Example #1
0
    def process_imgs(self, img, tgt, batch_size, num_pixels, stride):
        tgt = int(to_numpy(tgt))
        # Evaluate the given explainer on the image and sort the pixel indices by the 'importance values'
        pixel_importance = to_numpy(self.explainer.attribute(img.cuda(), target=tgt))[0].sum(0)
        idcs = np.argsort(pixel_importance.flatten())

        # Direction of the sorting
        if self.config["direction"] == "most":
            idcs = idcs[::-1]
        # Only delete the first num_pixels
        idcs = idcs[:num_pixels]

        # Compute the corresponding masks for deleting pixels in the given order
        positions = np.array(np.unravel_index(idcs, pixel_importance.shape)).T
        # First mask uses all pixels
        masks = [torch.ones(1, *pixel_importance.shape)]
        for h, w in positions:
            # Delete one additional position at a time
            mask = masks[-1].clone()
            mask[0, h, w] = 0
            masks.append(mask)

        # In order to speed up evaluation only evaluate masks at a stride (skipping the masks in between)
        masks = torch.cat([m for m_idx, m in enumerate(masks) if (m_idx % stride) == 0], dim=0)[:, None]
        # Compute the probabilities of the target class for the masked images
        # For efficiency, do this in batch mode.
        pert_out = torch.cat([self.masked_predict(img, masks[idx * batch_size: (idx + 1) * batch_size])
                              for idx in range(int(np.ceil(len(masks) / batch_size)))], dim=0)[None, :, tgt]
        return pert_out.cpu()
Example #2
0
 def analysis(self):
     batch_size, n_imgs, sample_points, num_pixels = (self.config["batch_size"],
                                                      self.config["n_imgs"],
                                                      self.config["sample_points"],
                                                      self.config["num_pixels"])
     trainer = self.trainer
     loader = trainer.data.get_test_loader()
     results = []
     img_count = 0
     img_dims = None
     for img, tgt in loader:
         if img_dims is None:
             img_dims = np.prod(img.shape[-2:])
             max_idx = int(num_pixels * img_dims)
             stride = int(max_idx // sample_points)
         new_count = img_count + len(img)
         # Only evaluate n_imgs
         if new_count > n_imgs:
             img = img[:-(new_count - n_imgs)]
             tgt = tgt[:-(new_count - n_imgs)]
         img_count += len(img)
         # Evaluate the pixel perturbation for the sampled images
         results.append(self.process_imgs(img, tgt.argmax(1), batch_size, max_idx, stride))
         print("Done with {percent:5>.2f}%".format(percent=img_count * 100 / n_imgs), flush=True)
         if img_count == n_imgs:
             break
     return {"perturbation_results": to_numpy(torch.cat(results, dim=0).mean(0))}
Example #3
0
def select_classes(target, all_matrices, n):
    """
            ONLY USED TO REGULARISE MATRICES.
    Method for creating an indexing tensor to select a (sub)set of the classes to have their linear mapping reversed.

    Args:
        target: Ground truth target class as one-hot encoding.
        all_matrices (bool): If True, all matrices are selected.
        n: if not all_matrices, n - 1 classes are randomly chosen.

    Returns: an index tensor with (batch_size, n) of the n chosen classes per example.
        If all_matrices, then the standard order of the class indices is kept. Otherwise, the ground truth class
        will be the first in the list.

    """
    num_classes = target.shape[1]
    target = to_numpy(target)
    if all_matrices:
        return len(target) * [slice(None, None)]
    if n == 1:
        return target.argmax(1)[:, None]

        # Initialise matrix for the choices per sample
    out = np.zeros_like(to_numpy(target))

    if not (target.sum(1) > 1).any():
        # Let first entry always be the correct class.
        out[:, 0] = to_numpy(target.argmax(1))
    else:
        # Choose one of the possible entries for each batch item
        active_tgts = torch.stack(torch.where(target)).T
        for batch_idx in range(len(target)):
            sample_tgts = active_tgts[active_tgts[:, 0] == batch_idx, 1]
            out[batch_idx,
                0] = sample_tgts[np.random.randint(len(sample_tgts))].item()

    out[:, 1:] = np.array([
        np.random.permutation(np.r_[0:t, t + 1:num_classes]) for t in out[:, 0]
    ])
    return out
Example #4
0
 def attribute_selection(self, img, targets):
     """
     Calls the attribution method for all targets in the list of targets
     """
     targets = np.array(to_numpy(targets), dtype=int).reshape(
         len(img), -1)  # Make sure it is a numpy array
     # Out is of size (bs, number of targets per image, in_channels, height, width)
     out = torch.zeros(*targets.shape[:2],
                       *img.shape[1:]).type(torch.FloatTensor)
     for tgt_idx in range(targets.shape[1]):
         out[:, tgt_idx] = self.attribute(
             img, target=(targets[:, tgt_idx]).tolist()).detach().cpu()
     return out.reshape(-1, *img.shape[1:]).cuda()
Example #5
0
def get_imgs_and_atts(trainer, video, class_idx):
    if class_idx == -1:
        class_idx = most_predicted(trainer, video)

    atts = []
    imgs = []
    for img in video:
        img = trainer.data.get_test_loader().dataset.transform(
            PIL.Image.fromarray(img)).cuda()[:][None]
        att = trainer.attribute(img, class_idx)[0].sum(0)
        atts.append(att2img(att))
        imgs.append(
            np.array(to_numpy(img[0].permute(1, 2, 0)) * 255, dtype=np.uint8))

    return imgs, atts
Example #6
0
def plot_contribution_map(contribution_map,
                          ax=None,
                          vrange=None,
                          vmin=None,
                          vmax=None,
                          hide_ticks=True,
                          cmap="bwr",
                          percentile=100):
    """
    Visualises a contribution map, i.e., a matrix assigning individual weights to each spatial location.
    As default, this shows a contribution map with the "bwr" colormap and chooses vmin and vmax so that the map
    ranges from (-max(abs(contribution_map), max(abs(contribution_map)).
    Args:
        contribution_map: (H, W) matrix to visualise as contributions.
        ax: axis on which to plot. If None, a new figure is created.
        vrange: If None, the colormap ranges from -v to v, with v being the maximum absolute value in the map.
            If provided, it will range from -vrange to vrange, as long as either one of the boundaries is not
            overwritten by vmin or vmax.
        vmin: Manually overwrite the minimum value for the colormap range instead of using -vrange.
        vmax: Manually overwrite the maximum value for the colormap range instead of using vrange.
        hide_ticks: Sets the axis ticks to []
        cmap: colormap to use for the contribution map plot.
        percentile: If percentile is given, this will be used as a cut-off for the attribution maps.

    Returns: The axis on which the contribution map was plotted.

    """
    assert len(
        contribution_map.shape
    ) == 2, "Contribution map is supposed to only have spatial dimensions.."
    contribution_map = to_numpy(contribution_map)
    cutoff = np.percentile(np.abs(contribution_map), percentile)
    contribution_map = np.clip(contribution_map, -cutoff, cutoff)
    if ax is None:
        fig, ax = plt.subplots(1)
    if vrange is None or vrange == "auto":
        vrange = np.max(np.abs(contribution_map.flatten()))
    im = ax.imshow(contribution_map,
                   cmap=cmap,
                   vmin=-vrange if vmin is None else vmin,
                   vmax=vrange if vmax is None else vmax)

    if hide_ticks:
        ax.set_xticks([])
        ax.set_yticks([])

    return ax, im
Example #7
0
    def attribute(self, img, target, return_all=False):

        with torch.no_grad():
            explanation = self.explain_instance(
                to_numpy(img[0].permute(1, 2, 0)),
                self.pred_f, labels=range(self.num_classes),
                top_labels=None, num_samples=self.num_samples,
                segmentation_fn=self.segmenter, batch_size=self.batch_size)

            if return_all:
                return torch.cat([
                    torch.from_numpy(np.array(explanation.get_image_and_mask(
                        t, hide_rest=True, positive_only=True,
                        num_features=self.num_features)[1][None, None], dtype=float))
                    for t in range(self.num_classes)], dim=0)

            return torch.from_numpy(np.array(explanation.get_image_and_mask(
                int(np.array(target)), hide_rest=True, positive_only=True,
                num_features=self.num_features)[1][None, None], dtype=float))
Example #8
0
    def __call__(self, model_out, model_in, target):
        """Computes the accuracy over the k top predictions for the specified values of k"""
        with torch.no_grad():
            target = target.argmax(1)
            maxk = max(self.topk)
            batch_size = target.size(0)

            _, pred = model_out.topk(maxk, 1, True, True)
            pred = pred.t()
            correct = pred.eq(target.view(1, -1).expand_as(pred))

            res = dict()
            for k in self.topk:
                correct_k = correct[:k].view(-1).float().sum(0)
                _res = float(to_numpy((correct_k / batch_size)))
                if k == 1:
                    res["accuracy"] = _res
                else:
                    res["Acc@{k}".format(k=k)] = _res
            return res
Example #9
0
 def analysis(self):
     sample_size, n_imgs = self.config["sample_size"], self.config["n_imgs"]
     trainer = self.trainer
     loader = trainer.data.get_test_loader()
     fixed_indices = self.get_sorted_indices()
     metric = []
     explainer = self.explainer
     offset = 0
     single_shape = loader.dataset[0][0].shape[-1]
     for count in range(sample_size):
         multi_img, tgts, offset = self.make_multi_image(
             n_imgs, loader, offset=offset, fixed_indices=fixed_indices)
         # calculate the attributions for all classes that are participating and only save positive contribs
         attributions = explainer.attribute_selection(multi_img, tgts).sum(
             1, keepdim=True).clamp(0)
         # Calculate the relative amount of attributions per region. Use avg_pool for simplicity.
         with torch.no_grad():
             contribs = F.avg_pool2d(attributions,
                                     single_shape,
                                     stride=single_shape).permute(
                                         0, 1, 3,
                                         2).reshape(attributions.shape[0],
                                                    -1)
             total = contribs.sum(1, keepdim=True)
         contribs = to_numpy(
             torch.where(total * contribs > 0, contribs / total,
                         torch.zeros_like(contribs)))
         metric.append(
             [contrib[idx] for idx, contrib in enumerate(contribs)])
         print("{:>6.2f}% of processing complete".format(
             100 * (count + 1.) / sample_size),
               flush=True)
     result = np.array(metric).flatten()
     print("Percentiles of localisation accuracy (25, 50, 75, 100): ",
           np.percentile(result, [25, 50, 75, 100]))
     return {"localisation_metric": result}
Example #10
0
def att2img(attribution):
    return np.uint8(
        cm.bwr((np.clip(to_numpy(attribution) / MAXV, -1, 1) + 1) / 2) *
        255)[:, :, :3]
Example #11
0
 def pred_f(self, input_samples):
     return to_numpy(self.trainer.predict(self.make_input_tensor(input_samples)))
Example #12
0
def default_eval_batch(model_out, model_in, tgt):
    _ = model_in
    return {"accuracy": to_numpy(tgt.argmax(1) == model_out.argmax(1)).mean()}
Example #13
0
def eval_batch_cross_entropy(model_out, model_in, tgt):
    _ = model_in
    return {"accuracy": to_numpy(tgt.argmax(1) == model_out.argmax(1)).mean()}