def test_ranking(dataset='HDI'):
    """Test that PIIMV computes same ranking as PII when no missing value."""
    data_set = 'data/' + dataset + '/raw.csv'
    alts, weights = dr.open_raw(data_set)[0][0:5], dr.open_raw(data_set)[1]
    # print(alts)
    # print(weights)
    if weights == []:
        weights = None
    if dataset == 'HDI':
        weights = [0.5, 0.5]
        ceils = [3, 3]
        promethee = prom.PrometheeII(alts, weights=weights, ceils=ceils)
        prometheeMV = prom.PrometheeMV(alts, weights=weights, ceils=ceils)
    else:
        seed = 1
        promethee = prom.PrometheeII(alts, weights=weights, seed=seed)
        prometheeMV = prom.PrometheeMV(alts, weights=weights, seed=seed)
        # print(promethee.ceils, promethee.weights)
    scores = promethee.scores
    scoresMV = prometheeMV.scores
    rank = promethee.ranking
    rankMV = prometheeMV.ranking
    for i in range(len(rank)):
        print(
            str(rank[i] + 1) + '::' + str(scores[rank[i]]) + " :::: " +
            str(rankMV[i] + 1) + '::' + str(scoresMV[rank[i]]))
Example #2
0
def test_ranking(dataset='HDI'):
    """Test that PII computes the same ranking that in the article RobustPII.

    The following mappings should however be applied between countries and and
    indices:
        0 - Norway            10 - Singapore
        1 - Australia         11 - Hong Kong
        2 - Switzerland       12 - Liechtenstein
        3 - Denmark           13 - Sweden
        4 - Netherlands       14 - United Kingdom
        5 - Germany           15 - Iceland
        6 - Ireland           16 - Korea
        7 - United States     17 - Israel
        8 - Canada            18 - Luxembourg
        9 - New Zealand       19 - Japan

    The ranking expected is:
        2::0.31491228070175437
        1::0.2500000000000007
        8::0.18245614035087707
        11::0.18070175438596484
        19::0.16315789473684195
        17::0.16228070175438677
        9::0.059649122807016945
        13::0.058771929824561676
        0::0.04210526315789358
        5::0.007894736842106042
        14::-0.02543859649122777
        16::-0.02807017543859552
        10::-0.07105263157894759
        4::-0.08070175438596594
        18::-0.09824561403508743
        15::-0.13771929824561518
        6::-0.14999999999999925
        3::-0.17631578947368398
        7::-0.28859649122807074
        12::-0.3657894736842105
    """
    data_set = 'data/' + dataset + '/raw.csv'
    alts, weights = dr.open_raw(data_set)[0][0:20], dr.open_raw(data_set)[1]
    # print(alts)
    if weights == []:
        weights = None
    if dataset == 'HDI':
        weights = [0.5, 0.5]
        ceils = [3, 3]
        promethee = prom.PrometheeII(alts, weights=weights, ceils=ceils)
    else:
        seed = 1
        promethee = prom.PrometheeII(alts, weights=weights, seed=seed)
        print(promethee.ceils, promethee.weights)
        print(sum(promethee.weights))
    scores = promethee.scores
    rank = promethee.ranking
    for i in range(len(rank)):
        print(str(rank[i] + 1) + '::' + str(scores[rank[i]]))
Example #3
0
def test_rr_analysis(data='HDI'):
    """Check that the rank reversals are correct.

    These rank reversal should be compared to the one occuring in the article:
        'About the computation of robust PROMETHEE II rankings: empirical
        evidence' by De Smet.

    The following mappings should however be applied between countries and and
    indices for the HDI data set:
        0 - Norway            10 - Singapore
        1 - Australia         11 - Hong Kong
        2 - Switzerland       12 - Liechtenstein
        3 - Denmark           13 - Sweden
        4 - Netherlands       14 - United Kingdom
        5 - Germany           15 - Iceland
        6 - Ireland           16 - Korea
        7 - United States     17 - Israel
        8 - Canada            18 - Luxembourg
        9 - New Zealand       19 - Japan
    """
    # Data initialisation according to the data set
    if (data == 'HDI'):
        data_set = 'data/HDI/raw.csv'
        alts = dr.open_raw(data_set)[0]
        ceils = [3, 3]
        weights = [0.5, 0.5]
        promethee = prom.PrometheeII(alts, weights=weights, ceils=ceils)

    elif (data == 'SHA'):
        data_set = 'data/SHA/raw_20.csv'
        alts, weights, coeff, ceils = dr.open_raw(data_set)
        promethee = prom.PrometheeII(alts, weights=weights, ceils=ceils)

    elif (data == 'EPI'):
        data_set = 'data/EPI/raw.csv'
        alts = dr.open_raw(data_set)[0]
        alts = alts[0:20]
        seed = 0
        promethee = prom.PrometheeII(alts, seed=seed)

    # print("initial ranking :")
    # print(promethee.ranking)
    # print("initial scores :")
    # print(promethee.scores)
    print("Rank reversals:")
    rr = promethee.compute_rr_number(True)
    print("rank reverasal quantity: " + str(rr))
    rr_instances = promethee.analyse_rr()
    print('rank reversal recap :')
    print(rr_instances)
Example #4
0
def compare_refflows():
    """Check if the ref-flow computed with ReferencedPII object is correct."""
    data_set = 'HDI'
    random.seed()
    seed = random.randint(1, 1000)
    print(seed)
    alt_num = 20
    ref_number = 4
    strategy = prom.strategy2

    input_file = 'data/' + str(data_set) + '/raw.csv'
    alternatives = dr.open_raw(input_file)[0]

    referenced = prom.ReferencedPII(alternatives, strategy=strategy, seed=seed)

    SRP = referenced.SRP
    ref_scores = referenced.scores
    for i, alt in enumerate(alternatives):
        SRP_alt = SRP[:]
        SRP_alt.append(alt)
        promethee = prom.PrometheeII(SRP_alt, seed=seed)
        scores = promethee.scores
        if abs(scores[-1] - ref_scores[i]) < 1e-5:
            print("ok")
        else:
            print("There is something wrong")
            print(scores)
Example #5
0
def test_rr_counting_function():
    """Test the function computing the amount of RR between two rankings.

    The rankings compared are :
        * [1, 2, 3, 4, 5, 6]
        * [6, 4, 3, 1, 5]
        there should therefore be 7 rank reversals:
            (6,1);(6,3);(6,4);(6,5);
            (4,3);(4,1);
            (3,1)
    """
    # we don't care about the parameters, we just want to initialise the object
    data_set = 'data/HDI/raw.csv'
    alts = dr.open_raw(data_set)[0]
    coeffs = [0.61224, 1.2]
    weights = [0.5, 0.5]
    promethee = prom.PrometheeII(alts, weights=weights, coefficients=coeffs)

    # Here start the real interresting test
    ranking_init = [1, 2, 3, 4, 5, 6]
    ranking_new = [6, 4, 3, 1, 5]
    alt_removed = 2
    rr = promethee.compare_rankings(ranking_init, ranking_new, alt_removed)
    """Check that the arguments are not modified."""
    print(ranking_init)
    print(ranking_new)
    print(rr)
def test_PMV(dataset="HDI"):
    """Test PMV with, this time, missing values."""
    data_set = 'data/' + dataset + '/raw.csv'
    alts = dr.open_raw(data_set)[0][:10]
    proportion = 0.2
    seed = 1
    print("complete :")
    prom.printmatrix(alts)
    original_alts = copy.deepcopy(alts)
    mv.delete_evaluations(alts, proportion, seed)
    print("incomplete :")
    prom.printmatrix(alts)

    print("Promethee:")
    promethee = prom.PrometheeII(original_alts, seed=seed)
    rank = promethee.ranking
    scores = promethee.scores

    print("PrometheeMV without missing:")
    prometheeMV1 = prom.PrometheeMV(original_alts, seed=seed)
    rankMV1 = prometheeMV1.ranking
    scoresMV1 = prometheeMV1.scores

    print("PrometheeMV:")
    prometheeMV = prom.PrometheeMV(alts, seed=seed)
    rankMV = prometheeMV.ranking
    scoresMV = prometheeMV.scores
    for i in range(len(rank)):
        print(
            str(rank[i] + 1) + '::' + str(scores[rank[i]]) + " :::: " +
            str(rankMV1[i] + 1) + '::' + str(scoresMV1[rank[i]]) + " :::: " +
            str(rankMV[i] + 1) + '::' + str(scoresMV[rank[i]]))
Example #7
0
def test_ranking_SHA(dataset='SHA'):
    """Test that PII computes the same ranking that in the article RobustPII."""
    data_set = 'data/' + dataset + '/raw.csv'
    A, weights = dr.open_raw(data_set)[0], dr.open_raw(data_set)[1]
    A = normalize(A, axis=0, copy=True, norm='max')
    print(A)
    A = [list(alt) for alt in A]
    # print(alts)
    weights = [0.1, 0.2, 0.2, 0.2, 0.2, 0.1]
    percentiles = (25, 75)
    promethee = prom.PrometheeII(A, weights=weights, percentiles=percentiles)
    scores = promethee.scores
    rank = promethee.ranking
    for i in range(len(rank)):
        print(str(rank[i]) + '::' + str(scores[rank[i]]))

    print(promethee.pi[5][6] / 2)
    print(promethee.alternatives[54][3])
def compare(tests_qty=3):
    """Compare the different stratiegies."""
    output = "res/ReferencedPII/strategies/comparisons.txt"
    data_sets = ['EPI', 'SHA', 'GEQ']
    # data_sets = ['HDI']
    range_seed = range(0, 0 + tests_qty)
    alt_num = 30
    ref_number = 4
    strategies = [
        prom.strategy1, prom.strategy2, prom.strategy3, prom.strategy4
    ]
    # strategies = [prom.strategy2]

    kendall_taus = [[] for i in range(4)]  # One list for each strategy
    titles = []

    for data_set in data_sets:
        input_file = 'data/' + str(data_set) + '/raw.csv'
        alternatives = dr.open_raw(input_file)[0]

        for seed in range_seed:
            promethee = prom.PrometheeII(alternatives,
                                         seed=seed,
                                         alt_num=alt_num)
            prom_ranking = promethee.ranking

            title = data_set + str(seed)
            titles.append(title)

            for i, strategy in enumerate(strategies):
                referenced = prom.ReferencedPII(alternatives,
                                                seed=seed,
                                                strategy=strategy,
                                                alt_num=alt_num)
                refrank = referenced.ranking
                tau = stats.kendalltau(refrank, prom_ranking)[0]
                tau = int(tau * 1000) / 1000
                kendall_taus[i].append(tau)

    print_to_file(output, titles, kendall_taus, tests_qty)
def compare_rankings_once(all_alts, alt_num, weights, del_number, methods):
    """Compare strategies once."""
    seed = random.randint(0, 1000)
    # print('seed', seed)
    # seed = 289
    # print(seed)
    alts = random.sample(all_alts, alt_num)

    alts_inc = mv.delete_l_evaluations(alts, del_number, seed)
    # print("gapped :")
    # helpers.printmatrix(alts_inc)

    PII = prom.PrometheeII(alts, weights=weights, seed=seed)
    ranking_PII = PII.ranking

    kendall_taus = {}
    for method in methods:
        alts_completed = methods[method](alts_inc)
        score = PII.compute_netflow(alts_completed)
        ranking = PII.compute_ranking(score)
        kendall_taus[method] = stats.kendalltau(ranking_PII, ranking)[0]

    return kendall_taus
Example #10
0
def genetic_search(alternatives, seed=None, weights=None, ceils=None,
                   coefficients=None, alt_num=-1, SRP_size=4, pop_size=600,
                   mut_prob=0.01, MAXIT=50):
    """Search for references sets reproducing PII with a genetic algorithm.

    Inputs:
        alternatives - matrix composed of one list of evaluations for each
                       alternative.

        seed - seed provided to python pseudo random number generator. It is
               used to create some random (w, F) for the method if these are not
               provided as arguments. See promethee.py to see how this is done

        weights - list of the relative importance (or weigths) of all criteria.

        ceils - list of the values of the strict preference thresholds for all
                criteria (p).

        coefficients - if 'ceils' is not provided, some new ceils will be
                       computed as these coefficents time the amplitude
                       between the highest and lowest evaluation of each
                       criterion.

        alt_num - quantity of alternatives from 'alternative' which must be
                  kept.

        SRP_size - quantity of reference profiles searched.

        pop_size - size of the population.

        mut_prob - probability of mutation of each of the evaluation of each
                   individual.

        MAXIT - maximal number of iterations of the procedure.
    """
    # Initialisation of the PrometheeII, ReferencedPII objects
    promethee = prom.PrometheeII(alternatives, seed=seed, alt_num=alt_num,
                                 ceils=ceils, weights=weights,
                                 coefficients=coefficients)
    prom_ranking = promethee.ranking
    random.seed()

    population = initial_population(alternatives, pop_size, SRP_size)
    referenced = prom.ReferencedPII(alternatives, seed=seed, alt_num=alt_num,
                                    ceils=ceils, weights=weights,
                                    ref_set=population[0],
                                    coefficients=coefficients)

    evaluations = compute_evaluations(population, prom_ranking, referenced)

    best_score = max(evaluations)
    best_SRP_ever = population[evaluations.index(best_score)]

    it = 0
    while(abs(best_score - 1) > 1e-5 and it < MAXIT):
        # print("it:" + str(it) + '  best score:' + str(best_score))
        parents = chose_parents(population, evaluations, pop_size)
        population = combine_parents(parents)
        population = mutate_population(population, mut_prob)
        evaluations = compute_evaluations(population, prom_ranking, referenced)
        if max(evaluations) > best_score:
            best_score = max(evaluations)
            best_SRP_ever = population[evaluations.index(best_score)]
        it += 1

    return best_score
    def __init__(self,
                 init_alternatives,
                 seed=0,
                 alt_num=30,
                 ref_number=4,
                 pts_per_random_it=200,
                 random_add_it=500,
                 divide_it=5,
                 desired_points=3000):
        """Constructor.

        Inputs:
            init_alternatives - matrix composed of one list of evaluations for
                                each alternative.
            seed - used to generate some pseudo random parameters.
            max_alt - maximal number of alternatives on which the procedure must
                      be applied.
            ref_number - number of reference profiles in each set.
            pts_per_random_it - minimal quantity of points which are tried to
                                be added at random 'simultaneously'. This
                                quantity is repeated 'random_add_it' times at
                                each iteration of the procedure.
            random_add_it - quantity of times at each iteration of the procedure
                            'pts_per_random_it' are considered to be added to
                            the set of all admissible points.
            divide_it - number of times we try to add a new point near of an
                        admissible one (for each of the admissible ones).
            desired_points - desired size of the set of admissible points after
                             each iteration.

            These four last arguments are used because it is computationally
            not possible to start with a big enough set of admissible points.
            Therefore, at each iteration some points. More information in the
            'round_add_points' function.
        """
        self.ref_number = ref_number
        self.pts_per_random_it = pts_per_random_it
        self.desired_points = desired_points
        self.seed = seed
        self.random_add_it = random_add_it
        self.divide_it = divide_it
        self.promethee = PII.PrometheeII(init_alternatives,
                                         seed=self.seed,
                                         alt_num=alt_num)
        self.PII_ranking = self.promethee.ranking
        self.alternatives = self.promethee.alternatives

        # Used to add new points
        self.min_per_crit = [
            min(crit) for crit in self.promethee.eval_per_crit
        ]
        self.max_per_crit = [
            max(crit) for crit in self.promethee.eval_per_crit
        ]
        self.delta_per_crit = [
            self.max_per_crit[crit] - self.min_per_crit[crit]
            for crit in range(len(self.max_per_crit))
        ]

        self.crit_number = len(self.promethee.alternatives[0])

        # SRP only used to initialise the referenced promethee object
        SRP = [[1 for i in range(self.crit_number)] for r in range(ref_number)]
        self.referenced = PII.ReferencedPII(init_alternatives,
                                            seed=self.seed,
                                            alt_num=alt_num,
                                            ref_set=SRP)

        if (not PII.check_parameters(self.promethee, self.referenced)):
            print('parameters not equal between method')
            exit()

        # This list contains all points which are still admissible at any given
        # iteration but which do not exactly reproduce the PII ranking. Points
        # reproducing the PII ranking are kept in another list for performances
        # purposes.
        self.admissible_points = []
        self.correct_points = []
        self.constraints = []

        # Matrix that keep trace of all the rankings (one list per iteration)
        self.kendall_taus = []

        self.add_initial_points()

        # define the template for printing the iteration analysis
        self.it_template = "{:^3d}|{: ^9d}|{: ^10d}|" \
            + "{:^7d}|{: ^7.3f}|{: ^7.3f}|{: ^7.3f}|{: ^7.3f}|{: ^10s}|{: ^9d}"
        self.iteration = 0
def SRP_from_aqp(data_set="GEQ", seeds=range(3), alt_num=20):
    """Analyse the correct SRP found with this procedure."""
    alts_file_name = "data/" + data_set + "/raw.csv"
    all_alts = dr.open_raw(alts_file_name)[0]

    mean_mean_ratio_str = []
    var_var_ratio_str = []
    mean_var_ratio_str = []
    var_mean_ratio_str = []

    template_ratio = '{0:^d}|'
    for i in range(len(all_alts[0])):
        template_ratio += '{' + str(i + 1) + ':+.3F}|'

    # Output
    output_file = "res/ReferencedPII/SRP_analysis/" + data_set

    for seed in seeds:
        # Input
        SRP_prefix = "res/ReferencedPII/adaptive_questioning_procedure/"
        all_SRP_file_name = data_set + "/" + str(seed) + ".csv"
        all_SRP = dr.open_raw_RS(SRP_prefix + all_SRP_file_name)

        # get the correct alt_num for the concerned seed
        promethee = prom.PrometheeII(all_alts, seed=seed, alt_num=alt_num)
        alts_per_criterion = list(map(list, zip(*promethee.alternatives)))

        # Check if the parameteres (= alternative subset) are indeed the same
        questioning_procedure = aqp.Adaptive_procedure(all_alts,
                                                       seed=seed,
                                                       alt_num=alt_num,
                                                       ref_number=4,
                                                       pts_per_random_it=200,
                                                       desired_points=3000)
        if (not prom.check_parameters(questioning_procedure.promethee,
                                      promethee)):
            print("error")
        """Will contain lists of means of the ref's evaluation for each criterion
        ex:
            all_means_ratio[0] = [mean(c1(r1), ..., mean(c2(r1), ..., c2(r4))]
            SRP_means[2] = [...]
        """
        # List of all ratios for individual SRP
        all_mean_ratios = []
        all_var_ratios = []

        for i in range(len(all_SRP)):
            SRP = all_SRP[i]

            # matrix = list of criteria which are lists of refs or
            # alternatives evaluations
            refs_per_criterion = list(map(list, zip(*SRP)))

            # ratio between estimator of on SRP compared to the one of the alts
            individual_mean_ratios, individual_var_ratios = [], []
            for crit in range(len(refs_per_criterion)):
                var_ref = numpy.var(refs_per_criterion[crit])
                mean_ref = numpy.mean(refs_per_criterion[crit])
                var_alt = numpy.var(alts_per_criterion[crit])
                mean_alt = numpy.mean(alts_per_criterion[crit])

                individual_mean_ratios.append(mean_ref / mean_alt)
                individual_var_ratios.append(var_ref / var_alt)

            all_mean_ratios.append(individual_mean_ratios)
            all_var_ratios.append(individual_var_ratios)

        # transpose the matrix : a list of references sets which are lists
        # of the estimators for each criterion becomes a list of estimators for
        # each criterion which contains the estimater for each SRP
        var_ratios_per_crit = list(map(list, zip(*all_var_ratios)))
        mean_ratios_per_crit = list(map(list, zip(*all_mean_ratios)))

        var_var_ratios = [numpy.var(crit) for crit in var_ratios_per_crit]
        mean_var_ratios = [numpy.mean(crit) for crit in var_ratios_per_crit]
        var_mean_ratios = [numpy.var(crit) for crit in mean_ratios_per_crit]
        mean_mean_ratios = [numpy.mean(crit) for crit in mean_ratios_per_crit]

        # Transorm in strings
        var_var_ratio_str.append(template_ratio.format(seed, *var_var_ratios))
        var_mean_ratio_str.append(template_ratio.format(
            seed, *var_mean_ratios))
        mean_var_ratio_str.append(template_ratio.format(
            seed, *mean_var_ratios))
        mean_mean_ratio_str.append(
            template_ratio.format(seed, *mean_mean_ratios))

    with open(output_file, 'a') as output:
        output.write("var(var(ref)/var(alt)) \n")
        for i in var_var_ratio_str:
            output.write(i)
            output.write("\n")
        output.write("\n")

        output.write("var(mean(ref)/mean(alt)) \n")
        for i in var_mean_ratio_str:
            output.write(i)
            output.write("\n")
        output.write("\n")

        output.write("mean(var(ref)/var(alt)) \n")
        for i in mean_var_ratio_str:
            output.write(i)
            output.write("\n")
        output.write("\n")

        output.write("mean(mean(ref)/mean(alt)) \n")
        for i in mean_mean_ratio_str:
            output.write(i)
            output.write("\n")
        output.write("\n")
Example #13
0
def count_rr(data='HDI', max_rep=10, R_parameter=None, m_parameter=None):
    """Test the number of rank reversals."""
    # Parameter initialization, the interesting stuff is way lower
    R_list = R_parameter
    m_list = m_parameter
    if (data == 'HDI'):
        # Change these parameters if needed
        if (R_list is None):
            R_list = [500, 1000, 5000, 10000]
        if (m_list is None):
            m_list = [3, 5, 6, 7, 8, 10, 15]

        # Do not change these parameters ! They are not saved
        data_set = 'data/HDI/raw.csv'
        alts = dr.open_raw(data_set)[0]
        weights = [0.5, 0.5]
        ceils = [3, 3]
        seed = 0  # Not used, here to match the general signature

    elif (data == 'SHA'):
        # Change these parameters if needed
        if (R_list is None):
            R_list = [1000, 4000, 7000, 12000]
            m_list = [4, 6, 8, 9, 12, 15, 18]

        # Do not change these parameters ! They are not saved
        data_set = 'data/SHA/raw_20.csv'
        alts = dr.open_raw(data_set)[0]
        weights = [0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667]
        ceils = [17.100, 23.7750, 26.100, 27.3750, 17.9250, 13.5750]
        seed = 0  # Not used, here to match the general signature

    else:
        data = 'EPI'
        # Change these parameters if needed
        if (R_list is None):
            R_list = [500, 1000, 5000, 8000]
        if (m_list is None):
            m_list = [3, 4, 7, 9, 12, 14, 16, 18]

        # Do not change these parameters ! They are not saved
        data_set = 'data/EPI/raw.csv'
        alts = dr.open_raw(data_set)[0]
        alts = alts[0:20]
        weights, ceils = None, None
        seed = 0

    output_dir = 'res/RobustPII/R_m_influence/'
    output = output_dir + data + '.txt'

    promethee = prom.PrometheeII(alts, weights=weights, ceils=ceils, seed=seed)
    rr_promethee = promethee.compute_rr_number()

    rr_matrix = []
    for R in R_list:
        rr_row = []
        for m in m_list:
            rr = 0
            for repetition in range(max_rep):
                random.seed()
                robust = prom.RobustPII(alts,
                                        weights=weights,
                                        ceils=ceils,
                                        seed=seed,
                                        R=R,
                                        m=m)
                rr += robust.compute_rr_number()
            rr = rr / max_rep
            rr_row.append(rr)
        print(rr_row)
        rr_matrix.append(rr_row)
    print_rr_to_file(output, rr_matrix, R_list, m_list, rr_promethee, max_rep)
def analyse_rr(data='SHA', max_rep=20, R_parameter=None, m_parameter=None):
    """Analyse the rank reversals occuring in RobustPII."""
    if (data == 'HDI'):
        print('try with another dataset')
        exit()

    elif (data == 'SHA'):
        R = 5000
        m = 9
        # Do not change these parameters ! They are not saved
        data_set = 'data/SHA/raw_20.csv'
        alts = dr.open_raw(data_set)[0]
        weights = [0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667]
        ceils = [17.100, 23.7750, 26.100, 27.3750, 17.9250, 13.5750]
        seed = 1
    else:
        data = 'EPI'
        R = 5000
        m = 16
        # Do not change these parameters ! They are not saved
        data_set = 'data/EPI/raw.csv'
        alts = dr.open_raw(data_set)[0]
        alts = alts[0:20]
        weights, ceils = None, None
        seed = 0

    if R_parameter is not None:
        R = R_parameter
    if m_parameter is not None:
        m = m_parameter

    output = 'res/RobustPII/analyse_rank_reversals/' + str(data) + '.txt'

    promethee = prom.PrometheeII(alts, weights=weights, ceils=ceils, seed=seed)
    promethee_rr_instances = promethee.analyse_rr()

    all_rr_instances = dict()
    for repetition in range(max_rep):
        robust = prom.RobustPII(alts,
                                weights=weights,
                                ceils=ceils,
                                seed=seed,
                                R=R,
                                m=m)
        rr_instances = robust.analyse_rr()
        for key in rr_instances:
            all_rr_instances[key] = \
                    all_rr_instances.get(key, 0) + rr_instances.get(key)

    all_info = []

    key_set = set(all_rr_instances.keys()) | set(promethee_rr_instances.keys())
    for key in key_set:
        line = [
            key[0], key[1],
            all_rr_instances.get(key, 0) / max_rep,
            promethee_rr_instances.get(key, 0),
            abs(promethee.scores[key[0]] - promethee.scores[key[1]]),
            abs(robust.scores[key[0]] - robust.scores[key[1]])
        ]
        all_info.append(line)
    print_to_file(output, all_info, promethee.scores, robust.scores, max_rep,
                  R, m)