoint['epoch']) net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done".format( logger.last_info(), checkpoint['epoch'])) elif args.init_model is not None: last_checkpoint = load_checkpoint(args.init_model) net.load_state_dict(last_checkpoint['detector']) logger.log("=> initialize the detector : {:}".format(args.init_model)) start_epoch = 0 else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch = 0 if args.eval_once is not None: logger.log("=> only evaluate the model once") #if safex_loader is not None: # safe_results, safe_metas = eval_all(args, [(safex_loader, False)], net, criterion, 'eval-once-train', logger, opt_config, robust_transform) # logger.log('-'*50 + ' evaluate the training set') #import pdb; pdb.set_trace() eval_results, eval_metas = eval_all(args, eval_loaders, net, criterion, 'eval-once', logger, opt_config, robust_transform) all_predictions = [eval_meta.predictions for eval_meta in eval_metas] torch.save( all_predictions, osp.join(args.save_path, '{:}-predictions.pth'.format(args.eval_once))) logger.log('==>> evaluation results : {:}'.format(eval_results)) logger.log('==>> configuration : {:}'.format(model_config)) logger.close() return # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, opt_config.epochs): need_time = convert_secs2time( epoch_time.avg * (opt_config.epochs - epoch), True) epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs) LRs = scheduler.get_lr() logger.log( '\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'. format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config)) # train for one epoch train_loss, train_meta, train_nme = basic_main(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config, 'train') scheduler.step() # log the results logger.log( '==>>{:s} Train [{:}] Average Loss = {:.6f}, NME = {:.2f}'.format( time_string(), epoch_str, train_loss, train_nme * 100)) save_path = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'arch': model_config.arch, 'detector': net.state_dict(), 'state_dict': net.state_dict(), 'scheduler': scheduler.state_dict(), 'optimizer': optimizer.state_dict(), }, logger.path('model') / 'seed-{:}-{:}.pth'.format(args.rand_seed, model_config.arch), logger) last_info = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'last_checkpoint': save_path, }, logger.last_info(), logger) if (args.eval_freq is None) or (epoch + 1 == opt_config.epochs) or ( epoch % args.eval_freq == 0): if epoch + 1 == opt_config.epochs: _robust_transform = robust_transform else: _robust_transform = None logger.log('') eval_results, eval_metas = eval_all(args, eval_loaders, net, criterion, epoch_str, logger, opt_config, _robust_transform) #save_path = save_checkpoint(eval_metas, logger.path('meta') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger) save_path = save_checkpoint( eval_metas, logger.path('meta') / 'seed-{:}-{:}.pth'.format(args.rand_seed, model_config.arch), logger) logger.log( '==>> evaluation results : {:}\n==>> save evaluation results into {:}.' .format(eval_results, save_path)) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log('Final checkpoint into {:}'.format(logger.last_info())) logger.close()