Example #1
0
    def fit(self, train_loader, valid_loader, start_epoch=0, max_epochs=200):

        best_acc = 0.
        bar = IncrementalBar(max=max_epochs - start_epoch)
        for e in range(start_epoch, max_epochs):
            bar.message = '{:>5.2f}%%'.format(bar.percent)
            bar.suffix = '{}/{} [{}<{}\t{:.2f}it/s]'.format(
                bar.index, bar.max, bar.elapsed_td, bar.eta_td, bar.avg)
            bar.next()
            if e == self.milestones[0]:
                schedule_lr(self.optimizer)  # update learning rate once
            if e == self.milestones[1]:
                schedule_lr(self.optimizer)
            if e == self.milestones[2]:
                schedule_lr(self.optimizer)
            self.train(train_loader, self.model, self.criterion,
                       self.optimizer, e)

            accuracy, best_threshold, roc_curve_tensor = self.evaluate(
                self.conf, *valid_loader['agedb_30'])
            self.board_val('agedb_30', accuracy, best_threshold,
                           roc_curve_tensor, e)
            if accuracy > best_acc:
                best_acc = accuracy
                save_checkpoint(self.model, self.optimizer, self.conf,
                                best_acc, e)
        bar.finish()
Example #2
0
def generate_submission(model: Type[BaseModel],
                        model_config: ModelConfig = None) -> None:
    if model_config is None:
        model_config = {}
    print('Generating data/submission.csv with {}'.format(model.__name__))
    model_instance = model()
    model_instance.learn(LoadedData.training_games, LoadedData.training_decks,
                         model_config)
    n = len(bot_list) * len(LoadedData.test_decks)
    try:
        bar = IncrementalBar('',
                             max=n,
                             suffix='%(index)d/%(max)d ETA: %(eta)ds')
        with open('data/submission.csv', 'w') as file:
            for bot in bot_list:
                bar.message = bot
                for deck in LoadedData.test_decks:
                    print('{};{};{}'.format(bot, deck['deckName'],
                                            model_instance.predict(bot, deck)),
                          file=file)
                    bar.next()
        bar.finish()
    except KeyboardInterrupt:
        print(SHOW_CURSOR)
        raise KeyboardInterrupt
Example #3
0
def crossval(folds: int, games: List[Game], decks: List[Deck],
             model: Type[BaseModel], model_config: ModelConfig) -> float:
    random.shuffle(decks)
    fold_decks = len(decks) // folds
    wins = defaultdict(lambda: (0, 0))
    for game in games:
        player0, player1 = (game['bot0'], game['deck0']), (game['bot1'],
                                                           game['deck1'])
        wins0, wins1 = wins[player0], wins[player1]
        if game['winner'] == 0:
            wins0 = (wins0[0] + 1, wins0[1] + 1)
            wins1 = (wins1[0], wins1[1] + 1)
        else:
            wins0 = (wins0[0], wins0[1] + 1)
            wins1 = (wins1[0] + 1, wins1[1] + 1)
        wins[player0], wins[player1] = wins0, wins1
    winrates = {}
    for player, wr in wins.items():
        winrates[player] = 100 * wr[0] / wr[1]
    avg_rmse = 0
    for i in range(folds):
        test_decks = decks[i * fold_decks:(i + 1) * fold_decks]
        training_decks = decks[:i * fold_decks] + decks[(i + 1) * fold_decks:]
        training_deck_names = set([d['deckName'] for d in training_decks])
        training_games = list(
            filter(
                lambda g: g['deck0'] in training_deck_names and g['deck1'] in
                training_deck_names, games))
        model_instance = model()
        model_instance.learn(training_games, training_decks, model_config)
        rmse = 0.0
        ctr = 0
        n = len(test_decks) * len(bot_list)
        bar = IncrementalBar('',
                             max=n,
                             suffix='%(index)d/%(max)d ETA: %(eta)ds')
        for deck in test_decks:
            for bot in bot_list:
                ctr += 1
                rmse += (model_instance.predict(bot, deck) -
                         winrates[(bot, deck['deckName'])])**2
                bar.message = '{}/{} | {:.5f}'.format(i + 1, folds,
                                                      math.sqrt(rmse / ctr))
                bar.next()
        bar.finish()
        rmse = math.sqrt(rmse / n)
        avg_rmse += rmse
    avg_rmse /= folds
    return avg_rmse
Example #4
0
def processTerms(targetFile):
    """
    A function that opens a csv file and producdes .mp3 files of each term.abs
    Takes a local file .csv
    """
    with open(targetFile) as csv_file:
        terms = csv.reader(csv_file, delimiter=',')
        length_of_terms = sum(1 for row in terms)
        csv_file.seek(0)
        prog_bar = IncrementalBar('Generating speech...',
                                  max=length_of_terms,
                                  suffix='Remaining time: %(eta)ds')

        for term in terms:
            prog_bar.message = 'Processing ID: ' + term[1]
            gTTS(text=term[0], lang='en', slow=False).save(term[1] + '.mp3')
            prog_bar.next()
        prog_bar.finish()
Example #5
0
        state = 'FINISHED'
sys.stdout.write('\b' * 11)
sys.stdout.flush()
sys.stdout.write('\r ')
print("Finished")
state = 'Running'
spinner = MoonSpinner('Running ')
counter = 0
while state != 'FINISHED':
    # Do some work
    time.sleep(.1)
    spinner.next()
    counter += 1
    if counter > 20:
        state = 'FINISHED'
sys.stdout.write('\b' * 11)
sys.stdout.flush()
sys.stdout.write('\r ')
print("Finished")
iCount = 0
bar = IncrementalBar('Mirgrating process e_gdbgra',
                     max=10,
                     suffix='%(percent).1f%% - %(eta)ds')
for i in range(10):
    time.sleep(round(random.random(), 1))
    bar.next()
    iCount += 1
    if iCount > 5:
        bar.message = "Migrating process p_gdbgra"
bar.finish()
Example #6
0
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'path', help='Path to directory containing measurement data'
    )
    args = parser.parse_args()

    # Use given path as working directory for script so glob works from there
    os.chdir(args.path)

    total_lines = get_total_lines(glob.iglob('**/*.CSV', recursive=True))
    total_size = int(total_lines / BUFFER_SIZE)

    bar = IncrementalBar(
        max=total_size, suffix='%(percent)d%% [ETA: %(eta_td)s]'
    )
    bar.start()

    csv_glob = peekable(glob.iglob('**/*.CSV', recursive=True))
    line_reader = buffered_line_reader(
        line_reader(csv_glob), buffer_size=BUFFER_SIZE
    )

    with requests.Session() as session:
        # Iterate through the progress bar to auto update the bar
        for lines in bar.iter(line_reader):
            bar.message = csv_glob.peek(bar.message)
            response = session.post(URL, data=lines)
            assert response.status_code == 204, response.text