def batch_train(dataset, input_model=None, output_model=None, lang='en',
                factor=1, dropout=0.2, n_iter=10, batch_size=10,
                eval_id=None, eval_split=None, long_text=False, silent=False,shuffle=False):
    """
    Batch train a new text classification model from annotations. Prodigy will
    export the best result to the output directory, and include a JSONL file of
    the training and evaluation examples. You can either supply a dataset ID
    containing the evaluation data, or choose to split off a percentage of
    examples for evaluation.
    """
    #log("RECIPE: Starting recipe textcat.batch-train", locals())
    print("batch_size",batch_size)
    print(factor,type(factor))
    DB = connect()
    print_ = get_print(silent)
    random.seed(0)
    if input_model is not None:
        nlp = spacy.load(input_model, disable=['ner'])
        print_('\nLoaded model {}'.format(input_model))
    else:
        print("build your customized model")
        nlp = spacy.load('en_core_web_lg')
        pt_model = FastText(vocab_size=684831, emb_dim = 300)
        pt_model.embeds.weight.data.copy_(torch.from_numpy(nlp.vocab.vectors.data))
        model = PyTorchWrapper(pt_model)
        textcat = TextCategorizer(nlp.vocab,model)
        nlp.add_pipe(textcat)

        #pt_model = LSTMSentiment(embedding_dim = 100, hidden_dim =100, vocab_size=259136, label_size=2, batch_size=3, dropout=0.5)
        #model = PyTorchWrapper(pt_model)
        #nlp = spacy.load('/home/ysun/pytorchprodigy/')
        #textcat = TextCategorizer(nlp.vocab,model)
        #nlp.add_pipe(textcat)
    examples = DB.get_dataset(dataset)
    labels = {eg['label'] for eg in examples}
    labels = list(sorted(labels))
    print(labels)
    model = TextClassifier(nlp, labels, long_text=long_text,
                           low_data=len(examples) < 1000)
    #log('RECIPE: Initialised TextClassifier with model {}'
    #    .format(input_model), model.nlp.meta)
    if shuffle:    
        print("it's shuffling")
        random.shuffle(examples)
    else:
        print("it's not shuffling")
    if eval_id:
        evals = DB.get_dataset(eval_id)
        print_("Loaded {} evaluation examples from '{}'"
               .format(len(evals), eval_id))
    else:
        examples, evals, eval_split = split_evals(examples, eval_split)
        print_("Using {}% of examples ({}) for evaluation"
               .format(round(eval_split * 100), len(evals)))
    if shuffle:
        random.shuffle(examples)
    examples = examples[:int(len(examples) * factor)]
    print_(printers.trainconf(dropout, n_iter, batch_size, factor,
                              len(examples)))
    if len(evals) > 0:
        print_(printers.tc_update_header())
    best_acc = {'accuracy': 0}
    best_model = None
    if long_text:
        examples = list(split_sentences(nlp, examples, min_length=False))
    for i in range(n_iter):
        loss = 0.
        random.shuffle(examples)
        for batch in cytoolz.partition_all(batch_size,
                                           tqdm.tqdm(examples, leave=False)):
            batch = list(batch)
            loss += model.update(batch, revise=False, drop=dropout)
        if len(evals) > 0:
            with nlp.use_params(model.optimizer.averages):
                acc = model.evaluate(tqdm.tqdm(evals, leave=False))
                if acc['accuracy'] > best_acc['accuracy']:
                    best_acc = dict(acc)
                    best_model = nlp.to_bytes()
            print_(printers.tc_update(i, loss, acc))
    if len(evals) > 0:
        print_(printers.tc_result(best_acc))
    if output_model is not None:
        if best_model is not None:
            nlp = nlp.from_bytes(best_model)
        msg = export_model_data(output_model, nlp, examples, evals)
        print_(msg)
    return best_acc['accuracy']
def batch_train_increment(dataset, input_model=None, output_model=None, lang='en',
                factor=1, dropout=0.2, n_iter=1, batch_size=10,
                eval_id=None, eval_split=None, long_text=False, silent=False,shuffle=False,gpu_id = None):
    """
    Batch train a new text classification model from annotations. Prodigy will
    export the best result to the output directory, and include a JSONL file of
    the training and evaluation examples. You can either supply a dataset ID
    containing the evaluation data, or choose to split off a percentage of
    examples for evaluation.
    """
    #log("RECIPE: Starting recipe textcat.batch-train", locals())
    if(gpu_id):
        spacy.util.use_gpu(gpu_id)
    if(n_iter ==1):
        print("one pass mode")
    print("batch_size",batch_size)
    print(factor,type(factor))
    DB = connect()
    print_ = get_print(silent)
    random.seed(0)
    if input_model is not None:
        nlp = spacy.load(input_model, disable=['ner'])
        print_('\nLoaded model {}'.format(input_model))
    else:
        print("build your customized model")
        nlp = spacy.load('en_core_web_lg')
        pt_model = FastText(vocab_size=684831, emb_dim = 300)
        pt_model.embeds.weight.data.copy_(torch.from_numpy(nlp.vocab.vectors.data))
        model = PyTorchWrapper(pt_model)
        #textcat = TextCategorizer(nlp.vocab,model)
        textcat = Loss_TextCategorizer(nlp.vocab,model)
        nlp.add_pipe(textcat)
    examples = DB.get_dataset(dataset)
    labels = {eg['label'] for eg in examples}
    labels = list(sorted(labels))
    print(labels)
    model = TextClassifier(nlp, labels, long_text=long_text,
                           low_data=len(examples) < 1000)
    if shuffle:    
        print("it's shuffling")
        random.shuffle(examples)
    else:
        print("it's not shuffling")
    if eval_id:
        evals = DB.get_dataset(eval_id)
        print_("Loaded {} evaluation examples from '{}'"
               .format(len(evals), eval_id))
    else:
        examples, evals, eval_split = split_evals(examples, eval_split)
        print_("Using {}% of examples ({}) for evaluation"
               .format(round(eval_split * 100), len(evals)))
    if shuffle:
        random.shuffle(examples)
    examples = examples[:int(len(examples) * factor)]
    print_(printers.trainconf(dropout, n_iter, batch_size, factor,
                              len(examples)))
    if len(evals) > 0:
        print_(printers.tc_update_header())
    # best_acc = {'accuracy': 0}
    # best_model = None
    if long_text:
        examples = list(split_sentences(nlp, examples, min_length=False))
    batch_idx = 0
    start_time = datetime.now()
    for batch in cytoolz.partition_all(batch_size,
                                       tqdm.tqdm(examples, leave=False)):
        batch = list(batch)
        for i in range(n_iter):
            loss = model.update(batch, revise=False, drop=dropout)
            if len(evals) > 0:
                #print("optimizer averages",model.optimizer.averages)
                with nlp.use_params(model.optimizer.averages):
                    acc = model.evaluate(tqdm.tqdm(evals, leave=False))
                #print_(printers.tc_update(i, loss, acc))
                end_time = datetime.now() -start_time
                print('Time:[{0} seconds], Epoch: [{1}/{2}], batch: [{3}/{4}], Loss:{5}, Accuracy:{6}'.format( 
                   end_time.seconds,i+1, n_iter, batch_idx+1, len(examples)//batch_size, loss, acc['accuracy']))
            batch_idx += 1
    return acc
     "Data is gold-standard and contains no missing values", False)
 start_blank = st.checkbox("Start with blank NER model", True)
 if st.button("🚀 Start training"):
     if start_blank:
         ner = nlp.create_pipe("ner")
         if "ner" in nlp.pipe_names:
             nlp.replace_pipe("ner", ner)
         else:
             nlp.add_pipe(ner)
         ner.begin_training([])
     else:
         ner = nlp.get_pipe("ner")
     for label in all_labels:
         ner.add_label(label)
     random.shuffle(examples)
     train_examples, evals, eval_split = split_evals(
         merged_examples, eval_split)
     st.success(
         f"✅ Using **{len(train_examples)}** training examples "
         f"and **{len(evals)}** evaluation examples with "
         f"**{len(all_labels)}** label(s)")
     annot_model = EntityRecognizer(nlp,
                                    label=all_labels,
                                    no_missing=no_missing)
     batch_size = guess_batch_size(len(train_examples))
     baseline = annot_model.evaluate(evals)
     st.info(
         f"ℹī¸ **Baseline**\n**{baseline['right']:.0f}** right "
         f"entities, **{baseline['wrong']:.0f}** wrong entities, "
         f"**{baseline['unk']:.0f}** unkown entities, "
         f"**{baseline['ents']:.0f}** total predicted, "
         f"**{baseline['acc']:.2f}** accuracy")