def cml_open_proj(stack, ir, ou, lf, hf, dpsi=1): from projection import cml_sinogram from utilities import model_circle, get_params_proj, model_blank, get_im from fundamentals import fftip from filter import filt_tanh # number of projections if type(stack) == type(""): nprj = EMUtil.get_image_count(stack) else: nprj = len(stack) Prj = [] # list of projections Ori = [ -1 ] * 4 * nprj # orientation intial (phi, theta, psi, index) for each projection for i in xrange(nprj): image = get_im(stack, i) # read initial angles if given try: Ori[4 * i], Ori[4 * i + 1], Ori[4 * i + 2], s2x, s2y = get_params_proj(image) except: pass if (i == 0): nx = image.get_xsize() if (ou < 1): ou = nx // 2 - 1 diameter = int(2 * ou) mask2D = model_circle(ou, nx, nx) if ir > 0: mask2D -= model_circle(ir, nx, nx) # normalize under the mask [mean_a, sigma, imin, imax] = Util.infomask(image, mask2D, True) image -= mean_a Util.mul_scalar(image, 1.0 / sigma) Util.mul_img(image, mask2D) # sinogram sino = cml_sinogram(image, diameter, dpsi) # prepare the cut positions in order to filter (lf: low freq; hf: high freq) ihf = min(int(2 * hf * diameter), diameter + (diameter + 1) % 2) ihf = ihf + (ihf + 1) % 2 # index ihf must be odd to take the img part ilf = max(int(2 * lf * diameter), 0) ilf = ilf + ilf % 2 # index ilf must be even to fall in the real part bdf = ihf - ilf + 1 # process lines nxe = sino.get_xsize() nye = sino.get_ysize() prj = model_blank(bdf, 2 * nye) pp = model_blank(nxe, 2 * nye) for li in xrange(nye): # get the line li line = Util.window(sino, nxe, 1, 1, 0, li - nye // 2, 0) # u2 (not improve the results) #line = filt_tanh(line, ou / float(nx), ou / float(nx)) # normalize this line [mean_l, sigma_l, imin, imax] = Util.infomask(line, None, True) line = (line - mean_l) / sigma_l # fft fftip(line) # filter (cut part of coef) and create mirror line Util.cml_prepare_line(prj, line, ilf, ihf, li, nye) # store the projection Prj.append(prj) return Prj, Ori
def cml_open_proj(stack, ir, ou, lf, hf, dpsi = 1): from projection import cml_sinogram from utilities import model_circle, get_params_proj, model_blank, get_im from fundamentals import fftip from filter import filt_tanh # number of projections if type(stack) == type(""): nprj = EMUtil.get_image_count(stack) else: nprj = len(stack) Prj = [] # list of projections Ori = [-1] * 4 * nprj # orientation intial (phi, theta, psi, index) for each projection for i in xrange(nprj): image = get_im(stack, i) # read initial angles if given try: Ori[4*i], Ori[4*i+1], Ori[4*i+2], s2x, s2y = get_params_proj(image) except: pass if(i == 0): nx = image.get_xsize() if(ou < 1): ou = nx // 2 - 1 diameter = int(2 * ou) mask2D = model_circle(ou, nx, nx) if ir > 0: mask2D -= model_circle(ir, nx, nx) # normalize under the mask [mean_a, sigma, imin, imax] = Util.infomask(image, mask2D, True) image -= mean_a Util.mul_scalar(image, 1.0/sigma) Util.mul_img(image, mask2D) # sinogram sino = cml_sinogram(image, diameter, dpsi) # prepare the cut positions in order to filter (lf: low freq; hf: high freq) ihf = min(int(2 * hf * diameter), diameter + (diameter + 1) % 2) ihf = ihf + (ihf + 1) % 2 # index ihf must be odd to take the img part ilf = max(int(2 * lf * diameter), 0) ilf = ilf + ilf % 2 # index ilf must be even to fall in the real part bdf = ihf - ilf + 1 # process lines nxe = sino.get_xsize() nye = sino.get_ysize() prj = model_blank(bdf, 2*nye) pp = model_blank(nxe, 2*nye) for li in xrange(nye): # get the line li line = Util.window(sino, nxe, 1, 1, 0, li-nye//2, 0) # u2 (not improve the results) #line = filt_tanh(line, ou / float(nx), ou / float(nx)) # normalize this line [mean_l, sigma_l, imin, imax] = Util.infomask(line, None, True) line = (line - mean_l) / sigma_l # fft fftip(line) # filter (cut part of coef) and create mirror line Util.cml_prepare_line(prj, line, ilf, ihf, li, nye) # store the projection Prj.append(prj) return Prj, Ori