def uploadUGProductImage(request): if request.method == 'POST': process_image(request.POST["product1_url"], request.POST["product1_filename"]) process_image(request.POST["product2_url"], request.POST["product2_filename"]) # use process_images.py return HttpResponse("looks like it worked") return HttpResponse("Not a post request")
def main(cards_file, debug=False): with open(cards_file) as f: content = f.readlines() card_list = [line.rstrip('\n') for line in content] download_images(card_list) for card_name in card_list: print(card_name) process_image(card_name, debug)
def predict(image_path, category_names, model, top_k, device): device = torch.device( "cuda:0" if torch.cuda.is_available() and device == 'gpu' else 'cpu') image = process_image(image_path) tensor_im = torch.from_numpy(image) tensor_im = tensor_im.permute(2, 0, 1).type(torch.cuda.FloatTensor) tensor_im = tensor_im.unsqueeze(0) with torch.no_grad(): model.to(device) tensor_im.to(device) output = model.forward(tensor_im) probs = torch.exp(output) probabilities, idx = torch.topk(probs, top_k) idx = idx.cpu().numpy()[0] probabilities = probabilities.cpu().numpy()[0] classes = {val: key for key, val in model.class_to_idx.items()} top_classes = [classes[each] for each in idx] with open(category_names, 'r') as f: category_names = json.load(f) label_idx = re.split('/', image_path) label_idx = label_idx[2] label = category_names[label_idx] predicted_labels = [category_names[i] for i in top_classes] round_prob = list(np.around(np.array(probabilities), 2)) predict_dict = dict(zip(predicted_labels, round_prob)) print('Predicted Image Label: ', label) print('Top ' + str(top_k) + ' Probabilities') for k, v in predict_dict.items(): print(str(k) + ': ' + str(v))
def main(img): #返回车牌定位 cropImg = image_position(img) #车牌倾斜矫正 rotated = correct_image(cropImg) #分割字符 images = process_image(rotated) #预测 prediction(images)
def make_voc(imlist): featlist = [ process_image(im) for im in imlist ] voc = Vocabulary(VOC_NAME) voc.train(featlist, 1000, 10) # saving vocabulary with open(VOC_FILE, 'wb') as f: cPickle.dump(voc, f) print 'vocabulary', voc.name, 'has', voc.nbr_words, 'words'
def unify_test_function(model, batch): if len(batch) == 3: x, y, _ = batch else: x, y = batch x, y = x.to(model.device), y.to(model.device) pred = process_image(model, x, model.input_size, model.n_channels) loss = F.mse_loss(pred.detach(), y) pcc = pearson_corrcoef(pred.reshape(-1), y.reshape(-1)) return pred.detach(), loss.detach(), pcc.detach()
def telemetry(sid, data): if data: # The current steering angle of the car steering_angle = data["steering_angle"] # The current throttle of the car throttle = data["throttle"] # The current speed of the car speed = data["speed"] # The current image from the center camera of the car imgString = data["image"] image = Image.open(BytesIO(base64.b64decode(imgString))) image_array = np.asarray(image) image_4d = image_array[None, :, :, :] # Pre-process image_3d = process_image(convert_4d_to_3d(image_4d)) image_4d = convert_3d_to_4d(image_3d) steering_angle = float(model.predict(image_4d, batch_size=1)) #throttle = controller.update(float(speed)) throttle = 0.2 print(steering_angle, throttle) send_control(steering_angle, throttle) # save frame if args.image_folder != '': timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3] image_filename = os.path.join(args.image_folder, timestamp) image.save('{}.jpg'.format(image_filename)) else: # NOTE: DON'T EDIT THIS. sio.emit('manual', data={}, skip_sid=True)
def test_process_image(): assert pi.process_image(TEST_IMAGE) != None
def pipe_images(): # if not request.json or not 'data' in request.json: # abort(400) print(request.json) result = cf.process_image(request.json.get("data")) return jsonify({"status": result[0], "name": result[1]}), 201