## setup model, optim, loss_fn, summary_writer
 model = models.resnet18().to(device)
 optimizer = torch.optim.Adam(model.parameters(),
                              lr=0.0001,
                              weight_decay=0.01)
 loss_fn = torch.nn.CrossEntropyLoss()
 summary_writer = SummaryWriter(args.output + "/" +
                                args.experiment_name + "/" +
                                f"stage_{stage}")
 best_test_acc = 0
 test_acc_this_stage = []
 for epoch in range(epochs):
     train_loss = train(model,
                        train_loader,
                        optimizer,
                        loss_fn,
                        epoch,
                        device,
                        event_writer=summary_writer,
                        log_interval=50)
     _, train_acc = test(model,
                         train_loader,
                         loss_fn,
                         epoch,
                         device,
                         event_writer=summary_writer,
                         test_type='train')
     test_loss, test_acc = test(model,
                                test_loader,
                                loss_fn,
                                epoch,
                                device,
Example #2
0
def run(args):
    if args.train:
        print(f"Training over {args.epochs} epochs")
    elif args.test:
        print("Running a full evaluation")
    else:
        print("Running inference speed test")
    print("model:\t\t", args.model)
    print("dataset:\t", args.dataset)
    print("batch_size:\t", args.batch_size)

    hook = sy.TorchHook(torch)

    if args.websockets:
        alice = DataCentricFLClient(hook, "ws://localhost:7600")
        bob = DataCentricFLClient(hook, "ws://localhost:7601")
        crypto_provider = DataCentricFLClient(hook, "ws://localhost:7602")
        my_grid = sy.PrivateGridNetwork(alice, bob, crypto_provider)
        sy.local_worker.object_store.garbage_delay = 1

    else:
        bob = sy.VirtualWorker(hook, id="bob")
        alice = sy.VirtualWorker(hook, id="alice")
        crypto_provider = sy.VirtualWorker(hook, id="crypto_provider")

    workers = [alice, bob]
    sy.local_worker.clients = workers

    encryption_kwargs = dict(workers=workers,
                             crypto_provider=crypto_provider,
                             protocol=args.protocol)
    kwargs = dict(
        requires_grad=args.requires_grad,
        precision_fractional=args.precision_fractional,
        dtype=args.dtype,
        **encryption_kwargs,
    )

    if args.preprocess:
        build_prepocessing(args.model, args.dataset, args.batch_size, workers,
                           args)

    private_train_loader, private_test_loader = get_data_loaders(args,
                                                                 kwargs,
                                                                 private=True)
    public_train_loader, public_test_loader = get_data_loaders(args,
                                                               kwargs,
                                                               private=False)

    model = get_model(args.model,
                      args.dataset,
                      out_features=get_number_classes(args.dataset))

    if args.test and not args.train:
        load_state_dict(model, args.model, args.dataset)

    model.eval()

    if torch.cuda.is_available():
        sy.cuda_force = True

    if not args.public:
        model.encrypt(**kwargs)
        if args.fp_only:  # Just keep the (Autograd+) Fixed Precision feature
            model.get()

    if args.train:
        for epoch in range(args.epochs):
            optimizer = optim.SGD(model.parameters(),
                                  lr=args.lr,
                                  momentum=args.momentum)

            if not args.public:
                optimizer = optimizer.fix_precision(
                    precision_fractional=args.precision_fractional,
                    dtype=args.dtype)
            train_time = train(args, model, private_train_loader, optimizer,
                               epoch)
            test_time, accuracy = test(args, model, private_test_loader)
    else:
        test_time, accuracy = test(args, model, private_test_loader)
        if not args.test:
            print(
                f"{ 'Online' if args.preprocess else 'Total' } time (s):\t",
                round(test_time / args.batch_size, 4),
            )
        else:
            # Compare with clear text accuracy
            print("Clear text accuracy is:")
            model = get_model(args.model,
                              args.dataset,
                              out_features=get_number_classes(args.dataset))
            load_state_dict(model, args.model, args.dataset)
            test(args, model, public_test_loader)

    if args.preprocess:
        missing_items = [len(v) for k, v in sy.preprocessed_material.items()]
        if sum(missing_items) > 0:
            print("MISSING preprocessed material")
            for key, value in sy.preprocessed_material.items():
                print(f"'{key}':", value, ",")
def main(args):
    assert torch.cuda.is_available(), 'CUDA is not available.'
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True
    prepare_seed(args.rand_seed)

    logstr = 'seed-{:}-time-{:}'.format(args.rand_seed, time_for_file())
    logger = Logger(args.save_path, logstr)
    logger.log('Main Function with logger : {:}'.format(logger))
    logger.log('Arguments : -------------------------------')
    for name, value in args._get_kwargs():
        logger.log('{:16} : {:}'.format(name, value))
    logger.log("Python  version : {}".format(sys.version.replace('\n', ' ')))
    logger.log("Pillow  version : {}".format(PIL.__version__))
    logger.log("PyTorch version : {}".format(torch.__version__))
    logger.log("cuDNN   version : {}".format(torch.backends.cudnn.version()))

    # General Data Argumentation
    mean_fill = tuple([int(x * 255) for x in [0.485, 0.456, 0.406]])
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    assert args.arg_flip == False, 'The flip is : {}, rotate is {}'.format(
        args.arg_flip, args.rotate_max)
    train_transform = [transforms.PreCrop(args.pre_crop_expand)]
    train_transform += [
        transforms.TrainScale2WH((args.crop_width, args.crop_height))
    ]
    train_transform += [
        transforms.AugScale(args.scale_prob, args.scale_min, args.scale_max)
    ]
    #if args.arg_flip:
    #  train_transform += [transforms.AugHorizontalFlip()]
    if args.rotate_max:
        train_transform += [transforms.AugRotate(args.rotate_max)]
    train_transform += [
        transforms.AugCrop(args.crop_width, args.crop_height,
                           args.crop_perturb_max, mean_fill)
    ]
    train_transform += [transforms.ToTensor(), normalize]
    train_transform = transforms.Compose(train_transform)

    eval_transform = transforms.Compose([
        transforms.PreCrop(args.pre_crop_expand),
        transforms.TrainScale2WH((args.crop_width, args.crop_height)),
        transforms.ToTensor(), normalize
    ])
    assert (
        args.scale_min + args.scale_max
    ) / 2 == args.scale_eval, 'The scale is not ok : {},{} vs {}'.format(
        args.scale_min, args.scale_max, args.scale_eval)

    # Model Configure Load
    model_config = load_configure(args.model_config, logger)
    args.sigma = args.sigma * args.scale_eval
    logger.log('Real Sigma : {:}'.format(args.sigma))

    # Training Dataset
    train_data = VDataset(train_transform, args.sigma, model_config.downsample,
                          args.heatmap_type, args.data_indicator,
                          args.video_parser)
    train_data.load_list(args.train_lists, args.num_pts, True)
    train_loader = torch.utils.data.DataLoader(train_data,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True)

    # Evaluation Dataloader
    eval_loaders = []
    if args.eval_vlists is not None:
        for eval_vlist in args.eval_vlists:
            eval_vdata = IDataset(eval_transform, args.sigma,
                                  model_config.downsample, args.heatmap_type,
                                  args.data_indicator)
            eval_vdata.load_list(eval_vlist, args.num_pts, True)
            eval_vloader = torch.utils.data.DataLoader(
                eval_vdata,
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.workers,
                pin_memory=True)
            eval_loaders.append((eval_vloader, True))

    if args.eval_ilists is not None:
        for eval_ilist in args.eval_ilists:
            eval_idata = IDataset(eval_transform, args.sigma,
                                  model_config.downsample, args.heatmap_type,
                                  args.data_indicator)
            eval_idata.load_list(eval_ilist, args.num_pts, True)
            eval_iloader = torch.utils.data.DataLoader(
                eval_idata,
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.workers,
                pin_memory=True)
            eval_loaders.append((eval_iloader, False))

    # Define network
    lk_config = load_configure(args.lk_config, logger)
    logger.log('model configure : {:}'.format(model_config))
    logger.log('LK configure : {:}'.format(lk_config))
    net = obtain_model(model_config, lk_config, args.num_pts + 1)
    assert model_config.downsample == net.downsample, 'downsample is not correct : {} vs {}'.format(
        model_config.downsample, net.downsample)
    logger.log("=> network :\n {}".format(net))

    logger.log('Training-data : {:}'.format(train_data))
    for i, eval_loader in enumerate(eval_loaders):
        eval_loader, is_video = eval_loader
        logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format(
            i, len(eval_loaders), 'video' if is_video else 'image',
            eval_loader.dataset))

    logger.log('arguments : {:}'.format(args))

    opt_config = load_configure(args.opt_config, logger)

    if hasattr(net, 'specify_parameter'):
        net_param_dict = net.specify_parameter(opt_config.LR, opt_config.Decay)
    else:
        net_param_dict = net.parameters()

    optimizer, scheduler, criterion = obtain_optimizer(net_param_dict,
                                                       opt_config, logger)
    logger.log('criterion : {:}'.format(criterion))
    net, criterion = net.cuda(), criterion.cuda()
    net = torch.nn.DataParallel(net)

    last_info = logger.last_info()
    if last_info.exists():
        logger.log("=> loading checkpoint of the last-info '{:}' start".format(
            last_info))
        last_info = torch.load(last_info)
        start_epoch = last_info['epoch'] + 1
        checkpoint = torch.load(last_info['last_checkpoint'])
        assert last_info['epoch'] == checkpoint[
            'epoch'], 'Last-Info is not right {:} vs {:}'.format(
                last_info, checkpoint['epoch'])
        net.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        scheduler.load_state_dict(checkpoint['scheduler'])
        logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done".format(
            logger.last_info(), checkpoint['epoch']))
    elif args.init_model is not None:
        init_model = Path(args.init_model)
        assert init_model.exists(), 'init-model {:} does not exist'.format(
            init_model)
        checkpoint = torch.load(init_model)
        checkpoint = remove_module_dict(checkpoint['state_dict'], True)
        net.module.detector.load_state_dict(checkpoint)
        logger.log("=> initialize the detector : {:}".format(init_model))
        start_epoch = 0
    else:
        logger.log("=> do not find the last-info file : {:}".format(last_info))
        start_epoch = 0

    detector = torch.nn.DataParallel(net.module.detector)

    eval_results = eval_all(args, eval_loaders, detector, criterion,
                            'start-eval', logger, opt_config)
    if args.eval_once:
        logger.log("=> only evaluate the model once")
        logger.close()
        return

    # Main Training and Evaluation Loop
    start_time = time.time()
    epoch_time = AverageMeter()
    for epoch in range(start_epoch, opt_config.epochs):

        scheduler.step()
        need_time = convert_secs2time(
            epoch_time.avg * (opt_config.epochs - epoch), True)
        epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs)
        LRs = scheduler.get_lr()
        logger.log(
            '\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'.
            format(time_string(), epoch_str, need_time, min(LRs), max(LRs),
                   opt_config))

        # train for one epoch
        train_loss = train(args, train_loader, net, criterion, optimizer,
                           epoch_str, logger, opt_config, lk_config,
                           epoch >= lk_config.start)
        # log the results
        logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}'.format(
            time_string(), epoch_str, train_loss))

        # remember best prec@1 and save checkpoint
        save_path = save_checkpoint(
            {
                'epoch': epoch,
                'args': deepcopy(args),
                'arch': model_config.arch,
                'state_dict': net.state_dict(),
                'detector': detector.state_dict(),
                'scheduler': scheduler.state_dict(),
                'optimizer': optimizer.state_dict(),
            },
            logger.path('model') /
            '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger)

        last_info = save_checkpoint(
            {
                'epoch': epoch,
                'last_checkpoint': save_path,
            }, logger.last_info(), logger)

        eval_results = eval_all(args, eval_loaders, detector, criterion,
                                epoch_str, logger, opt_config)

        # measure elapsed time
        epoch_time.update(time.time() - start_time)
        start_time = time.time()

    logger.close()
def main(args):
  assert torch.cuda.is_available(), 'CUDA is not available.'
  torch.backends.cudnn.enabled   = True
  torch.backends.cudnn.benchmark = True
  prepare_seed(args.rand_seed)

  logstr = 'seed-{:}-time-{:}'.format(args.rand_seed, time_for_file())
  logger = Logger(args.save_path, logstr)
  logger.log('Main Function with logger : {:}'.format(logger))
  logger.log('Arguments : -------------------------------')
  for name, value in args._get_kwargs():
    logger.log('{:16} : {:}'.format(name, value))
  logger.log("Python  version : {}".format(sys.version.replace('\n', ' ')))
  logger.log("Pillow  version : {}".format(PIL.__version__))
  logger.log("PyTorch version : {}".format(torch.__version__))
  logger.log("cuDNN   version : {}".format(torch.backends.cudnn.version()))

  # General Data Argumentation
  mean_fill   = tuple( [int(x*255) for x in [0.485, 0.456, 0.406] ] )
  normalize   = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                      std=[0.229, 0.224, 0.225])
  assert args.arg_flip == False, 'The flip is : {}, rotate is {}'.format(args.arg_flip, args.rotate_max)
  train_transform  = [transforms.PreCrop(args.pre_crop_expand)]
  train_transform += [transforms.TrainScale2WH((args.crop_width, args.crop_height))]
  train_transform += [transforms.AugScale(args.scale_prob, args.scale_min, args.scale_max)]
  #if args.arg_flip:
  #  train_transform += [transforms.AugHorizontalFlip()]
  if args.rotate_max:
    train_transform += [transforms.AugRotate(args.rotate_max)]
  train_transform += [transforms.AugCrop(args.crop_width, args.crop_height, args.crop_perturb_max, mean_fill)]
  train_transform += [transforms.ToTensor(), normalize]
  train_transform  = transforms.Compose( train_transform )

  eval_transform  = transforms.Compose([transforms.PreCrop(args.pre_crop_expand), transforms.TrainScale2WH((args.crop_width, args.crop_height)),  transforms.ToTensor(), normalize])
  assert (args.scale_min+args.scale_max) / 2 == args.scale_eval, 'The scale is not ok : {},{} vs {}'.format(args.scale_min, args.scale_max, args.scale_eval)
  
  # Model Configure Load
  model_config = load_configure(args.model_config, logger)
  args.sigma   = args.sigma * args.scale_eval
  logger.log('Real Sigma : {:}'.format(args.sigma))

  # Training Dataset
  train_data   = Dataset(train_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator)
  train_data.load_list(args.train_lists, args.num_pts, True)
  train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)


  # Evaluation Dataloader
  eval_loaders = []
  if args.eval_vlists is not None:
    for eval_vlist in args.eval_vlists:
      eval_vdata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator)
      eval_vdata.load_list(eval_vlist, args.num_pts, True)
      eval_vloader = torch.utils.data.DataLoader(eval_vdata, batch_size=args.batch_size, shuffle=False,
                                                 num_workers=args.workers, pin_memory=True)
      eval_loaders.append((eval_vloader, True))

  if args.eval_ilists is not None:
    for eval_ilist in args.eval_ilists:
      eval_idata = Dataset(eval_transform, args.sigma, model_config.downsample, args.heatmap_type, args.data_indicator)
      eval_idata.load_list(eval_ilist, args.num_pts, True)
      eval_iloader = torch.utils.data.DataLoader(eval_idata, batch_size=args.batch_size, shuffle=False,
                                                 num_workers=args.workers, pin_memory=True)
      eval_loaders.append((eval_iloader, False))

  # Define network
  logger.log('configure : {:}'.format(model_config))
  net = obtain_model(model_config, args.num_pts + 1)
  assert model_config.downsample == net.downsample, 'downsample is not correct : {} vs {}'.format(model_config.downsample, net.downsample)
  logger.log("=> network :\n {}".format(net))

  logger.log('Training-data : {:}'.format(train_data))
  for i, eval_loader in enumerate(eval_loaders):
    eval_loader, is_video = eval_loader
    logger.log('The [{:2d}/{:2d}]-th testing-data [{:}] = {:}'.format(i, len(eval_loaders), 'video' if is_video else 'image', eval_loader.dataset))
    
  logger.log('arguments : {:}'.format(args))

  opt_config = load_configure(args.opt_config, logger)

  if hasattr(net, 'specify_parameter'):
    net_param_dict = net.specify_parameter(opt_config.LR, opt_config.Decay)
  else:
    net_param_dict = net.parameters()

  optimizer, scheduler, criterion = obtain_optimizer(net_param_dict, opt_config, logger)
  logger.log('criterion : {:}'.format(criterion))
  net, criterion = net.cuda(), criterion.cuda()
  net = torch.nn.DataParallel(net)

  last_info = logger.last_info()
  if last_info.exists():
    logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
    last_info = torch.load(last_info)
    start_epoch = last_info['epoch'] + 1
    checkpoint  = torch.load(last_info['last_checkpoint'])
    assert last_info['epoch'] == checkpoint['epoch'], 'Last-Info is not right {:} vs {:}'.format(last_info, checkpoint['epoch'])
    net.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    scheduler.load_state_dict(checkpoint['scheduler'])
    logger.log("=> load-ok checkpoint '{:}' (epoch {:}) done" .format(logger.last_info(), checkpoint['epoch']))
  else:
    logger.log("=> do not find the last-info file : {:}".format(last_info))
    start_epoch = 0


  if args.eval_once:
    logger.log("=> only evaluate the model once")
    eval_results = eval_all(args, eval_loaders, net, criterion, 'eval-once', logger, opt_config)
    logger.close() ; return


  # Main Training and Evaluation Loop
  start_time = time.time()
  epoch_time = AverageMeter()
  for epoch in range(start_epoch, opt_config.epochs):

    scheduler.step()
    need_time = convert_secs2time(epoch_time.avg * (opt_config.epochs-epoch), True)
    epoch_str = 'epoch-{:03d}-{:03d}'.format(epoch, opt_config.epochs)
    LRs       = scheduler.get_lr()
    logger.log('\n==>>{:s} [{:s}], [{:s}], LR : [{:.5f} ~ {:.5f}], Config : {:}'.format(time_string(), epoch_str, need_time, min(LRs), max(LRs), opt_config))

    # train for one epoch
    train_loss, train_nme = train(args, train_loader, net, criterion, optimizer, epoch_str, logger, opt_config)
    # log the results    
    logger.log('==>>{:s} Train [{:}] Average Loss = {:.6f}, NME = {:.2f}'.format(time_string(), epoch_str, train_loss, train_nme*100))

    # remember best prec@1 and save checkpoint
    save_path = save_checkpoint({
          'epoch': epoch,
          'args' : deepcopy(args),
          'arch' : model_config.arch,
          'state_dict': net.state_dict(),
          'scheduler' : scheduler.state_dict(),
          'optimizer' : optimizer.state_dict(),
          }, logger.path('model') / '{:}-{:}.pth'.format(model_config.arch, epoch_str), logger)

    last_info = save_checkpoint({
          'epoch': epoch,
          'last_checkpoint': save_path,
          }, logger.last_info(), logger)

    eval_results = eval_all(args, eval_loaders, net, criterion, epoch_str, logger, opt_config)
    
    # measure elapsed time
    epoch_time.update(time.time() - start_time)
    start_time = time.time()

  logger.close()
Example #5
0
    criterion = torch.nn.BCEWithLogitsLoss()

    print('[start triaing]')
    best_acc = 0.0
    best_roc_auc = 0.0
    with tqdm(range(args.n_epochs),
              desc='[Epoch]',
              position=0,
              leave=True,
              disable=('DISABLE_TQDM' in os.environ)) as pbar:
        for epoch in pbar:
            # trainloader.sampler.set_epoch(epoch)
            train(
                model=model,
                dataloader=trainloader,
                optimizer=optimizer,
                criterion=criterion,
                device=args.device,
                args=args  # this is so bad  
            )
            roc_auc, accuracy, loss = evaluate(model=model,
                                               dataloader=valloader,
                                               criterion=criterion,
                                               device=args.device)
            if roc_auc > best_roc_auc:
                torch.save(
                    {
                        'epoch': epoch,
                        'accuracy': accuracy,
                        'roc_auc': roc_auc,
                        'model': model.module.state_dict(),
                        'optimizer': optimizer.state_dict()