Example #1
0
    def __init__(self, processes=None, initializer=None, initargs=()):
        self._inqueue = SimpleQueue()
        self._outqueue = SimpleQueue()
        self._taskqueue = Queue.Queue()
        self._cache = {}
        self._state = RUN

        if processes is None:
            try:
                processes = processing.cpuCount()
            except NotImplementedError:
                processes = 1
            
        self._pool = [
            Process(target=worker, args=(self._inqueue, self._outqueue,
                                         initializer, initargs))
            for i in range(processes)
            ]
        
        for i, w in enumerate(self._pool):
            w.setName('PoolWorker-' + ':'.join(map(str, w._identity)))
            w.start()
                    
        self._task_handler = threading.Thread(
            target=Pool._handleTasks,
            args=(self._taskqueue, self._inqueue, self._outqueue, self._pool)
            )
        self._task_handler.setDaemon(True)
        self._task_handler._state = RUN
        self._task_handler.start()

        self._result_handler = threading.Thread(
            target=Pool._handleResults,
            args=(self._outqueue, self._cache)
            )
        self._result_handler.setDaemon(True)
        self._result_handler._state = RUN
        self._result_handler.start()

        self._terminate = Finalize(
            self, Pool._terminatePool,
            args=(self._taskqueue, self._inqueue, self._outqueue,
                  self._cache, self._pool, self._task_handler,
                  self._result_handler),
            exitpriority=5
            )
Example #2
0
    def __init__(self, jobs, nprocesses=processing.cpuCount()):
        """
        Parameters:
        jobs - an FIFO list of instances of processing.Process that the 
            JobRunner will start
        nprocesses - the number of processes to have concurrently running.  
            Default: the number of processors on the machine
        
        """
        super(LocalJobRunner, self).__init__()
        self._nprocesses = nprocesses
        # make copy to use as a FIFO queue
        self._queue = jobs[:]
        self._queue.reverse()

        self._running = []
        self.times = {}
        self.__finished = False
Example #3
0
 def __init__(self, jobs, nprocesses=processing.cpuCount()):
     """
     Parameters:
     jobs - an FIFO list of instances of processing.Process that the 
         JobRunner will start
     nprocesses - the number of processes to have concurrently running.  
         Default: the number of processors on the machine
     
     """
     super(LocalJobRunner, self).__init__()
     self._nprocesses = nprocesses
     # make copy to use as a FIFO queue
     self._queue = jobs[:]
     self._queue.reverse()
     
     self._running = []
     self.times = {}
     self.__finished = False
Example #4
0
    def __init__(self, processes=None, initializer=None, initargs=()):
        self._inqueue = SimpleQueue()
        self._outqueue = SimpleQueue()
        self._taskqueue = Queue.Queue()
        self._cache = {}
        self._state = RUN

        if processes is None:
            try:
                processes = processing.cpuCount()
            except NotImplementedError:
                processes = 1

        self._pool = [
            Process(target=worker,
                    args=(self._inqueue, self._outqueue, initializer,
                          initargs)) for i in range(processes)
        ]

        for i, w in enumerate(self._pool):
            w.setName('PoolWorker-' + ':'.join(map(str, w._identity)))
            w.start()

        self._task_handler = threading.Thread(
            target=Pool._handleTasks,
            args=(self._taskqueue, self._inqueue, self._outqueue, self._pool))
        self._task_handler.setDaemon(True)
        self._task_handler._state = RUN
        self._task_handler.start()

        self._result_handler = threading.Thread(target=Pool._handleResults,
                                                args=(self._outqueue,
                                                      self._cache))
        self._result_handler.setDaemon(True)
        self._result_handler._state = RUN
        self._result_handler.start()

        self._terminate = Finalize(
            self,
            Pool._terminatePool,
            args=(self._taskqueue, self._inqueue, self._outqueue, self._cache,
                  self._pool, self._task_handler, self._result_handler),
            exitpriority=5)
Example #5
0
def test():
    print 'cpuCount() = %d\n' % cpuCount()

    #
    # Create pool
    #

    PROCESSES = 4
    print 'Creating pool with %d processes\n' % PROCESSES
    pool = Pool(PROCESSES)

    #
    # Tests
    #

    TASKS = [(mul, (i, 7)) for i in range(10)] + \
            [(plus, (i, 8)) for i in range(10)]

    results = [pool.applyAsync(calculate, t) for t in TASKS]
    imap_it = pool.imap(calculatestar, TASKS)
    imap_unordered_it = pool.imapUnordered(calculatestar, TASKS)

    print 'Ordered results using pool.applyAsync():'
    for r in results:
        print '\t', r.get()
    print

    print 'Ordered results using pool.imap():'
    for x in imap_it:
        print '\t', x
    print

    print 'Unordered results using pool.imapUnordered():'
    for x in imap_unordered_it:
        print '\t', x
    print

    print 'Ordered results using pool.map() --- will block till complete:'
    for x in pool.map(calculatestar, TASKS):
        print '\t', x
    print

    #
    # Simple benchmarks
    #

    N = 100000
    print 'def pow3(x): return x**3'

    t = time.time()
    A = map(pow3, xrange(N))
    print '\tmap(pow3, xrange(%d)):\n\t\t%s seconds' % \
          (N, time.time() - t)

    t = time.time()
    B = pool.map(pow3, xrange(N))
    print '\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds' % \
          (N, time.time() - t)

    t = time.time()
    C = list(pool.imap(pow3, xrange(N), chunksize=N // 8))
    print '\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s' \
          ' seconds' % (N, N//8, time.time() - t)

    assert A == B == C, (len(A), len(B), len(C))
    print

    L = [None] * 1000000
    print 'def noop(x): pass'
    print 'L = [None] * 1000000'

    t = time.time()
    A = map(noop, L)
    print '\tmap(noop, L):\n\t\t%s seconds' % \
          (time.time() - t)

    t = time.time()
    B = pool.map(noop, L)
    print '\tpool.map(noop, L):\n\t\t%s seconds' % \
          (time.time() - t)

    t = time.time()
    C = list(pool.imap(noop, L, chunksize=len(L) // 8))
    print '\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds' % \
          (len(L)//8, time.time() - t)

    assert A == B == C, (len(A), len(B), len(C))
    print

    del A, B, C, L

    #
    # Test error handling
    #

    print 'Testing error handling:'

    try:
        print pool.apply(f, (5, ))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from pool.apply()'
    else:
        raise AssertionError, 'expected ZeroDivisionError'

    try:
        print pool.map(f, range(10))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from pool.map()'
    else:
        raise AssertionError, 'expected ZeroDivisionError'

    try:
        print list(pool.imap(f, range(10)))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from list(pool.imap())'
    else:
        raise AssertionError, 'expected ZeroDivisionError'

    it = pool.imap(f, range(10))
    for i in range(10):
        try:
            x = it.next()
        except ZeroDivisionError:
            if i == 5:
                pass
        except StopIteration:
            break
        else:
            if i == 5:
                raise AssertionError, 'expected ZeroDivisionError'

    assert i == 9
    print '\tGot ZeroDivisionError as expected from IMapIterator.next()'
    print

    #
    # Testing timeouts
    #

    print 'Testing ApplyResult.get() with timeout:',
    res = pool.applyAsync(calculate, TASKS[0])
    while 1:
        sys.stdout.flush()
        try:
            sys.stdout.write('\n\t%s' % res.get(0.02))
            break
        except TimeoutError:
            sys.stdout.write('.')
    print
    print

    print 'Testing IMapIterator.next() with timeout:',
    it = pool.imap(calculatestar, TASKS)
    while 1:
        sys.stdout.flush()
        try:
            sys.stdout.write('\n\t%s' % it.next(0.02))
        except StopIteration:
            break
        except TimeoutError:
            sys.stdout.write('.')
    print
    print

    #
    # Testing callback
    #

    print 'Testing callback:'

    A = []
    B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

    r = pool.applyAsync(mul, (7, 8), callback=A.append)
    r.wait()

    r = pool.mapAsync(pow3, range(10), callback=A.extend)
    r.wait()

    if A == B:
        print '\tcallbacks succeeded\n'
    else:
        print '\t*** callbacks failed\n\t\t%s != %s\n' % (A, B)

    #
    # Check there are no outstanding tasks
    #

    assert not pool._cache, 'cache = %r' % pool._cache

    #
    # Check close() methods
    #

    print 'Testing close():'

    for worker in pool._pool:
        assert worker.isAlive()

    result = pool.applyAsync(time.sleep, [0.5])
    pool.close()
    pool.join()

    assert result.get() is None

    for worker in pool._pool:
        assert not worker.isAlive()

    print '\tclose() succeeded\n'

    #
    # Check terminate() method
    #

    print 'Testing terminate():'

    pool = Pool(2)
    ignore = pool.apply(pow3, [2])
    results = [pool.applyAsync(time.sleep, [10]) for i in range(10)]
    pool.terminate()
    pool.join()

    for worker in pool._pool:
        assert not worker.isAlive()

    print '\tterminate() succeeded\n'

    #
    # Check garbage collection
    #

    print 'Testing garbage collection:'

    pool = Pool(2)
    processes = pool._pool

    ignore = pool.apply(pow3, [2])
    results = [pool.applyAsync(time.sleep, [10]) for i in range(10)]

    del results, pool

    time.sleep(0.2)

    for worker in processes:
        assert not worker.isAlive()

    print '\tgarbage collection succeeded\n'
Example #6
0
"""Support module for using the `multiprocessing` module."""

try:
    import processing as multiprocessing
    HAS_PROCESSING = True
except ImportError:
    try:
        import multiprocessing
        HAS_PROCESSING = True
    except ImportError:
        HAS_PROCESSING = False    

__all__ = ["use_parallel_processing"]

if HAS_PROCESSING:
    CPU_COUNT = multiprocessing.cpuCount()
else:
    CPU_COUNT = 1
    multiprocessing = None


def use_parallel_processing():
    """Returns `True` if the query evaluator can run parallelized, `False` otherwise.
    
    For the parallelized version, two conditions have to be fulfilled:
     * the `multiprocessing` module is present
     * the system has more than one CPU
    """
    return HAS_PROCESSING and CPU_COUNT > 1

Example #7
0
                          os.path.join(curpath, "config"),\
                          os.path.join(curpath, "app"))]


import setting
import json
import netutil
import uuid
import processing
from processing import Queue, Lock
import processing, logging
processing.enableLogging(level=logging.INFO)


# cpuCount
cpuCount = int(processing.cpuCount())

# min_space_left_in_giga
min_space_left_in_giga=setting.min_space_left_in_giga
# storage root
STORAGE_ROOT=setting.STORAGE_ROOT #{"/tudou/0":500, "/tudou/1":500}
dplayer_SERVER=setting.dplayer_SERVER

#
def check_disk(STORAGE_ROOT=None):
    keys=STORAGE_ROOT.keys()
    keys.sort()
    return [STORAGE_ROOT[e] for e in keys]

import logging
log = logging.getLogger("dispatcher")
Example #8
0
    return np.sort(np.random.random(10000000))
'''
def f(x, N):
    return cy_thread_test.cy_square(x, N)

def handleOutput(request, output):
    """This f'n, as a callback, is blocking.
    It blocks the whole program, regardless of number of processes or CPUs/cores"""
    print 'handleOutput got: %r, %r' % (request, output)
    outputs.append(output)
    #print 'pausing'
    #for i in xrange(100000000):
    #    pass

if __name__ == '__main__':
    ncpus = processing.cpuCount()
    nthreads = ncpus + 1
    print 'ncpus: %d, nthreads: %d' % (ncpus, nthreads)
    pool = ThreadPool(nthreads) # create a threading pool
    t0 = time.time()
    #arr = np.random.random(10000000)
    #for i, val in enumerate([1000000000]*10):#range(10):
    for i in range(10):
        args = (i, 1000000000)
        print 'queueing task %d' % i
        request = WorkRequest(f, args=args, callback=handleOutput)
        # these requests will only multithread if f is a C extension call?? definitely don't multithread if f is pure Python
        pool.putRequest(request)
    print 'done queueing tasks'
    pool.wait()
    print 'tasks took %.3f sec' % time.time()
Example #9
0
def f(x, N):
    return cy_thread_test.cy_square(x, N)


def handleOutput(request, output):
    """This f'n, as a callback, is blocking.
    It blocks the whole program, regardless of number of processes or CPUs/cores"""
    print('handleOutput got: %r, %r' % (request, output))
    outputs.append(output)
    #print('pausing')
    #for i in xrange(100000000):
    #    pass


if __name__ == '__main__':
    ncpus = processing.cpuCount()
    nthreads = ncpus + 1
    print('ncpus: %d, nthreads: %d' % (ncpus, nthreads))
    pool = ThreadPool(nthreads)  # create a threading pool
    t0 = time.time()
    #arr = np.random.random(10000000)
    #for i, val in enumerate([1000000000]*10):#range(10):
    for i in range(10):
        args = (i, 1000000000)
        print('queueing task %d' % i)
        request = WorkRequest(f, args=args, callback=handleOutput)
        # these requests will only multithread if f is a C extension call?? definitely don't multithread if f is pure Python
        pool.putRequest(request)
    print('done queueing tasks')
    pool.wait()
    print('tasks took %.3f sec' % time.time())
Example #10
0
def test():
    print 'cpuCount() = %d\n' % cpuCount()
    
    #
    # Create pool
    #
    
    PROCESSES = 4
    print 'Creating pool with %d processes\n' % PROCESSES
    pool = Pool(PROCESSES)    

    #
    # Tests
    #

    TASKS = [(mul, (i, 7)) for i in range(10)] + \
            [(plus, (i, 8)) for i in range(10)]

    results = [pool.applyAsync(calculate, t) for t in TASKS]
    imap_it = pool.imap(calculatestar, TASKS)
    imap_unordered_it = pool.imapUnordered(calculatestar, TASKS)

    print 'Ordered results using pool.applyAsync():'
    for r in results:
        print '\t', r.get()
    print

    print 'Ordered results using pool.imap():'        
    for x in imap_it:
        print '\t', x
    print

    print 'Unordered results using pool.imapUnordered():'
    for x in imap_unordered_it:
        print '\t', x
    print

    print 'Ordered results using pool.map() --- will block till complete:'
    for x in pool.map(calculatestar, TASKS):
        print '\t', x
    print    

    #
    # Simple benchmarks
    #

    N = 100000
    print 'def pow3(x): return x**3'
    
    t = time.time()
    A = map(pow3, xrange(N))
    print '\tmap(pow3, xrange(%d)):\n\t\t%s seconds' % \
          (N, time.time() - t)
    
    t = time.time()
    B = pool.map(pow3, xrange(N))
    print '\tpool.map(pow3, xrange(%d)):\n\t\t%s seconds' % \
          (N, time.time() - t)

    t = time.time()
    C = list(pool.imap(pow3, xrange(N), chunksize=N//8))
    print '\tlist(pool.imap(pow3, xrange(%d), chunksize=%d)):\n\t\t%s' \
          ' seconds' % (N, N//8, time.time() - t)
    
    assert A == B == C, (len(A), len(B), len(C))
    print
    
    L = [None] * 1000000
    print 'def noop(x): pass'
    print 'L = [None] * 1000000'
    
    t = time.time()
    A = map(noop, L)
    print '\tmap(noop, L):\n\t\t%s seconds' % \
          (time.time() - t)
    
    t = time.time()
    B = pool.map(noop, L)
    print '\tpool.map(noop, L):\n\t\t%s seconds' % \
          (time.time() - t)

    t = time.time()
    C = list(pool.imap(noop, L, chunksize=len(L)//8))
    print '\tlist(pool.imap(noop, L, chunksize=%d)):\n\t\t%s seconds' % \
          (len(L)//8, time.time() - t)

    assert A == B == C, (len(A), len(B), len(C))
    print    

    del A, B, C, L

    #
    # Test error handling
    #

    print 'Testing error handling:'

    try:
        print pool.apply(f, (5,))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from pool.apply()'
    else:
        raise AssertionError, 'expected ZeroDivisionError'

    try:
        print pool.map(f, range(10))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from pool.map()'
    else:
        raise AssertionError, 'expected ZeroDivisionError'
            
    try:
        print list(pool.imap(f, range(10)))
    except ZeroDivisionError:
        print '\tGot ZeroDivisionError as expected from list(pool.imap())'
    else:
        raise AssertionError, 'expected ZeroDivisionError'

    it = pool.imap(f, range(10))
    for i in range(10):
        try:
            x = it.next()
        except ZeroDivisionError:
            if i == 5:
                pass
        except StopIteration:
            break
        else:
            if i == 5:
                raise AssertionError, 'expected ZeroDivisionError'
            
    assert i == 9
    print '\tGot ZeroDivisionError as expected from IMapIterator.next()'
    print
    
    #
    # Testing timeouts
    #
    
    print 'Testing ApplyResult.get() with timeout:',
    res = pool.applyAsync(calculate, TASKS[0])
    while 1:
        sys.stdout.flush()
        try:
            sys.stdout.write('\n\t%s' % res.get(0.02))
            break
        except TimeoutError:
            sys.stdout.write('.')
    print
    print

    print 'Testing IMapIterator.next() with timeout:',
    it = pool.imap(calculatestar, TASKS)
    while 1:
        sys.stdout.flush()
        try:
            sys.stdout.write('\n\t%s' % it.next(0.02))
        except StopIteration:
            break
        except TimeoutError:
            sys.stdout.write('.')
    print
    print
            
    #
    # Testing callback
    #

    print 'Testing callback:'
    
    A = []
    B = [56, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
        
    r = pool.applyAsync(mul, (7, 8), callback=A.append)
    r.wait()

    r = pool.mapAsync(pow3, range(10), callback=A.extend)
    r.wait()

    if A == B:
        print '\tcallbacks succeeded\n'
    else:
        print '\t*** callbacks failed\n\t\t%s != %s\n' % (A, B)
    
    #
    # Check there are no outstanding tasks
    #
    
    assert not pool._cache, 'cache = %r' % pool._cache

    #
    # Check close() methods
    #

    print 'Testing close():'

    for worker in pool._pool:
        assert worker.isAlive()

    result = pool.applyAsync(time.sleep, [0.5])
    pool.close()
    pool.join()

    assert result.get() is None

    for worker in pool._pool:
        assert not worker.isAlive()

    print '\tclose() succeeded\n'

    #
    # Check terminate() method
    #

    print 'Testing terminate():'

    pool = Pool(2)
    ignore = pool.apply(pow3, [2])
    results = [pool.applyAsync(time.sleep, [10]) for i in range(10)]
    pool.terminate()
    pool.join()

    for worker in pool._pool:
        assert not worker.isAlive()

    print '\tterminate() succeeded\n'

    #
    # Check garbage collection
    #

    print 'Testing garbage collection:'

    pool = Pool(2)
    processes = pool._pool
    
    ignore = pool.apply(pow3, [2])
    results = [pool.applyAsync(time.sleep, [10]) for i in range(10)]

    del results, pool

    time.sleep(0.2)
    
    for worker in processes:
        assert not worker.isAlive()

    print '\tgarbage collection succeeded\n'
Example #11
0
try:
    import processing as multiprocessing

    HAS_PROCESSING = True
except ImportError:
    try:
        import multiprocessing

        HAS_PROCESSING = True
    except ImportError:
        HAS_PROCESSING = False

__all__ = ["use_parallel_processing"]

if HAS_PROCESSING:
    CPU_COUNT = multiprocessing.cpuCount()
else:
    CPU_COUNT = 1
    multiprocessing = None


def use_parallel_processing():
    """Returns `True` if the query evaluator can run parallelized, `False` otherwise.
    
    For the parallelized version, two conditions have to be fulfilled:
     * the `multiprocessing` module is present
     * the system has more than one CPU
    """
    return HAS_PROCESSING and CPU_COUNT > 1


q = processing.Queue()
ps=[]
for i in range(4):
    p = Process(target=work)
    ps.append(p)
    p.start()

    print ps
    for p in ps:
        p.join()


print "We have %d CPUs"  % processing.cpuCount()
pool = processing.Pool()
for i in ('f1','f2','f3','f4','f5'):
         q.put(i)

while True:
    try:
        result = pool.apply_async(worker)
        print result.get(timeout=2)
    except Queue.Empty:
        break


def worker():
    file = q.get_nowait()
    return 'worked on' + file