def test_invert(self): uvfitsfile = arl_path("data/vis/ASKAP_example.fits") nchan_ave = 32 nchan = 192 for schan in range(0, nchan, nchan_ave): max_chan = min(nchan, schan + nchan_ave) bv = create_blockvisibility_from_uvfits(uvfitsfile, range(schan, max_chan))[0] vis = convert_blockvisibility_to_visibility(bv) from processing_components.visibility.operations import convert_visibility_to_stokesI vis = convert_visibility_to_stokesI(vis) model = create_image_from_visibility( vis, npixel=256, polarisation_frame=PolarisationFrame('stokesI')) dirty, sumwt = invert_2d(vis, model, context='2d') assert (numpy.max(numpy.abs(dirty.data))) > 0.0 assert dirty.shape == (nchan_ave, 1, 256, 256) import matplotlib.pyplot as plt from processing_components.image.operations import show_image show_image(dirty) plt.show() if self.persist: export_image_to_fits( dirty, '%s/test_visibility_uvfits_dirty.fits' % self.dir)
global_solution=False, psf_support=64, do_selfcal=True) # In[ ]: log.info('About to run ical') result = arlexecute.compute(ical_list, sync=True) deconvolved = result[0][0] residual = result[1][0] restored = result[2][0] arlexecute.close() show_image(deconvolved, title='Clean image', cm='Greys', vmax=0.1, vmin=-0.01) print(qa_image(deconvolved, context='Clean image')) plt.show() export_image_to_fits(deconvolved, '%s/gleam_ical_deconvolved.fits' % (results_dir)) show_image(restored, title='Restored clean image', cm='Greys', vmax=0.1, vmin=-0.01) print(qa_image(restored, context='Restored clean image')) plt.show() export_image_to_fits(restored,
vis_list = arlexecute.persist(vis_list) cellsize = 0.001 npixel = 1024 pol_frame = PolarisationFrame("stokesI") model_list = [ arlexecute.execute(create_image_from_visibility)( v, npixel=npixel, cellsize=cellsize, polarisation_frame=pol_frame) for v in vis_list ] model_list = arlexecute.persist(model_list) dirty_list = invert_list_arlexecute_workflow( vis_list, template_model_imagelist=model_list, context='wstack', vis_slices=51) log.info('About to run invert_list_arlexecute_workflow') result = arlexecute.compute(dirty_list, sync=True) dirty, sumwt = result[centre] arlexecute.close() show_image(dirty, title='Dirty image', cm='Greys', vmax=0.1, vmin=-0.01) print(qa_image(dirty, context='Dirty image')) export_image_to_fits( dirty, '%s/ska-imaging_arlexecute_dirty.fits' % (results_dir))
def test_create_gradient(self): real_vp = import_image_from_fits( arl_path('data/models/MID_GRASP_VP_real.fits')) gradx, grady = image_gradients(real_vp) gradxx, gradxy = image_gradients(gradx) gradyx, gradyy = image_gradients(grady) gradx.data *= real_vp.data grady.data *= real_vp.data gradxx.data *= real_vp.data gradxy.data *= real_vp.data gradyx.data *= real_vp.data gradyy.data *= real_vp.data import matplotlib.pyplot as plt plt.clf() show_image(gradx, title='gradx') plt.show() plt.clf() show_image(grady, title='grady') plt.show() export_image_to_fits(gradx, "%s/test_image_gradients_gradx.fits" % (self.dir)) export_image_to_fits(grady, "%s/test_image_gradients_grady.fits" % (self.dir)) plt.clf() show_image(gradxx, title='gradxx') plt.show() plt.clf() show_image(gradxy, title='gradxy') plt.show() plt.clf() show_image(gradyx, title='gradyx') plt.show() plt.clf() show_image(gradyy, title='gradyy') plt.show() export_image_to_fits( gradxx, "%s/test_image_gradients_gradxx.fits" % (self.dir)) export_image_to_fits( gradxy, "%s/test_image_gradients_gradxy.fits" % (self.dir)) export_image_to_fits( gradyx, "%s/test_image_gradients_gradyx.fits" % (self.dir)) export_image_to_fits( gradyy, "%s/test_image_gradients_gradyy.fits" % (self.dir))