def verify_hybrid_image_np(image1, image2, kernel, hybrid_image) -> bool: """ Interactive test to be used in IPython notebook, that will print out test result, and return value can also be queried for success (true). Args: - image1 - image2 - kernel - hybrid_image Returns: - Boolean indicating success. """ gt_image1 = load_image(f'{ROOT}/data/1a_dog.bmp') if not np.allclose(image1, gt_image1): print( 'Please pass in the dog image `1a_dog.bmp` as the `image1` argument.' ) return False gt_image2 = load_image(f'{ROOT}/data/1b_cat.bmp') if not np.allclose(image2, gt_image2): print( 'Please pass in the cat image `1b_cat.bmp` as the `image2` argument.' ) return False img_h, img_w, _ = image2.shape k_h, k_w = kernel.shape # Exclude the border pixels. hybrid_interior = hybrid_image[k_h:img_h - k_h, k_w:img_w - k_w] correct_sum = np.allclose(158339.52, hybrid_interior.sum()) # ground truth values gt_hybrid_crop = np.array([[[0.5429589, 0.55373234, 0.5452099], [0.5290553, 0.5485607, 0.545738]], [[0.55020595, 0.55713284, 0.5457024], [0.5368045, 0.5603536, 0.5505791]]], dtype=np.float32) # H,W,C order in Numpy correct_crop = np.allclose(hybrid_image[100:102, 100:102, :], gt_hybrid_crop, atol=1e-3) if correct_sum and correct_crop: print('Success! Hybrid image values are correct.') return True else: print(158339.52, hybrid_interior.sum()) print(hybrid_image[100:102, 100:102, :], gt_hybrid_crop) print( 'Hybrid image values are not correct, please double check your implementation.' ) return False
def verify_high_freq_sq_kernel_torch_manual(image2, kernel, high_frequencies) -> bool: """ Interactive test to be used in IPython notebook, that will print out test result, and return value can also be queried for success (true). Args: - image2: Array representing the cat image (1b_cat.bmp) - kernel: Low pass kernel (2d Gaussian) - high_frequencies: High frequencies of image2 (output of high-pass filter) Returns: - retval: Boolean indicating success. """ gt_image2 = load_image(f'{ROOT}/data/1b_cat.bmp') if not np.allclose(image2, gt_image2): print( 'Please pass in the cat image `1b_cat.bmp` as the `image2` argument.' ) return False img_h, img_w, _ = image2.shape k_h, k_w = kernel.shape # Exclude the border pixels. high_freq_interior = high_frequencies[k_h:img_h - k_h, k_w:img_w - k_w] correct_sum = np.allclose(12.029784, high_freq_interior.sum(), atol=0.06) # ground truth values gt_high_freq_crop = np.array( [[[7.9535842e-03, 2.9861331e-02, 3.0958146e-02], [-7.6553226e-03, 2.2351682e-02, 2.7430430e-02]], [[1.5485287e-02, 3.3503681e-02, 3.0706093e-02], [-6.8724155e-05, 3.3921897e-02, 3.1234175e-02]]], dtype=np.float32) # H,W,C order in Numpy correct_crop = np.allclose(high_frequencies[100:102, 100:102, :], gt_high_freq_crop, atol=1e-3) if correct_sum and correct_crop: print('Success! High frequencies values are correct.') return True else: print( 'High frequencies values are not correct, please double check your implementation.' ) return False
def verify_low_freq_sq_kernel_torch_manual(image1, kernel, low_frequencies) -> bool: """ Interactive test to be used in IPython notebook, that will print out test result, and return value can also be queried for success (true). Args: - image1 - kernel - low_frequencies Returns: - Boolean indicating success. """ gt_image1 = load_image(f'{ROOT}/data/1a_dog.bmp') if not np.allclose(image1, gt_image1): print( 'Please pass in the dog image `1a_dog.bmp` as the `image1` argument.' ) return False img_h, img_w, _ = image1.shape k_h, k_w = kernel.shape # Exclude the border pixels. low_freq_interior = low_frequencies[k_h:img_h - k_h, k_w:img_w - k_w] correct_sum = np.allclose(158332.02, low_freq_interior.sum()) # ground truth values gt_low_freq_crop = np.array([[[0.53500533, 0.523871, 0.5142517], [0.5367106, 0.526209, 0.51830757]], [[0.53472066, 0.5236291, 0.5149963], [0.5368732, 0.5264317, 0.5193449]]], dtype=np.float32) # H,W,C order in Numpy correct_crop = np.allclose(low_frequencies[100:102, 100:102, :], gt_low_freq_crop, atol=1e-3) if correct_sum and correct_crop: print('Success! Low frequencies values are correct.') return True else: print( 'Low frequencies values are not correct, please double check your implementation.' ) return False
def get_dog_img(): """ """ dog_img_fpath = f'{ROOT}/data/1a_dog.bmp' dog_img = load_image(dog_img_fpath) return dog_img