## setup model, optim, loss_fn, summary_writer model = models.resnet18().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.0001, weight_decay=0.01) loss_fn = torch.nn.CrossEntropyLoss() summary_writer = SummaryWriter(args.output + "/" + args.experiment_name + "/" + f"stage_{stage}") best_test_acc = 0 test_acc_this_stage = [] for epoch in range(epochs): train_loss = train(model, train_loader, optimizer, loss_fn, epoch, device, event_writer=summary_writer, log_interval=50) _, train_acc = test(model, train_loader, loss_fn, epoch, device, event_writer=summary_writer, test_type='train') test_loss, test_acc = test(model, test_loader, loss_fn, epoch, device,
def run(args): if args.train: print(f"Training over {args.epochs} epochs") elif args.test: print("Running a full evaluation") else: print("Running inference speed test") print("model:\t\t", args.model) print("dataset:\t", args.dataset) print("batch_size:\t", args.batch_size) hook = sy.TorchHook(torch) if args.websockets: alice = DataCentricFLClient(hook, "ws://localhost:7600") bob = DataCentricFLClient(hook, "ws://localhost:7601") crypto_provider = DataCentricFLClient(hook, "ws://localhost:7602") my_grid = sy.PrivateGridNetwork(alice, bob, crypto_provider) sy.local_worker.object_store.garbage_delay = 1 else: bob = sy.VirtualWorker(hook, id="bob") alice = sy.VirtualWorker(hook, id="alice") crypto_provider = sy.VirtualWorker(hook, id="crypto_provider") workers = [alice, bob] sy.local_worker.clients = workers encryption_kwargs = dict(workers=workers, crypto_provider=crypto_provider, protocol=args.protocol) kwargs = dict( requires_grad=args.requires_grad, precision_fractional=args.precision_fractional, dtype=args.dtype, **encryption_kwargs, ) if args.preprocess: build_prepocessing(args.model, args.dataset, args.batch_size, workers, args) private_train_loader, private_test_loader = get_data_loaders(args, kwargs, private=True) public_train_loader, public_test_loader = get_data_loaders(args, kwargs, private=False) model = get_model(args.model, args.dataset, out_features=get_number_classes(args.dataset)) if args.test and not args.train: load_state_dict(model, args.model, args.dataset) model.eval() if torch.cuda.is_available(): sy.cuda_force = True if not args.public: model.encrypt(**kwargs) if args.fp_only: # Just keep the (Autograd+) Fixed Precision feature model.get() if args.train: for epoch in range(args.epochs): optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) if not args.public: optimizer = optimizer.fix_precision( precision_fractional=args.precision_fractional, dtype=args.dtype) train_time = train(args, model, private_train_loader, optimizer, epoch) test_time, accuracy = test(args, model, private_test_loader) else: test_time, accuracy = test(args, model, private_test_loader) if not args.test: print( f"{ 'Online' if args.preprocess else 'Total' } time (s):\t", round(test_time / args.batch_size, 4), ) else: # Compare with clear text accuracy print("Clear text accuracy is:") model = get_model(args.model, args.dataset, out_features=get_number_classes(args.dataset)) load_state_dict(model, args.model, args.dataset) test(args, model, public_test_loader) if args.preprocess: missing_items = [len(v) for k, v in sy.preprocessed_material.items()] if sum(missing_items) > 0: print("MISSING preprocessed material") for key, value in sy.preprocessed_material.items(): print(f"'{key}':", value, ",")
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True prepare_seed(args.rand_seed) logstr = 'seed-{:}-time-{:}'.format(args.rand_seed, time_for_file()) logger = Logger(args.save_path, logstr) logger.log('Main Function with logger : {:}'.format(logger)) logger.log('Arguments : -------------------------------') for name, value in args._get_kwargs(): logger.log('{:16} : {:}'.format(name, value)) logger.log("Python version : {}".format(sys.version.replace('\n', ' '))) logger.log("Pillow version : {}".format(PIL.__version__)) logger.log("PyTorch version : {}".format(torch.__version__)) logger.log("cuDNN version : {}".format(torch.backends.cudnn.version())) # General Data Argumentation mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]]) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) assert args.arg_flip == False, 'The flip is : {}, rotate is {}'.format( args.arg_flip, args.rotate_max) train_transform = [transforms.PreCrop(args.pre_crop_expand)] train_transform += [ transforms.TrainScale2WH((args.crop_width, args.crop_height)) ] train_transform += [ transforms.AugScale(args.scale_prob, args.scale_min, args.scale_max) ] #if args.arg_flip: # train_transform += [transforms.AugHorizontalFlip()] if args.rotate_max: train_transform += [transforms.AugRotate(args.rotate_max)] train_transform += [ transforms.AugCrop(args.crop_width, args.crop_height, args.crop_perturb_max, mean_fill) ] train_transform += [transforms.ToTensor(), normalize] train_transform = transforms.Compose(train_transform) eval_transform = transforms.Compose([ transforms.PreCrop(args.pre_crop_expand), transforms.TrainScale2WH((args.crop_width, args.crop_height)), transforms.ToTensor(), normalize ]) assert ( args.scale_min + args.scale_max ) / 2 == args.scale_eval, 'The scale is not ok : {},{} vs {}'.format( args.scale_min, args.scale_max, args.scale_eval) # Model Configure Load model_config = load_configure(args.model_config, logger) args.sigma = args.sigma * args.scale_eval logger.log('Real Sigma : {:}'.format(args.sigma)) # Training Dataset train_data = VDataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator, args.video_parser) train_data.load_list(args.train_lists, args.num_pts, True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # Evaluation Dataloader eval_loaders = [] if args.eval_vlists is not None: for eval_vlist in args.eval_vlists: eval_vdata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_vdata.load_list(eval_vlist, args.num_pts, True) eval_vloader = torch.utils.data.DataLoader( eval_vdata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_vloader, True)) if args.eval_ilists is not None: for eval_ilist in args.eval_ilists: eval_idata = IDataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_idata.load_list(eval_ilist, args.num_pts, True) eval_iloader = torch.utils.data.DataLoader( eval_idata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_iloader, False)) # Define network lk_config = load_configure(args.lk_config, logger) logger.log('model configure : {:}'.format(model_config)) logger.log('LK configure : {:}'.format(lk_config)) net = obtain_model(model_config, lk_config, args.num_pts + 1) assert model_config.downsample == net.downsample, 'downsample is not correct : {} vs {}'.format( model_config.downsample, net.downsample) logger.log("=> network :\n {}".format(net)) logger.log('Training-data : {:}'.format(train_data)) for i, eval_loader in enumerate(eval_loaders): eval_loader, is_video = eval_loader logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format( i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset)) logger.log('arguments : {:}'.format(args)) opt_config = load_configure(args.opt_config, logger) if hasattr(net, 'specify_parameter'): net_param_dict = net.specify_parameter(opt_config.LR, opt_config.Decay) else: net_param_dict = net.parameters() optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger) logger.log('criterion : {:}'.format(criterion)) net, criterion = net.cuda(), criterion.cuda() net = torch.nn.DataParallel(net) last_info = logger.last_info() if last_info.exists(): logger.log("=> loading checkpoint of the last-info '{:}' start".format( last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) assert last_info['epoch'] == checkpoint[ 'epoch'], 'Last-Info is not right {:} vs {:}'.format( last_info, checkpoint['epoch']) net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done".format( logger.last_info(), checkpoint['epoch'])) elif args.init_model is not None: init_model = Path(args.init_model) assert init_model.exists(), 'init-model {:} does not exist'.format( init_model) checkpoint = torch.load(init_model) checkpoint = remove_module_dict(checkpoint['state_dict'], True) net.module.detector.load_state_dict(checkpoint) logger.log("=> initialize the detector : {:}".format(init_model)) start_epoch = 0 else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch = 0 detector = torch.nn.DataParallel(net.module.detector) eval_results = eval_all(args, eval_loaders, detector, criterion, 'start-eval', logger, opt_config) if args.eval_once: logger.log("=> only evaluate the model once") logger.close() return # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, opt_config.epochs): scheduler.step() need_time = convert_secs2time( epoch_time.avg * (opt_config.epochs - epoch), True) epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs) LRs = scheduler.get_lr() logger.log( '\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'. format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config)) # train for one epoch train_loss = train(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config, lk_config, epoch >= lk_config.start) # log the results logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}'.format( time_string(), epoch_str, train_loss)) # remember best prec@1 and save checkpoint save_path = save_checkpoint( { 'epoch': epoch, 'args': deepcopy(args), 'arch': model_config.arch, 'state_dict': net.state_dict(), 'detector': detector.state_dict(), 'scheduler': scheduler.state_dict(), 'optimizer': optimizer.state_dict(), }, logger.path('model') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger) last_info = save_checkpoint( { 'epoch': epoch, 'last_checkpoint': save_path, }, logger.last_info(), logger) eval_results = eval_all(args, eval_loaders, detector, criterion, epoch_str, logger, opt_config) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.close()
def main(args): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True prepare_seed(args.rand_seed) logstr = 'seed-{:}-time-{:}'.format(args.rand_seed, time_for_file()) logger = Logger(args.save_path, logstr) logger.log('Main Function with logger : {:}'.format(logger)) logger.log('Arguments : -------------------------------') for name, value in args._get_kwargs(): logger.log('{:16} : {:}'.format(name, value)) logger.log("Python version : {}".format(sys.version.replace('\n', ' '))) logger.log("Pillow version : {}".format(PIL.__version__)) logger.log("PyTorch version : {}".format(torch.__version__)) logger.log("cuDNN version : {}".format(torch.backends.cudnn.version())) # General Data Argumentation mean_fill = tuple( [int(x*255) for x in [0.485, 0.456, 0.406] ] ) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) assert args.arg_flip == False, 'The flip is : {}, rotate is {}'.format(args.arg_flip, args.rotate_max) train_transform = [transforms.PreCrop(args.pre_crop_expand)] train_transform += [transforms.TrainScale2WH((args.crop_width, args.crop_height))] train_transform += [transforms.AugScale(args.scale_prob, args.scale_min, args.scale_max)] #if args.arg_flip: # train_transform += [transforms.AugHorizontalFlip()] if args.rotate_max: train_transform += [transforms.AugRotate(args.rotate_max)] train_transform += [transforms.AugCrop(args.crop_width, args.crop_height, args.crop_perturb_max, mean_fill)] train_transform += [transforms.ToTensor(), normalize] train_transform = transforms.Compose( train_transform ) eval_transform = transforms.Compose([transforms.PreCrop(args.pre_crop_expand), transforms.TrainScale2WH((args.crop_width, args.crop_height)), transforms.ToTensor(), normalize]) assert (args.scale_min+args.scale_max) / 2 == args.scale_eval, 'The scale is not ok : {},{} vs {}'.format(args.scale_min, args.scale_max, args.scale_eval) # Model Configure Load model_config = load_configure(args.model_config, logger) args.sigma = args.sigma * args.scale_eval logger.log('Real Sigma : {:}'.format(args.sigma)) # Training Dataset train_data = Dataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) train_data.load_list(args.train_lists, args.num_pts, True) train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) # Evaluation Dataloader eval_loaders = [] if args.eval_vlists is not None: for eval_vlist in args.eval_vlists: eval_vdata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_vdata.load_list(eval_vlist, args.num_pts, True) eval_vloader = torch.utils.data.DataLoader(eval_vdata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_vloader, True)) if args.eval_ilists is not None: for eval_ilist in args.eval_ilists: eval_idata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator) eval_idata.load_list(eval_ilist, args.num_pts, True) eval_iloader = torch.utils.data.DataLoader(eval_idata, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) eval_loaders.append((eval_iloader, False)) # Define network logger.log('configure : {:}'.format(model_config)) net = obtain_model(model_config, args.num_pts + 1) assert model_config.downsample == net.downsample, 'downsample is not correct : {} vs {}'.format(model_config.downsample, net.downsample) logger.log("=> network :\n {}".format(net)) logger.log('Training-data : {:}'.format(train_data)) for i, eval_loader in enumerate(eval_loaders): eval_loader, is_video = eval_loader logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format(i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset)) logger.log('arguments : {:}'.format(args)) opt_config = load_configure(args.opt_config, logger) if hasattr(net, 'specify_parameter'): net_param_dict = net.specify_parameter(opt_config.LR, opt_config.Decay) else: net_param_dict = net.parameters() optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger) logger.log('criterion : {:}'.format(criterion)) net, criterion = net.cuda(), criterion.cuda() net = torch.nn.DataParallel(net) last_info = logger.last_info() if last_info.exists(): logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info)) last_info = torch.load(last_info) start_epoch = last_info['epoch'] + 1 checkpoint = torch.load(last_info['last_checkpoint']) assert last_info['epoch'] == checkpoint['epoch'], 'Last-Info is not right {:} vs {:}'.format(last_info, checkpoint['epoch']) net.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done" .format(logger.last_info(), checkpoint['epoch'])) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch = 0 if args.eval_once: logger.log("=> only evaluate the model once") eval_results = eval_all(args, eval_loaders, net, criterion, 'eval-once', logger, opt_config) logger.close() ; return # Main Training and Evaluation Loop start_time = time.time() epoch_time = AverageMeter() for epoch in range(start_epoch, opt_config.epochs): scheduler.step() need_time = convert_secs2time(epoch_time.avg * (opt_config.epochs-epoch), True) epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs) LRs = scheduler.get_lr() logger.log('\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config)) # train for one epoch train_loss, train_nme = train(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config) # log the results logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}, NME = {:.2f}'.format(time_string(), epoch_str, train_loss, train_nme*100)) # remember best prec@1 and save checkpoint save_path = save_checkpoint({ 'epoch': epoch, 'args' : deepcopy(args), 'arch' : model_config.arch, 'state_dict': net.state_dict(), 'scheduler' : scheduler.state_dict(), 'optimizer' : optimizer.state_dict(), }, logger.path('model') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger) last_info = save_checkpoint({ 'epoch': epoch, 'last_checkpoint': save_path, }, logger.last_info(), logger) eval_results = eval_all(args, eval_loaders, net, criterion, epoch_str, logger, opt_config) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.close()
criterion = torch.nn.BCEWithLogitsLoss() print('[start triaing]') best_acc = 0.0 best_roc_auc = 0.0 with tqdm(range(args.n_epochs), desc='[Epoch]', position=0, leave=True, disable=('DISABLE_TQDM' in os.environ)) as pbar: for epoch in pbar: # trainloader.sampler.set_epoch(epoch) train( model=model, dataloader=trainloader, optimizer=optimizer, criterion=criterion, device=args.device, args=args # this is so bad ) roc_auc, accuracy, loss = evaluate(model=model, dataloader=valloader, criterion=criterion, device=args.device) if roc_auc > best_roc_auc: torch.save( { 'epoch': epoch, 'accuracy': accuracy, 'roc_auc': roc_auc, 'model': model.module.state_dict(), 'optimizer': optimizer.state_dict()