sys.path.append('/Users/lindenmp/Dropbox/Work/ResProjects/NormativeNeuroDev_CrossSec_T1/code/func/') from proj_environment import set_proj_env sys.path.append('/Users/lindenmp/Dropbox/Work/git/pyfunc/') from func import my_get_cmap, run_corr, get_fdr_p, run_pheno_correlations, dependent_corr, get_sys_summary, get_fdr_p_df, get_sys_prop, run_ttest, get_cohend, create_dummy_vars, perc_dev # In[3]: train_test_str = 'squeakycleanExclude' exclude_str = 't1Exclude' # 't1Exclude' 'fsFinalExclude' parc_str = 'schaefer' # 'schaefer' 'lausanne' parc_scale = 400 # 200 400 | 60 125 primary_covariate = 'ageAtScan1_Years' extra_str = '' parcel_names, parcel_loc, drop_parcels, num_parcels, yeo_idx, yeo_labels = set_proj_env(train_test_str = train_test_str, exclude_str = exclude_str, parc_str = parc_str, parc_scale = parc_scale, extra_str = extra_str) # In[4]: os.environ['NORMATIVEDIR'] # In[5]: outdir = os.path.join(os.environ['NORMATIVEDIR'],'analysis_outputs') if not os.path.exists(outdir): os.makedirs(outdir)
sys.path.append( '/Users/lindenmp/Dropbox/Work/ResProjects/NormativeNeuroDev_Longitudinal/code/func/' ) from proj_environment import set_proj_env from func import mark_outliers, get_cmap, run_corr, get_fdr_p, perc_dev, evd, summarise_network # In[3]: exclude_str = 't1Exclude' parc_str = 'schaefer' parc_scale = 400 primary_covariate = 'scanageYears' parcel_names, parcel_loc, drop_parcels, num_parcels, yeo_idx, yeo_labels = set_proj_env( exclude_str=exclude_str, parc_str=parc_str, parc_scale=parc_scale, primary_covariate=primary_covariate) # In[4]: os.environ['NORMATIVEDIR'] # In[5]: metrics = ('ct', ) phenos = ('Overall_Psychopathology', 'Mania', 'Depression', 'Psychosis_Positive', 'Psychosis_NegativeDisorg') # ## Setup plots
sys.path.append( '/Users/lindenmp/Dropbox/Work/ResProjects/NormativeNeuroDev_CrossSec_T1/code/func/' ) from proj_environment import set_proj_env sys.path.append('/Users/lindenmp/Dropbox/Work/git/pyfunc/') from func import my_get_cmap # In[4]: train_test_str = 'squeakycleanExclude' exclude_str = 't1Exclude' # 't1Exclude' 'fsFinalExclude' parc_str = 'schaefer' # 'schaefer' 'lausanne' parc_scale = 400 # 200 400 | 60 125 250 _ = set_proj_env(train_test_str=train_test_str, exclude_str=exclude_str, parc_str=parc_str, parc_scale=parc_scale) # ### Setup output directory # In[5]: print(os.environ['TRTEDIR']) if not os.path.exists(os.environ['TRTEDIR']): os.makedirs(os.environ['TRTEDIR']) # # Load in metadata # In[6]: # LTN and Health Status
# Plotting import seaborn as sns import matplotlib.pyplot as plt plt.rcParams['svg.fonttype'] = 'none' # In[2]: sys.path.append( '/Users/lindenmp/Dropbox/Work/ResProjects/neurodev_long/code/func/') from proj_environment import set_proj_env from func import get_synth_cov # In[3]: exclude_str = 't1Exclude' parcel_names, parcel_loc, drop_parcels, num_parcels, yeo_idx, yeo_labels = set_proj_env( exclude_str=exclude_str) # In[4]: print(os.environ['MODELDIR']) if not os.path.exists(os.environ['MODELDIR']): os.makedirs(os.environ['MODELDIR']) # ## Load data # In[5]: df = pd.read_csv(os.path.join(os.environ['MODELDIR'], 'df_pheno.csv')) df.set_index(['bblid', 'scanid', 'timepoint'], inplace=True) df_node = pd.read_csv(os.path.join(os.environ['MODELDIR'], 'df_node_base.csv'))