Example #1
0
def wfirst_phaseb(lambda_m, output_dim0, PASSVALUE={'dummy': 0}):

    # "output_dim" is used to specify the output dimension in pixels at the final image plane.
    # Computational grid sizes are hardcoded for each coronagraph.
    # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang.

    data_dir = wfirst_phaseb_proper.data_dir
    if 'PASSVALUE' in locals():
        if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir']

    map_dir = data_dir + wfirst_phaseb_proper.map_dir
    polfile = data_dir + wfirst_phaseb_proper.polfile

    cor_type = 'hlc'  # coronagraph type ('hlc', 'spc', 'none')
    source_x_offset_mas = 0  # source offset in mas (tilt applied at primary)
    source_y_offset_mas = 0
    source_x_offset = 0  # source offset in lambda0_m/D radians (tilt applied at primary)
    source_y_offset = 0
    polaxis = 0  # polarization axis aberrations:
    #    -2 = -45d in, Y out
    #    -1 = -45d in, X out
    #     1 = +45d in, X out
    #     2 = +45d in, Y out
    #     5 = mean of modes -1 & +1 (X channel polarizer)
    #     6 = mean of modes -2 & +2 (Y channel polarizer)
    #    10 = mean of all modes (no polarization filtering)
    use_errors = 1  # use optical surface phase errors? 1 or 0
    zindex = np.array([0, 0])  # array of Zernike polynomial indices
    zval_m = np.array([0, 0])  # array of Zernike coefficients (meters RMS WFE)
    use_aperture = 0  # use apertures on all optics? 1 or 0
    cgi_x_shift_pupdiam = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI); normalized relative to pupil diameter
    cgi_y_shift_pupdiam = 0
    cgi_x_shift_m = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI) in meters
    cgi_y_shift_m = 0
    fsm_x_offset_mas = 0  # offset in focal plane caused by tilt of FSM in mas
    fsm_y_offset_mas = 0
    fsm_x_offset = 0  # offset in focal plane caused by tilt of FSM in lambda0/D
    fsm_y_offset = 0
    end_at_fsm = 0  # end propagation after propagating to FSM (no FSM errors)
    focm_z_shift_m = 0  # offset (meters) of focus correction mirror (+ increases path length)
    use_hlc_dm_patterns = 0  # use Dwight's HLC default DM wavefront patterns? 1 or 0
    use_dm1 = 0  # use DM1? 1 or 0
    use_dm2 = 0  # use DM2? 1 or 0
    dm_sampling_m = 0.9906e-3  # actuator spacing in meters
    dm1_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm1_yc_act = 23.5
    dm1_xtilt_deg = 0  # tilt around X axis (deg)
    dm1_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm1_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    dm2_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm2_yc_act = 23.5
    dm2_xtilt_deg = 0  # tilt around X axis (deg)
    dm2_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm2_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    use_pupil_mask = 1  # SPC only: use SPC pupil mask (0 or 1)
    mask_x_shift_pupdiam = 0  # X,Y shear of shaped pupil mask; normalized relative to pupil diameter
    mask_y_shift_pupdiam = 0
    mask_x_shift_m = 0  # X,Y shear of shaped pupil mask in meters
    mask_y_shift_m = 0
    use_fpm = 1  # use occulter? 1 or 0
    fpm_x_offset = 0  # FPM x,y offset in lambda0/D
    fpm_y_offset = 0
    fpm_x_offset_m = 0  # FPM x,y offset in meters
    fpm_y_offset_m = 0
    fpm_z_shift_m = 0  # occulter offset in meters along optical axis (+ = away from prior optics)
    pinhole_diam_m = 0  # FPM pinhole diameter in meters
    end_at_fpm_exit_pupil = 0  # return field at FPM exit pupil?
    output_field_rootname = ''  # rootname of FPM exit pupil field file (must set end_at_fpm_exit_pupil=1)
    use_lyot_stop = 1  # use Lyot stop? 1 or 0
    lyot_x_shift_pupdiam = 0  # X,Y shear of Lyot stop mask; normalized relative to pupil diameter
    lyot_y_shift_pupdiam = 0
    lyot_x_shift_m = 0  # X,Y shear of Lyot stop mask in meters
    lyot_y_shift_m = 0
    use_field_stop = 1  # use field stop (HLC)? 1 or 0
    field_stop_radius_lam0 = 0  # field stop radius in lambda0/D (HLC or SPC-wide mask only)
    field_stop_x_offset = 0  # field stop offset in lambda0/D
    field_stop_y_offset = 0
    field_stop_x_offset_m = 0  # field stop offset in meters
    field_stop_y_offset_m = 0
    use_pupil_lens = 0  # use pupil imaging lens? 0 or 1
    use_defocus_lens = 0  # use defocusing lens? Options are 1, 2, 3, 4, corresponding to +18.0, +9.0, -4.0, -8.0 waves P-V @ 550 nm
    defocus = 0  # instead of specific lens, defocus in waves P-V @ 550 nm (-8.7 to 42.0 waves)
    final_sampling_m = 0  # final sampling in meters (overrides final_sampling_lam0)
    final_sampling_lam0 = 0  # final sampling in lambda0/D
    output_dim = output_dim0  # dimension of output in pixels (overrides output_dim0)

    if 'PASSVALUE' in locals():
        if 'use_fpm' in PASSVALUE: use_fpm = PASSVALUE['use_fpm']
        if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type']

    is_spc = False
    is_hlc = False

    if cor_type == 'hlc':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07,
            5.55833333333e-07, 5.59027777778e-07, 5.60625e-07,
            5.62222222222e-07, 5.65416666667e-07, 5.678125e-07,
            5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07,
            5.81388888889e-07, 5.821875e-07, 5.84583333333e-07,
            5.87777777778e-07, 5.89375e-07, 5.90972222222e-07,
            5.94166666667e-07, 5.965625e-07, 5.97361111111e-07,
            6.00555555556e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07',
            '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07',
            '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07',
            '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07',
            '5.75e-07', '5.78194444444e-07', '5.81388888889e-07',
            '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07',
            '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07',
            '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07',
            '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69polp_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real.fits'
        occulter_file_i = lam_occs[wlam] + 'imag.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'hlc_erkin':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190206_v3/'  # must have trailing "/"
        prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_'
        pupil_diam_pix = 310.0
        pupil_file = prefix + 'pupil.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07,
            5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07,
            5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07,
            5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07',
            '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07',
            '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07',
            '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07',
            '6.0056e-07', '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69pols_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real_rotated.fits'
        occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long':
        is_spc = True
        file_dir = data_dir + '/spc_20190130/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20190130.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in fpm_sampling_lambda_m/D of FPM mask
        if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short':
            fpm_sampling_lambda_m = 0.66e-6
            lambda0_m = 0.66e-6
        else:
            fpm_sampling_lambda_m = 0.73e-6
            lambda0_m = 0.73e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20190130.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400  # gridsize to FPM (propagation to/from FPM handled by MFT)
        n_from_lyotstop = 4096
    elif cor_type == 'spc-wide':
        is_spc = True
        file_dir = data_dir + '/spc_20181220/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in lambda0/D of FPM mask
        fpm_sampling_lambda_m = 0.825e-6
        lambda0_m = 0.825e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20181220_1k.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400
        n_from_lyotstop = 4096
    elif cor_type == 'none':
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lambda0_m = 0.575e-6
        use_fpm = 0
        use_lyot_stop = 0
        use_field_stop = 0
        n_default = 1024
        n_to_fpm = 1024
        n_from_lyotstop = 1024
    else:
        raise Exception('ERROR: Unsupported cor_type: ' + cor_type)

    if 'PASSVALUE' in locals():
        if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6
        if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m']
        mas_per_lamD = lambda0_m * 360.0 * 3600.0 / (
            2 * np.pi * 2.363) * 1000  # mas per lambda0/D
        if 'source_x_offset' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset']
        if 'source_y_offset' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset']
        if 'source_x_offset_mas' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset_mas'] / mas_per_lamD
        if 'source_y_offset_mas' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset_mas'] / mas_per_lamD
        if 'use_errors' in PASSVALUE: use_errors = PASSVALUE['use_errors']
        if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis']
        if 'zindex' in PASSVALUE: zindex = np.array(PASSVALUE['zindex'])
        if 'zval_m' in PASSVALUE: zval_m = np.array(PASSVALUE['zval_m'])
        if 'end_at_fsm' in PASSVALUE: end_at_fsm = PASSVALUE['end_at_fsm']
        if 'cgi_x_shift_pupdiam' in PASSVALUE:
            cgi_x_shift_pupdiam = PASSVALUE['cgi_x_shift_pupdiam']
        if 'cgi_y_shift_pupdiam' in PASSVALUE:
            cgi_y_shift_pupdiam = PASSVALUE['cgi_y_shift_pupdiam']
        if 'cgi_x_shift_m' in PASSVALUE:
            cgi_x_shift_m = PASSVALUE['cgi_x_shift_m']
        if 'cgi_y_shift_m' in PASSVALUE:
            cgi_y_shift_m = PASSVALUE['cgi_y_shift_m']
        if 'fsm_x_offset' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset']
        if 'fsm_y_offset' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset']
        if 'fsm_x_offset_mas' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset_mas'] / mas_per_lamD
        if 'fsm_y_offset_mas' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset_mas'] / mas_per_lamD
        if 'focm_z_shift_m' in PASSVALUE:
            focm_z_shift_m = PASSVALUE['focm_z_shift_m']
        if 'use_hlc_dm_patterns' in PASSVALUE:
            use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns']
        if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1']
        if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m']
        if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act']
        if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act']
        if 'dm1_xtilt_deg' in PASSVALUE:
            dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg']
        if 'dm1_ytilt_deg' in PASSVALUE:
            dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg']
        if 'dm1_ztilt_deg' in PASSVALUE:
            dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg']
        if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2']
        if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m']
        if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act']
        if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act']
        if 'dm2_xtilt_deg' in PASSVALUE:
            dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg']
        if 'dm2_ytilt_deg' in PASSVALUE:
            dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg']
        if 'dm2_ztilt_deg' in PASSVALUE:
            dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg']
        if 'use_pupil_mask' in PASSVALUE:
            use_pupil_mask = PASSVALUE['use_pupil_mask']
        if 'mask_x_shift_pupdiam' in PASSVALUE:
            mask_x_shift_pupdiam = PASSVALUE['mask_x_shift_pupdiam']
        if 'mask_y_shift_pupdiam' in PASSVALUE:
            mask_y_shift_pupdiam = PASSVALUE['mask_y_shift_pupdiam']
        if 'mask_x_shift_m' in PASSVALUE:
            mask_x_shift_m = PASSVALUE['mask_x_shift_m']
        if 'mask_y_shift_m' in PASSVALUE:
            mask_y_shift_m = PASSVALUE['mask_y_shift_m']
        if 'fpm_x_offset' in PASSVALUE:
            fpm_x_offset = PASSVALUE['fpm_x_offset']
        if 'fpm_y_offset' in PASSVALUE:
            fpm_y_offset = PASSVALUE['fpm_y_offset']
        if 'fpm_x_offset_m' in PASSVALUE:
            fpm_x_offset_m = PASSVALUE['fpm_x_offset_m']
        if 'fpm_y_offset_m' in PASSVALUE:
            fpm_y_offset_m = PASSVALUE['fpm_y_offset_m']
        if 'fpm_z_shift_m' in PASSVALUE:
            fpm_z_shift_m = PASSVALUE['fpm_z_shift_m']
        if 'pinhole_diam_m' in PASSVALUE:
            pinhole_diam_m = PASSVALUE['pinhole_diam_m']
        if 'end_at_fpm_exit_pupil' in PASSVALUE:
            end_at_fpm_exit_pupil = PASSVALUE['end_at_fpm_exit_pupil']
        if 'output_field_rootname' in PASSVALUE:
            output_field_rootname = PASSVALUE['output_field_rootname']
        if 'use_lyot_stop' in PASSVALUE:
            use_lyot_stop = PASSVALUE['use_lyot_stop']
        if 'lyot_x_shift_pupdiam' in PASSVALUE:
            lyot_x_shift_pupdiam = PASSVALUE['lyot_x_shift_pupdiam']
        if 'lyot_y_shift_pupdiam' in PASSVALUE:
            lyot_y_shift_pupdiam = PASSVALUE['lyot_y_shift_pupdiam']
        if 'lyot_x_shift_m' in PASSVALUE:
            lyot_x_shift_m = PASSVALUE['lyot_x_shift_m']
        if 'lyot_y_shift_m' in PASSVALUE:
            lyot_y_shift_m = PASSVALUE['lyot_y_shift_m']
        if 'use_field_stop' in PASSVALUE:
            use_field_stop = PASSVALUE['use_field_stop']
        if 'field_stop_x_offset' in PASSVALUE:
            field_stop_x_offset = PASSVALUE['field_stop_x_offset']
        if 'field_stop_y_offset' in PASSVALUE:
            field_stop_y_offset = PASSVALUE['field_stop_y_offset']
        if 'field_stop_x_offset_m' in PASSVALUE:
            field_stop_x_offset_m = PASSVALUE['field_stop_x_offset_m']
        if 'field_stop_y_offset_m' in PASSVALUE:
            field_stop_y_offset_m = PASSVALUE['field_stop_y_offset_m']
        if 'use_pupil_lens' in PASSVALUE:
            use_pupil_lens = PASSVALUE['use_pupil_lens']
        if 'use_defocus_lens' in PASSVALUE:
            use_defocus_lens = PASSVALUE['use_defocus_lens']
        if 'defocus' in PASSVALUE: defocus = PASSVALUE['defocus']
        if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim']
        if 'final_sampling_m' in PASSVALUE:
            final_sampling_m = PASSVALUE['final_sampling_m']
        if 'final_sampling_lam0' in PASSVALUE:
            final_sampling_lam0 = PASSVALUE['final_sampling_lam0']

    diam = 2.3633372
    fl_pri = 2.83459423440 * 1.0013
    d_pri_sec = 2.285150515460035
    d_focus_sec = d_pri_sec - fl_pri
    fl_sec = -0.653933011 * 1.0004095
    d_sec_focus = 3.580188916677103
    diam_sec = 0.58166
    d_sec_fold1 = 2.993753476654728
    d_fold1_focus = 0.586435440022375
    diam_fold1 = 0.09
    d_fold1_m3 = 1.680935841598811
    fl_m3 = 0.430216463069001
    d_focus_m3 = 1.094500401576436
    d_m3_pupil = 0.469156807701977
    d_m3_focus = 0.708841602661368
    diam_m3 = 0.2
    d_m3_m4 = 0.943514749358944
    fl_m4 = 0.116239114833590
    d_focus_m4 = 0.234673014520402
    d_m4_pupil = 0.474357941656967
    d_m4_focus = 0.230324117970585
    diam_m4 = 0.07
    d_m4_m5 = 0.429145636743193
    d_m5_focus = 0.198821518772608
    fl_m5 = 0.198821518772608
    d_m5_pupil = 0.716529242882632
    diam_m5 = 0.07
    d_m5_fold2 = 0.351125431220770
    diam_fold2 = 0.06
    d_fold2_fsm = 0.365403811661862
    d_fsm_oap1 = 0.354826767220001
    fl_oap1 = 0.503331895563883
    diam_oap1 = 0.06
    d_oap1_focm = 0.768005607094041
    d_focm_oap2 = 0.314483210543378
    fl_oap2 = 0.579156922073536
    diam_oap2 = 0.06
    d_oap2_dm1 = 0.775775726154228
    d_dm1_dm2 = 1.0
    d_dm2_oap3 = 0.394833855161549
    fl_oap3 = 1.217276467668519
    diam_oap3 = 0.06
    d_oap3_fold3 = 0.505329955078121
    diam_fold3 = 0.06
    d_fold3_oap4 = 1.158897671642761
    fl_oap4 = 0.446951159052363
    diam_oap4 = 0.06
    d_oap4_pupilmask = 0.423013568764728
    d_pupilmask_oap5 = 0.408810648253099
    fl_oap5 = 0.548189351937178
    diam_oap5 = 0.06
    d_oap5_fpm = 0.548189083164429
    d_fpm_oap6 = 0.548189083164429
    fl_oap6 = 0.548189083164429
    diam_oap6 = 0.06
    d_oap6_lyotstop = 0.687567667550736
    d_lyotstop_oap7 = 0.401748843470518
    fl_oap7 = 0.708251083480054
    diam_oap7 = 0.06
    d_oap7_fieldstop = 0.708251083480054
    d_fieldstop_oap8 = 0.210985967281651
    fl_oap8 = 0.210985967281651
    diam_oap8 = 0.06
    d_oap8_pupil = 0.238185804200797
    d_oap8_filter = 0.368452268225530
    diam_filter = 0.01
    d_filter_lens = 0.170799548215162
    fl_lens = 0.246017378417573 + 0.050001306014153
    diam_lens = 0.01
    d_lens_fold4 = 0.246017378417573
    diam_fold4 = 0.02
    d_fold4_image = 0.050001578514650
    fl_pupillens = 0.149260576823040

    n = n_default  # start off with less padding

    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    pupil = proper.prop_fits_read(pupil_file)
    proper.prop_multiply(wavefront, trim(pupil, n))
    pupil = 0
    if polaxis != 0: polmap(wavefront, polfile, pupil_diam_pix, polaxis)
    proper.prop_define_entrance(wavefront)
    proper.prop_lens(wavefront, fl_pri)
    if source_x_offset != 0 or source_y_offset != 0:
        # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D
        xtilt_lam = -source_x_offset * lambda0_m / lambda_m
        ytilt_lam = -source_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0
    if zindex[0] != 0: proper.prop_zernikes(wavefront, zindex, zval_m)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PRIMARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
        proper.prop_errormap(
            wavefront,
            map_dir +
            'wfirst_phaseb_GROUND_TO_ORBIT_4.2X_phase_error_V1.0.fits',
            WAVEFRONT=True)

    proper.prop_propagate(wavefront, d_pri_sec, 'secondary')
    proper.prop_lens(wavefront, fl_sec)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_SECONDARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_sec / 2.0)

    proper.prop_propagate(wavefront, d_sec_fold1, 'FOLD_1')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold1 / 2.0)

    proper.prop_propagate(wavefront, d_fold1_m3, 'M3')
    proper.prop_lens(wavefront, fl_m3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m3 / 2.0)

    proper.prop_propagate(wavefront, d_m3_m4, 'M4')
    proper.prop_lens(wavefront, fl_m4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m4 / 2.0)

    proper.prop_propagate(wavefront, d_m4_m5, 'M5')
    proper.prop_lens(wavefront, fl_m5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m5 / 2.0)

    proper.prop_propagate(wavefront, d_m5_fold2, 'FOLD_2')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold2 / 2.0)

    proper.prop_propagate(wavefront, d_fold2_fsm, 'FSM')
    if end_at_fsm == 1:
        (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)
        wavefront = trim(wavefront, n)
        return wavefront, sampling_m
    if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0 or cgi_x_shift_m != 0 or cgi_y_shift_m != 0:  # bulk coronagraph pupil shear
        # FFT the field, apply a tilt, FFT back
        if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0:
            # offsets are normalized to pupil diameter
            xt = -cgi_x_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
            yt = -cgi_y_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
        else:
            # offsets are meters
            d_m = proper.prop_get_sampling(wavefront)
            xt = -cgi_x_shift_m / d_m * float(pupil_diam_pix) / n
            yt = -cgi_y_shift_m / d_m * float(pupil_diam_pix) / n
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
        x = 0
        y = 0
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, -1)
        wavefront0 *= np.exp(tilt)
        wavefront0 = ffts(wavefront0, 1)
        tilt = 0
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FSM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fsm / 2.0)
    if (fsm_x_offset != 0.0 or fsm_y_offset != 0.0):
        # compute tilted wavefront to offset source by fsm_x_offset,fsm_y_offset lambda0_m/D
        xtilt_lam = fsm_x_offset * lambda0_m / lambda_m
        ytilt_lam = fsm_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0

    proper.prop_propagate(wavefront, d_fsm_oap1, 'OAP1')
    proper.prop_lens(wavefront, fl_oap1)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap1 / 2.0)

    proper.prop_propagate(wavefront, d_oap1_focm + focm_z_shift_m, 'FOCM')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOCM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_focm / 2.0)

    proper.prop_propagate(wavefront, d_focm_oap2 + focm_z_shift_m, 'OAP2')
    proper.prop_lens(wavefront, fl_oap2)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap2 / 2.0)

    proper.prop_propagate(wavefront, d_oap2_dm1, 'DM1')
    if use_dm1 != 0:
        proper.prop_dm(wavefront,
                       dm1_m,
                       dm1_xc_act,
                       dm1_yc_act,
                       dm_sampling_m,
                       XTILT=dm1_xtilt_deg,
                       YTILT=dm1_ytilt_deg,
                       ZTILT=dm1_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True and use_hlc_dm_patterns == 1:
        dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits')
        proper.prop_add_phase(wavefront, trim(dm1wfe, n))
        dm1wfe = 0

    proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2')
    if use_dm2 == 1:
        proper.prop_dm(wavefront,
                       dm2_m,
                       dm2_xc_act,
                       dm2_yc_act,
                       dm_sampling_m,
                       XTILT=dm2_xtilt_deg,
                       YTILT=dm2_ytilt_deg,
                       ZTILT=dm2_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True:
        if use_hlc_dm_patterns == 1:
            dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits')
            proper.prop_add_phase(wavefront, trim(dm2wfe, n))
            dm2wfe = 0
        dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits')
        proper.prop_multiply(wavefront, trim(dm2mask, n))
        dm2mask = 0

    proper.prop_propagate(wavefront, d_dm2_oap3, 'OAP3')
    proper.prop_lens(wavefront, fl_oap3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap3 / 2.0)

    proper.prop_propagate(wavefront, d_oap3_fold3, 'FOLD_3')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold3 / 2.0)

    proper.prop_propagate(wavefront, d_fold3_oap4, 'OAP4')
    proper.prop_lens(wavefront, fl_oap4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap4 / 2.0)

    proper.prop_propagate(wavefront, d_oap4_pupilmask,
                          'PUPIL_MASK')  # flat/reflective shaped pupil
    if is_spc == True and use_pupil_mask != 0:
        pupil_mask = proper.prop_fits_read(pupil_mask_file)
        pupil_mask = trim(pupil_mask, n)
        if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0 or mask_x_shift_m != 0 or mask_y_shift_m != 0:
            # shift SP mask by FFTing it, applying tilt, and FFTing back
            if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -mask_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -mask_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -mask_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -mask_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            pupil_mask = ffts(pupil_mask, -1)
            pupil_mask *= np.exp(tilt)
            pupil_mask = ffts(pupil_mask, 1)
            pupil_mask = pupil_mask.real
            tilt = 0
        proper.prop_multiply(wavefront, pupil_mask)
        pupil_mask = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PUPILMASK_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    # while at a pupil, use more padding to provide 2x better sampling at FPM
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_to_fpm
    wavefront0 = trim(wavefront, n)
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    proper.prop_propagate(wavefront, d_pupilmask_oap5, 'OAP5')
    proper.prop_lens(wavefront, fl_oap5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap5 / 2.0)

    proper.prop_propagate(wavefront,
                          d_oap5_fpm + fpm_z_shift_m,
                          'FPM',
                          TO_PLANE=True)
    if use_fpm == 1:
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            # To shift FPM, FFT field to pupil, apply tilt, FFT back to focus,
            # apply FPM, FFT to pupil, take out tilt, FFT back to focus
            if fpm_x_offset != 0 or fpm_y_offset != 0:
                # shifts are specified in lambda0/D
                x_offset_lamD = fpm_x_offset * lambda0_m / lambda_m
                y_offset_lamD = fpm_y_offset * lambda0_m / lambda_m
            else:
                d_m = proper.prop_get_sampling(wavefront)
                x_offset_lamD = fpm_x_offset_m / d_m * float(
                    pupil_diam_pix) / n
                y_offset_lamD = fpm_y_offset_m / d_m * float(
                    pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0,
                           1) * np.pi * (x * x_offset_lamD + y * y_offset_lamD)
            x = 0
            y = 0
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if is_hlc == True:
            occ_r = proper.prop_fits_read(occulter_file_r)
            occ_i = proper.prop_fits_read(occulter_file_i)
            occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128)
            proper.prop_multiply(wavefront, trim(occ, n))
            occ_r = 0
            occ_i = 0
            occ = 0
        elif is_spc == True:
            # super-sample FPM
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, 1)  # to virtual pupil
            wavefront0 = trim(wavefront0, n_mft)
            fpm = proper.prop_fits_read(fpm_file)
            nfpm = fpm.shape[1]
            fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix,
                              nfpm, -1)  # MFT to highly-sampled focal plane
            wavefront0 *= fpm
            fpm = 0
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, n,
                              +1)  # MFT to virtual pupil
            wavefront0 = ffts(wavefront0,
                              -1)  # back to normally-sampled focal plane
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(-tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
            tilt = 0
    if pinhole_diam_m != 0:
        # "pinhole_diam_m" is pinhole diameter in meters
        dx_m = proper.prop_get_sampling(wavefront)
        dx_pinhole_diam_m = pinhole_diam_m / 101.0  # 101 samples across pinhole
        n_out = 105
        m_per_lamD = dx_m * n / float(
            pupil_diam_pix)  # current focal plane sampling in lambda_m/D
        dx_pinhole_lamD = dx_pinhole_diam_m / m_per_lamD  # pinhole sampling in lambda_m/D
        n_in = int(round(pupil_diam_pix * 1.2))
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, +1)  # to virtual pupil
        wavefront0 = trim(wavefront0, n_in)
        m = dx_pinhole_lamD * n_in * float(n_out) / pupil_diam_pix
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n_out,
                          -1)  # MFT to highly-sampled focal plane
        p = (radius(n_out) * dx_pinhole_diam_m) <= (pinhole_diam_m / 2.0)
        p = p.astype(np.int)
        wavefront0 *= p
        p = 0
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n,
                          +1)  # MFT back to virtual pupil
        wavefront0 = ffts(wavefront0,
                          -1)  # back to normally-sampled focal plane
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0

    proper.prop_propagate(wavefront, d_fpm_oap6 - fpm_z_shift_m, 'OAP6')
    proper.prop_lens(wavefront, fl_oap6)
    if use_errors != 0 and end_at_fpm_exit_pupil == 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP6_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap6 / 2.0)

    proper.prop_propagate(wavefront, d_oap6_lyotstop, 'LYOT_STOP')
    # while at a pupil, switch back to less padding
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_from_lyotstop
    wavefront = trim(wavefront, n)
    if output_field_rootname != '':
        lams = format(lambda_m * 1e6, "6.4f")
        pols = format(int(round(polaxis)))
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.real(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_real.fits',
                    overwrite=True)
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.imag(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_imag.fits',
                    overwrite=True)
    if end_at_fpm_exit_pupil == 1:
        return wavefront, dx
    wavefront0 = wavefront.copy()
    wavefront = 0
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    if use_lyot_stop != 0:
        lyot = proper.prop_fits_read(lyot_stop_file)
        lyot = trim(lyot, n)
        if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0 or lyot_x_shift_m != 0 or lyot_y_shift_m != 0:
            # apply shift to lyot stop by FFTing the stop, applying a tilt, and FFTing back
            if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -lyot_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -lyot_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -lyot_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -lyot_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            lyot = ffts(lyot, -1)
            lyot *= np.exp(tilt)
            lyot = ffts(lyot, 1)
            lyot = lyot.real
            tilt = 0
        proper.prop_multiply(wavefront, lyot)
        lyot = 0
    if use_pupil_lens != 0 or pinhole_diam_m != 0:
        proper.prop_circular_aperture(wavefront, 1.1, NORM=True)

    proper.prop_propagate(wavefront, d_lyotstop_oap7, 'OAP7')
    proper.prop_lens(wavefront, fl_oap7)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP7_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap7 / 2.0)

    proper.prop_propagate(wavefront, d_oap7_fieldstop, 'FIELD_STOP')
    if use_field_stop != 0 and (cor_type == 'hlc' or cor_type == 'hlc_erkin'):
        sampling_lamD = float(
            pupil_diam_pix) / n  # sampling at focus in lambda_m/D
        stop_radius = field_stop_radius_lam0 / sampling_lamD * (
            lambda0_m / lambda_m) * proper.prop_get_sampling(wavefront)
        if field_stop_x_offset != 0 or field_stop_y_offset != 0:
            # convert offsets in lambda0/D to meters
            x_offset_lamD = field_stop_x_offset * lambda0_m / lambda_m
            y_offset_lamD = field_stop_y_offset * lambda0_m / lambda_m
            pupil_ratio = float(pupil_diam_pix) / n
            field_stop_x_offset_m = x_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
            field_stop_y_offset_m = y_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
        proper.prop_circular_aperture(wavefront, stop_radius,
                                      -field_stop_x_offset_m,
                                      -field_stop_y_offset_m)

    proper.prop_propagate(wavefront, d_fieldstop_oap8, 'OAP8')
    proper.prop_lens(wavefront, fl_oap8)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP8_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap8 / 2.0)

    proper.prop_propagate(wavefront, d_oap8_filter, 'filter')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FILTER_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_filter / 2.0)

    proper.prop_propagate(wavefront, d_filter_lens, 'LENS')
    if use_pupil_lens == 0 and use_defocus_lens == 0 and defocus == 0:
        # use imaging lens to create normal focus
        proper.prop_lens(wavefront, fl_lens)
        if use_errors != 0:
            proper.prop_errormap(wavefront,
                                 map_dir +
                                 'wfirst_phaseb_LENS_phase_error_V1.0.fits',
                                 WAVEFRONT=True)
    elif use_pupil_lens != 0:
        # use pupil imaging lens
        proper.prop_lens(wavefront, fl_pupillens)
        if use_errors != 0:
            proper.prop_errormap(
                wavefront,
                map_dir + 'wfirst_phaseb_PUPILLENS_phase_error_V1.0.fits',
                WAVEFRONT=True)
    else:
        # table is waves P-V @ 575 nm
        z4_pv_waves = np.array([
            -9.0545, -8.5543, -8.3550, -8.0300, -7.54500, -7.03350, -6.03300,
            -5.03300, -4.02000, -2.51980, 0.00000000, 3.028000, 4.95000,
            6.353600, 8.030000, 10.10500, 12.06000, 14.06000, 20.26000,
            28.34000, 40.77500, 56.65700
        ])
        fl_defocus_lens = np.array([
            5.09118, 1.89323, 1.54206, 1.21198, 0.914799, 0.743569, 0.567599,
            0.470213, 0.406973, 0.350755, 0.29601868, 0.260092, 0.24516,
            0.236606, 0.228181, 0.219748, 0.213278, 0.207816, 0.195536,
            0.185600, 0.176629, 0.169984
        ])
        # subtract ad-hoc function to make z4 vs f_length more accurately spline interpolatible
        f = fl_defocus_lens / 0.005
        f0 = 59.203738
        z4t = z4_pv_waves - (0.005 * (f0 - f - 40)) / f**2 / 0.575e-6
        if use_defocus_lens != 0:
            # use one of 4 defocusing lenses
            defocus = np.array([18.0, 9.0, -4.0, -8.0])  # waves P-V @ 575 nm
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl[use_defocus_lens - 1])
            if use_errors != 0:
                proper.prop_errormap(wavefront,
                                     map_dir + 'wfirst_phaseb_DEFOCUSLENS' +
                                     str(use_defocus_lens) +
                                     '_phase_error_V1.0.fits',
                                     WAVEFRONT=True)
            defocus = defocus[use_defocus_lens - 1]
        else:
            # specify amount of defocus (P-V waves @ 575 nm)
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl)
            if use_errors != 0:
                proper.prop_errormap(
                    wavefront,
                    map_dir +
                    'wfirst_phaseb_DEFOCUSLENS1_phase_error_V1.0.fits',
                    WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_lens / 2.0)

    proper.prop_propagate(wavefront, d_lens_fold4, 'FOLD_4')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD4_phase_error_V1.1.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold4 / 2.0)

    if defocus != 0 or use_defocus_lens != 0:
        if np.abs(defocus) <= 4:
            proper.prop_propagate(wavefront,
                                  d_fold4_image,
                                  'IMAGE',
                                  TO_PLANE=True)
        else:
            proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')
    else:
        proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')

    (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)

    if final_sampling_lam0 != 0 or final_sampling_m != 0:
        if final_sampling_m != 0:
            mag = sampling_m / final_sampling_m
            sampling_m = final_sampling_m
        else:
            mag = (float(pupil_diam_pix) /
                   n) / final_sampling_lam0 * (lambda_m / lambda0_m)
            sampling_m = sampling_m / mag
        wavefront = proper.prop_magnify(wavefront,
                                        mag,
                                        output_dim,
                                        AMP_CONSERVE=True)
    else:
        wavefront = trim(wavefront, output_dim)

    return wavefront, sampling_m
Example #2
0
def propcustom_dm(wf, dm_z0, dm_xc, dm_yc, spacing=0., **kwargs):
    """
    Generate a deformable mirror surface almost exactly like PROPER.

    Simulate a deformable mirror of specified actuator spacing, including the
    effects of the DM influence function. Has two more optional keywords
    compared to  proper.prop_dm

    Parameters
    ----------
    wf : obj
        WaveFront class object
    dm_z0 : str or numpy ndarray
        Either a 2D numpy array containing the surface piston of each DM
        actuator in meters or the name of a 2D FITS image file containing the
        above
    dm_xc, dm_yc : list or numpy ndarray
        The location of the optical axis (center of the wavefront) on the DM in
        actuator units (0 ro num_actuator-1). The center of the first actuator
        is (0.0, 0.0)
    spacing : float
        Defines the spacing in meters between actuators; must not be used when
        n_act_across_pupil is specified.

    Returns
    -------
    dmap : numpy ndarray
        Returns DM surface (not wavefront) map in meters

    Other Parameters
    ----------------
    FIT : bool
        Switch that tells routine that the values in "dm_z" are the desired
        surface heights rather than commanded actuator heights, and so the
        routine should fit this map, accounting for actuator influence functions,
        to determine the necessary actuator heights. An iterative error-minimizing
        loop is used for the fit.
    NO_APPLY : bool
        If set, the DM pattern is not added to the wavefront. Useful if the DM
        surface map is needed but should not be applied to the wavefront
    N_ACT_ACROSS_PUPIL : int
        Specifies the number of actuators that span the X-axis beam diameter. If
        it is a whole number, the left edge of the left pixel is aligned with
        the left edge of the beam, and the right edge of the right pixel with
        the right edge of the beam. This determines the spacing and size of the
        actuators. Should not be used when "spacing" value is specified.
    XTILT, YTILT, ZTILT : float
        Specify the rotation of the DM surface with respect to the wavefront plane
        in degrees about the X, Y, Z axes, respectively, with the origin at the
        center of the wavefront. The DM surface is interpolated and orthographically
        projected onto the wavefront grid. The coordinate system assumes that
        the wavefront and initial DM surface are in the X,Y plane with a lower
        left origin with Z towards the observer. The rotations are left handed.
        The default rotation order is X, Y, then Z unless the /ZYX switch is set.
    XYZ or ZYX : bool
        Specifies the rotation order if two or more of XTILT, YTILT, or ZTILT
        are specified. The default is /XYZ for X, Y, then Z rotations.
    inf_fn : string
        specify a new influence function as a FITS file with the same header keywords as 
        PROPER's default influence function. Needs these values in info.PrimaryData.Keywords:
            'P2PDX_M' % pixel width x (m)
            'P2PDY_M' % pixel width y (m)
            'C2CDX_M' % actuator pitch x (m)
            'C2CDY_M' % actuator pitch y (m)
    inf_sign : {+,-}
        specifies the sign (+/-) of the influence function. Given as an option because 
        the default influence function file is positive, but positive DM actuator 
        commands make a negative deformation for Xinetics and BMC DMs.

    Raises
    ------
    ValueError:
        User cannot specify both actuator spacing and N_ACT_ACROSS_PUPIL
    ValueError:
        User must specify either actuator spacing or N_ACT_ACROSS_PUPIL
    """
    if "ZYX" in kwargs and "XYZ" in kwargs:
        raise ValueError('PROP_DM: Error: Cannot specify both XYZ and ZYX ' +
                         'rotation orders. Stopping')
    elif "ZYX" not in kwargs and 'XYZ' not in kwargs:
        XYZ = 1  # default is rotation around X, then Y, then Z
        # ZYX = 0
    elif "ZYX" in kwargs:
        # ZYX = 1
        XYZ = 0
    elif "XYZ" in kwargs:
        XYZ = 1
        # ZYX = 0

    if "XTILT" in kwargs:
        xtilt = kwargs["XTILT"]
    else:
        xtilt = 0.

    if "YTILT" in kwargs:
        ytilt = kwargs["YTILT"]
    else:
        ytilt = 0.

    if "ZTILT" in kwargs:
        ztilt = kwargs["ZTILT"]
    else:
        ztilt = 0.

    if type(dm_z0) == str:
        dm_z = proper.prop_fits_read(dm_z0)  # Read DM setting from FITS file
    else:
        dm_z = dm_z0
    
    if "inf_fn" in kwargs:
        inf_fn = kwargs["inf_fn"]
    else:
        inf_fn = "influence_dm5v2.fits"
        
    if "inf_sign" in kwargs:
        if(kwargs["inf_sign"] == '+'):
            sign_factor = 1.
        elif(kwargs["inf_sign"] == '-'):
            sign_factor = -1.
    else:
        sign_factor = 1.

    n = proper.prop_get_gridsize(wf)
    dx_surf = proper.prop_get_sampling(wf)  # sampling of surface in meters
    beamradius = proper.prop_get_beamradius(wf)

    # Default influence function sampling is 0.1 mm, peak at (x,y)=(45,45)
    # Default influence function has shape = 1x91x91. Saving it as a 2D array
    # before continuing with processing
    dir_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                            "data")
    inf = proper.prop_fits_read(os.path.join(dir_path, inf_fn))
    inf = sign_factor*np.squeeze(inf)
    
    s = inf.shape
    nx_inf = s[1]
    ny_inf = s[0]
    xc_inf = nx_inf // 2
    yc_inf = ny_inf // 2
    dx_inf = 0.1e-3  # influence function spacing in meters
    dx_dm_inf = 1.0e-3  # nominal spacing between DM actuators in meters
    inf_mag = 10

    if spacing != 0 and "N_ACT_ACROSS_PUPIL" in kwargs:
        raise ValueError("PROP_DM: User cannot specify both actuator spacing" +
                         "and N_ACT_ACROSS_PUPIL. Stopping.")

    if spacing == 0 and "N_ACT_ACROSS_PUPIL" not in kwargs:
        raise ValueError("PROP_DM: User must specify either actuator spacing" +
                         " or N_ACT_ACROSS_PUPIL. Stopping.")

    if "N_ACT_ACROSS_PUPIL" in kwargs:
        dx_dm = 2. * beamradius / int(kwargs["N_ACT_ACROSS_PUPIL"])
    else:
        dx_dm = spacing

    dx_inf = dx_inf * dx_dm / dx_dm_inf  # Influence function sampling scaled
                                         # to specified DM actuator spacing

    if "FIT" in kwargs:
        x = (np.arange(5, dtype=np.float64) - 2) * dx_dm

        if proper.use_cubic_conv:
            inf_kernel = proper.prop_cubic_conv(inf.T, x/dx_inf+xc_inf,
                                                x/dx_inf+yc_inf, GRID=True)
        else:
            xygrid = np.meshgrid(x/dx_inf+xc_inf, x/dx_inf+yc_inf)
            inf_kernel = map_coordinates(inf.T, xygrid, order=3,
                                         mode="nearest")

        (dm_z_commanded, dms) = proper.prop_fit_dm(dm_z, inf_kernel)
    else:
        dm_z_commanded = dm_z

    s = dm_z.shape
    nx_dm = s[1]
    ny_dm = s[0]

    # Create subsampled DM grid
    margin = 9 * inf_mag
    nx_grid = nx_dm * inf_mag + 2 * margin
    ny_grid = ny_dm * inf_mag + 2 * margin
    xoff_grid = margin + inf_mag/2           # pixel location of 1st actuator center in subsampled grid
    yoff_grid = xoff_grid
    dm_grid = np.zeros([ny_grid, nx_grid], dtype = np.float64)

    x = np.arange(nx_dm, dtype=int) * int(inf_mag) + int(xoff_grid)
    y = np.arange(ny_dm, dtype=int) * int(inf_mag) + int(yoff_grid)
    dm_grid[np.tile(np.vstack(y), (nx_dm,)),
            np.tile(x, (ny_dm, 1))] = dm_z_commanded
    dm_grid = ss.fftconvolve(dm_grid, inf, mode='same')
    
    # 3D rotate DM grid and project orthogonally onto wavefront
    xdim = int(np.round(np.sqrt(2) * nx_grid * dx_inf / dx_surf)) # grid dimensions (pix) projected onto wavefront
    ydim = int(np.round(np.sqrt(2) * ny_grid * dx_inf / dx_surf))

    if xdim > n: xdim = n

    if ydim > n: ydim = n

    x = np.ones((ydim, 1), dtype=int) * ((np.arange(xdim) - xdim // 2) * dx_surf)
    y = (np.ones((xdim, 1), dtype=int) * ((np.arange(ydim) - ydim // 2) * dx_surf)).T

    a = xtilt * np.pi / 180
    b = ytilt * np.pi / 180
    g = ztilt * np.pi /180

    if XYZ:
        m = np.array([[cos(b)*cos(g), -cos(b)*sin(g), sin(b), 0],
            [cos(a)*sin(g) + sin(a)*sin(b)*cos(g), cos(a)*cos(g)-sin(a)*sin(b)*sin(g), -sin(a)*cos(b), 0],
            [sin(a)*sin(g)-cos(a)*sin(b)*cos(g), sin(a)*cos(g)+cos(a)*sin(b)*sin(g), cos(a)*cos(b), 0],
            [0, 0, 0, 1] ])
    else:
        m = np.array([	[cos(b)*cos(g), cos(g)*sin(a)*sin(b)-cos(a)*sin(g), cos(a)*cos(g)*sin(b)+sin(a)*sin(g), 0],
            [cos(b)*sin(g), cos(a)*cos(g)+sin(a)*sin(b)*sin(g), -cos(g)*sin(a)+cos(a)*sin(b)*sin(g), 0],
            [-sin(b), cos(b)*sin(a), cos(a)*cos(b), 0],
            [0, 0, 0, 1] ])

    # Forward project a square
    edge = np.array([[-1.0, -1.0, 0.0, 0.0],
                     [1.0, -1.0, 0.0, 0.0],
                     [1.0, 1.0, 0.0, 0.0],
                     [-1.0, 1.0, 0.0, 0.0]])
    new_xyz = np.dot(edge, m)

    # determine backward projection for screen-raster-to-DM-surce computation
    dx_dxs = (new_xyz[0, 0] - new_xyz[1, 0]) / (edge[0, 0] - edge[1, 0])
    dx_dys = (new_xyz[1, 0] - new_xyz[2, 0]) / (edge[1, 1] - edge[2, 1])
    dy_dxs = (new_xyz[0, 1] - new_xyz[1, 1]) / (edge[0, 0] - edge[1, 0])
    dy_dys = (new_xyz[1, 1] - new_xyz[2, 1]) / (edge[1, 1] - edge[2, 1])

    xs = (x/dx_dxs - y*dx_dys/(dx_dxs*dy_dys)) / \
        (1 - dy_dxs*dx_dys/(dx_dxs*dy_dys))
    ys = (y/dy_dys - x*dy_dxs/(dx_dxs*dy_dys)) / \
        (1 - dx_dys*dy_dxs/(dx_dxs*dy_dys))

    xdm = (xs + dm_xc * dx_dm) / dx_inf + xoff_grid
    ydm = (ys + dm_yc * dx_dm) / dx_inf + yoff_grid

    if proper.use_cubic_conv:
        grid = proper.prop_cubic_conv(dm_grid.T, xdm, ydm, GRID = False)
        grid = grid.reshape([xdm.shape[1], xdm.shape[0]])
    else:
        grid = map_coordinates(dm_grid.T, [xdm, ydm], order=3,
                               mode="nearest", prefilter = True)

    dmap = np.zeros([n, n], dtype=np.float64)
    nx_grid, ny_grid = grid.shape
    xmin, xmax = n // 2 - xdim // 2, n // 2 - xdim // 2 + nx_grid
    ymin, ymax = n // 2 - ydim // 2, n // 2 - ydim // 2 + ny_grid
    dmap[ymin:ymax, xmin:xmax] = grid

    if "NO_APPLY" not in kwargs:
        proper.prop_add_phase(wf, 2 * dmap)  # convert surface to WFE

    return dmap
Example #3
0
def derotate_resize_surface(surfaceToFit, dx, Nact, dm_xc, dm_yc, spacing,
                            **kwargs):
    """
    Derotate and resize a DM surface to size and alignment of actuator grid.
    
    Does the order of operations in the reverse order of PROPER's prop_dm.


    Parameters
    ----------
    surfaceToFit : numpy ndarray
        2-D DM surface map to be fitted
    dx : float
        width of a pixel in meters
    Nact : int
        number of actuators across the DM array
    dm_xc, dm_yc : list or numpy ndarray
        The location of the optical axis (center of the wavefront) on the DM in
        actuator units (0 ro num_actuator-1). The center of the first actuator
        is (0.0, 0.0)
    spacing : float
        Spacing in meters between actuator centers (aka the pitch).

    Returns
    -------
    gridDerotAtActRes : numpy ndarray
        Returns DM surface at same alignment and resolution as the DM actuator
        array.

    Other Parameters
    ----------------

    XTILT, YTILT, ZTILT : float
        Specify the rotation of the DM surface with respect to the wavefront plane
        in degrees about the X, Y, Z axes, respectively, with the origin at the
        center of the wavefront. The DM surface is interpolated and orthographically
        projected onto the wavefront grid. The coordinate system assumes that
        the wavefront and initial DM surface are in the X,Y plane with a lower
        left origin with Z towards the observer. The rotations are left handed.
        The default rotation order is X, Y, then Z unless the /ZYX switch is set.

    XYZ or ZYX : bool
        Specifies the rotation order if two or more of XTILT, YTILT, or ZTILT
        are specified. The default is /XYZ for X, Y, then Z rotations.

   inf_fn : string
        specify a new influence function as a FITS file with the same header keywords as
        PROPER's default influence function. Needs these values in info.PrimaryData.Keywords:
            'P2PDX_M' % pixel width x (m)
            'P2PDY_M' % pixel width y (m)
            'C2CDX_M' % actuator pitch x (m)
            'C2CDY_M' % actuator pitch y (m)
    
    inf_sign : {+,-}
        specifies the sign (+/-) of the influence function. Given as an option because
        the default influence function file is positive, but positive DM actuator
        commands make a negative deformation for Xinetics and BMC DMs.

    Raises
    ------
    ValueError:
        User cannot specify both ZYX and XYZ rotations.

    """
    check.twoD_array(surfaceToFit, 'surfaceToFit', TypeError)
    check.real_positive_scalar(dx, 'dx', TypeError)
    check.real_scalar(dm_xc, 'dm_xc', TypeError)
    check.real_scalar(dm_yc, 'dm_yc', TypeError)
    check.real_positive_scalar(spacing, 'spacing', TypeError)
    
    if "ZYX" in kwargs and "XYZ" in kwargs:
        raise ValueError('Error: Cannot specify both XYZ and ZYX rotation' +
                         ' orders. Stopping')
    elif "ZYX" not in kwargs and 'XYZ' not in kwargs:
        XYZ = 1    # default is rotation around X, then Y, then Z
        # ZYX = 0
    elif "ZYX" in kwargs:
        # ZYX = 1
        XYZ = 0
    elif "XYZ" in kwargs:
        XYZ = 1
        # ZYX = 0

    if "XTILT" in kwargs:
        xtilt = kwargs["XTILT"]
    else:
        xtilt = 0.

    if "YTILT" in kwargs:
        ytilt = kwargs["YTILT"]
    else:
        ytilt = 0.

    if "ZTILT" in kwargs:
        ztilt = kwargs["ZTILT"]
    else:
        ztilt = 0.

    dm_z = np.eye(Nact)
    
    if "inf_fn" in kwargs:
        inf_fn = kwargs["inf_fn"]
    else:
        inf_fn = "influence_dm5v2.fits"
        
    if "inf_sign" in kwargs:
        if(kwargs["inf_sign"] == '+'):
            sign_factor = 1.
        elif(kwargs["inf_sign"] == '-'):
            sign_factor = -1.
    else:
        sign_factor = 1.

    n = surfaceToFit.shape[0]
    dx_surf = dx  # sampling of current surface in meters

    # Default influence function sampling is 0.1 mm, peak at (x,y)=(45,45)
    # Default influence function has shape = 1x91x91. Saving it as a 2D array
    # before continuing with processing
    dir_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                            "data")
    inf = proper.prop_fits_read(os.path.join(dir_path, inf_fn))
    inf = sign_factor*np.squeeze(inf)
    
    s = inf.shape
    nx_inf = s[1]
    ny_inf = s[0]
    xc_inf = nx_inf // 2
    yc_inf = ny_inf // 2
    dx_inf = 0.1e-3  # influence function spacing in meters
    dx_dm_inf = 1.e-3  # spacing between DM actuators in meters assumed by influence function
    inf_mag = 10

    dx_dm = spacing

    dx_inf = dx_inf * dx_dm / dx_dm_inf   # Influence function sampling scaled
                                          # to specified DM actuator spacing

    dm_z_commanded = dm_z

    s = dm_z.shape
    nx_dm = s[1]
    ny_dm = s[0]

    # Create subsampled DM grid
    margin = 9 * inf_mag
    nx_grid = nx_dm * inf_mag + 2 * margin
    ny_grid = ny_dm * inf_mag + 2 * margin
    xoff_grid = margin + inf_mag/2  # pixel location of 1st actuator center in subsampled grid
    yoff_grid = xoff_grid
    dm_grid = np.zeros([ny_grid, nx_grid], dtype = np.float64)

    x = np.arange(nx_dm, dtype=int) * int(inf_mag) + int(xoff_grid)
    y = np.arange(ny_dm, dtype=int) * int(inf_mag) + int(yoff_grid)
    dm_grid[np.tile(np.vstack(y), (nx_dm,)), np.tile(x, (ny_dm, 1))] = dm_z_commanded
    dm_grid = ss.fftconvolve(dm_grid, inf, mode='same')

    # 3D rotate DM grid and project orthogonally onto wavefront
    xdim = int(np.round(np.sqrt(2) * nx_grid * dx_inf / dx_surf))  # grid dimensions (pix) projected onto wavefront
    ydim = int(np.round(np.sqrt(2) * ny_grid * dx_inf / dx_surf))

    if xdim > n: xdim = n

    if ydim > n: ydim = n

    x = np.ones((ydim,1), dtype=int) * ((np.arange(xdim) - xdim // 2) * dx_surf)
    y = (np.ones((xdim,1), dtype=int) * ((np.arange(ydim) - ydim // 2) * dx_surf)).T

    a = xtilt * np.pi / 180
    b = ytilt * np.pi / 180
    g = ztilt * np.pi / 180

    if XYZ:
        m = np.array([ 	[cos(b)*cos(g), -cos(b)*sin(g), sin(b), 0],
            [cos(a)*sin(g) + sin(a)*sin(b)*cos(g), cos(a)*cos(g)-sin(a)*sin(b)*sin(g), -sin(a)*cos(b), 0],
            [sin(a)*sin(g)-cos(a)*sin(b)*cos(g), sin(a)*cos(g)+cos(a)*sin(b)*sin(g), cos(a)*cos(b), 0],
            [0, 0, 0, 1] ])
    else:
        m = np.array([	[cos(b)*cos(g), cos(g)*sin(a)*sin(b)-cos(a)*sin(g), cos(a)*cos(g)*sin(b)+sin(a)*sin(g), 0],
        [cos(b)*sin(g), cos(a)*cos(g)+sin(a)*sin(b)*sin(g), -cos(g)*sin(a)+cos(a)*sin(b)*sin(g), 0],
        [-sin(b), cos(b)*sin(a), cos(a)*cos(b), 0],
        [0, 0, 0, 1] ])

    # Compute xdm0 and ydm0 for use in de-rotating the DM surface
    edge = np.array([[-1.0,-1.0,0.0,0.0], [1.0,-1.0,0.0,0.0], [1.0,1.0,0.0,0.0], [-1.0,1.0,0.0,0.0]])
    new_xyz = edge #np.dot(edge, m)

    # determine backward projection for screen-raster-to-DM-surce computation
    dx_dxs = (new_xyz[0, 0] - new_xyz[1, 0]) / (edge[0, 0] - edge[1, 0])
    dx_dys = (new_xyz[1, 0] - new_xyz[2, 0]) / (edge[1, 1] - edge[2, 1])
    dy_dxs = (new_xyz[0, 1] - new_xyz[1, 1]) / (edge[0, 0] - edge[1, 0])
    dy_dys = (new_xyz[1, 1] - new_xyz[2, 1]) / (edge[1, 1] - edge[2, 1])

    xs = (x/dx_dxs - y*dx_dys/(dx_dxs*dy_dys) ) / ( 1 - dy_dxs*dx_dys/(dx_dxs*dy_dys))
    ys = (y/dy_dys - x*dy_dxs/(dx_dxs*dy_dys) ) / ( 1 - dx_dys*dy_dxs/(dx_dxs*dy_dys))

    xdm0 = (xs + dm_xc * dx_dm) / dx_inf + xoff_grid
    ydm0 = (ys + dm_yc * dx_dm) / dx_inf + yoff_grid
    ######

    # Forward project a square
    # edge = np.array([[-1.0,-1.0,0.0,0.0], [1.0,-1.0,0.0,0.0],
    #                  [1.0,1.0,0.0,0.0], [-1.0,1.0,0.0,0.0]])
    new_xyz = np.dot(edge, m)

    # determine backward projection for screen-raster-to-DM-surce computation
    dx_dxs = (new_xyz[0, 0] - new_xyz[1, 0]) / (edge[0, 0] - edge[1, 0])
    dx_dys = (new_xyz[1, 0] - new_xyz[2, 0]) / (edge[1, 1] - edge[2, 1])
    dy_dxs = (new_xyz[0, 1] - new_xyz[1, 1]) / (edge[0, 0] - edge[1, 0])
    dy_dys = (new_xyz[1, 1] - new_xyz[2, 1]) / (edge[1, 1] - edge[2, 1])

    xs = (x/dx_dxs - y*dx_dys/(dx_dxs*dy_dys)) / \
        (1 - dy_dxs*dx_dys/(dx_dxs*dy_dys))
    ys = (y/dy_dys - x*dy_dxs/(dx_dxs*dy_dys)) / \
        (1 - dx_dys*dy_dxs/(dx_dxs*dy_dys))

    xdm = (xs + dm_xc * dx_dm) / dx_inf + xoff_grid
    ydm = (ys + dm_yc * dx_dm) / dx_inf + yoff_grid

    # if proper.use_cubic_conv:
    #     grid = proper.prop_cubic_conv(dm_grid.T, xdm, ydm, GRID = False)
    #     grid = grid.reshape([xdm.shape[1], xdm.shape[0]])
    # else:
    #     grid = map_coordinates(dm_grid.T, [xdm, ydm], order=3,
    #                             mode="nearest", prefilter = True)
    # dm_grid = falco.util.pad_crop(surfaceToFit, xdm.shape[0])

    # Derotate the DM surface
    dm_grid = falco.util.pad_crop(surfaceToFit, xdm.shape[0])
    gridDerot = griddata((xdm.flatten(), ydm.flatten()), dm_grid.flatten(),
                         (xdm0, ydm0), method='cubic', fill_value=0.)
    # gridDerot(isnan(gridDerot)) = 0

    # Resize and decimate the DM surface to get it at the same size as the DM
    # actuator command array.
    #  The result will be fed to fit_surf_to_act() for deconvolution with the
    #  influence function.
    xOffsetInAct = ((Nact/2 - 1/2) - dm_xc)
    yOffsetInAct = ((Nact/2 - 1/2) - dm_yc)
 
    multipleOfCommandGrid = int(falco.util.ceil_odd(spacing/dx))
    N1 = Nact*multipleOfCommandGrid
    N2 = dm_grid.shape[0]
    xs1 = np.linspace(-(N1-1)/2, (N1-1)/2, N1)/N1  # interpixel centered
    if(N2 % 2 == 0):
        xs2 = np.linspace(-N2/2, (N2/2)-1, N2)/N2*(N2*dx/(Nact*spacing))
    else:
        xs2 = np.linspace(-(N2-1)/2, (N2-1)/2, N2)/N2*(N2*dx/(Nact*spacing))

    interp_spline = RectBivariateSpline(xs2, xs2, gridDerot)
    gridDerotResize = interp_spline(xs1-xOffsetInAct/Nact,
                                    xs1-yOffsetInAct/Nact)
        
    xyOffset = int(np.floor(multipleOfCommandGrid/2.))
    gridDerotAtActRes = gridDerotResize[xyOffset::multipleOfCommandGrid,
                                        xyOffset::multipleOfCommandGrid]
#
#    plt.figure(11); plt.imshow(dm_grid); plt.colorbar(); plt.pause(0.1)
#    plt.figure(12); plt.imshow(gridDerot); plt.colorbar(); plt.pause(0.1)
#    plt.figure(13); plt.imshow(gridDerotResize); plt.colorbar(); plt.pause(0.1)
#    plt.figure(14); plt.imshow(gridDerotAtActRes); plt.colorbar(); plt.pause(0.1)
#    plt.figure(15); plt.imshow(gridDerot-gridDerot[::-1,::-1]); plt.colorbar(); plt.pause(0.1)
#    plt.figure(16); plt.imshow(gridDerotResize-gridDerotResize[::-1,::-1]); plt.colorbar(); plt.pause(0.1)

    return gridDerotAtActRes
Example #4
0
def polab( polfile, lambda_m, pupil_diam_pix, condition ):
    if abs(condition) == 1:
        dir_out = 0 
    else:
        dir_out = 1         # dir_out: output polarization (1=X, 2=Y)
    if condition < 0:
        dir_in = 0 
    else:
        dir_in = 1          # dir_in: input polarization (negative=-45d, positive=+45d)

    # zernike coefficient files are [nzer, nlam, ndir_in, ndir_out]
    #    nzer = 22 (number of zernikes)
    #    nlam = 6 or 11 (450 - 950 nm in 100 or 50 nm steps)
    #    ndir_in = 2 (input polarization direction, 0=-45 deg, 1=+45 deg)
    #    ndir_out = 2 (output polarization direction, 0=X, 1=Y)

    zamp_array = proper.prop_fits_read( polfile+'_amp.fits' )
    zpha_array = proper.prop_fits_read( polfile+'_pha.fits' )
    nlam = zamp_array.shape[2]
    if nlam == 6:
        lam_array_m = (np.arange(6) * 100 + 450) * 1.0e-9 
    else:
        lam_array_m = (np.arange(11) * 50 + 450) * 1.0e-9

    # interpolate to get zernikes at specified wavelength

    zamp = np.zeros([22])
    zpha = np.zeros([22])

    for iz in range(0, 22):
        famp = interp1d( lam_array_m, zamp_array[dir_out, dir_in, :, iz], kind='cubic' )
        fpha = interp1d( lam_array_m, zpha_array[dir_out, dir_in, :, iz], kind='cubic' )
        lam = lambda_m
        if lam < 0.45e-6: lam = 0.45e-6
        if lam > 0.95e-6: lam = 0.95e-6
        zamp[iz] = famp( lambda_m )
        zpha[iz] = fpha( lambda_m )

    n = int(round(pupil_diam_pix * 1.1))
    n = (n // 2) * 2     # force even 
    x = (np.arange(n) - n//2) / (pupil_diam_pix/2.0)

    amp = np.zeros([n,n])
    pha = np.zeros([n,n])

    for j in range(0, n):
        y = x[j]
        r2 = x**2 + y**2
        r = np.sqrt(r2)
        r3 = r**3
        r4 = r**4
        r5 = r**5
        r6 = r**6
        t = np.arctan2(y,x)

        for itype in range(0,2):        # 0 = amp, 1 = phase
            map = np.zeros([n])

            if itype == 0:
                z = zamp
                map += z[0]    # include piston if amplitude map
            else:
                z = zpha

            map += (z[1] * 2 * x)                # x tilt
            map += (z[2] * 2 * y)                # y tilt
            map += (z[3] * np.sqrt(3) * (2*r2 - 1))            # focus
            map += (z[4] * np.sqrt(6) * r2 * np.sin(2*t))        # 45 deg astig
            map += (z[5] * np.sqrt(6) * r2 * np.cos(2*t))        # 0 deg astig
            map += (z[6] * np.sqrt(8) * (3*r3 - 2*r) * np.sin(t))      # y coma
            map += (z[7] * np.sqrt(8) * (3*r3 - 2*r) * np.cos(t))    # x coma
            map += (z[8] * np.sqrt(8) * r3 * np.sin(3*t))        # y trefoil 
            map += (z[9] * np.sqrt(8) * r3 * np.cos(3*t))        # x trefoil 
            map += (z[10] * np.sqrt(5) * (6*r4 - 6*r2 + 1))        # spherical
            map += (z[11] * np.sqrt(10) * (4*r4 - 3*r2) * np.cos(2*t))
            map += (z[12] * np.sqrt(10) * (4*r4 - 3*r2) * np.sin(2*t))
            map += (z[13] * np.sqrt(10) * r4 * np.cos(4*t))
            map += (z[14] * np.sqrt(10) * r4 * np.sin(4*t))
            map += (z[15] * np.sqrt(12) * (10*r5 - 12*r3 + 3*r) * np.cos(t))
            map += (z[16] * np.sqrt(12) * (10*r5 - 12*r3 + 3*r) * np.sin(t))
            map += (z[17] * np.sqrt(12) * (5*r5 - 4*r3) * np.cos(3*t))
            map += (z[18] * np.sqrt(12) * (5*r5 - 4*r3) * np.sin(3*t))
            map += (z[19] * np.sqrt(12) * r5 * np.cos(5*t))
            map += (z[20] * np.sqrt(12) * r5 * np.sin(5*t))
            map += (z[21] * np.sqrt(7) * (20*r6 - 30*r4 + 12*r2 - 1))

            if itype == 0:
                amp[j,:] = map 
            else:
                pha[j,:] = map

    return amp, pha
Example #5
0
def run_hlc():

    nlam = 7
    lam0 = 0.575
    bandwidth = 0.1
    minlam = lam0 * (1 - bandwidth / 2)
    maxlam = lam0 * (1 + bandwidth / 2)
    lam_array = np.linspace(minlam, maxlam, nlam)

    n = 256  # output image dimension (must be power of 2)
    final_sampling = 0.1  # output sampling in lam0/D

    # compute unaberrated coronagraphic field using Dwight's DM wavefront maps

    print(
        "Computing unaberrated coronagraphic field using DM wavefront map...")
    (fields, sampling) = proper.prop_run_multi('wfirst_phaseb', lam_array, n, QUIET=True, \
        PASSVALUE={'cor_type':'hlc','use_errors':0,'zindex':[4],'zval_m':[0.19e-9],
        'use_hlc_dm_patterns':1,'final_sampling_lam0':final_sampling} )
    images = np.abs(fields)**2
    image = np.sum(images, 0) / nlam

    # compute unaberrated coronagraphic field using DM actuator settings

    print(
        "Computing unaberrated coronagraphic field using DM actuator pistons..."
    )
    dm1 = proper.prop_fits_read(wfirst_phaseb_proper.lib_dir +
                                '/examples/hlc_dm1.fits')
    dm2 = proper.prop_fits_read(wfirst_phaseb_proper.lib_dir +
                                '/examples/hlc_dm2.fits')
    (fields, sampling) = proper.prop_run_multi('wfirst_phaseb', lam_array, n, QUIET=True, \
        PASSVALUE={'cor_type':'hlc','use_errors':0,'zindex':[4],'zval_m':[0.19e-9],
        'use_hlc_dm_patterns':0,'final_sampling_lam0':final_sampling,
        'use_dm1':1, 'dm1_m':dm1, 'use_dm2':1, 'dm2_m':dm2} )
    images = np.abs(fields)**2
    image_dm = np.sum(images, 0) / nlam

    # compute aberrated coronagraphic field using DM actuator settings

    print(
        "Computing aberrated coronagraphic field using DM actuator pistons...")
    dm1 = proper.prop_fits_read(wfirst_phaseb_proper.lib_dir +
                                '/examples/hlc_with_aberrations_dm1.fits')
    dm2 = proper.prop_fits_read(wfirst_phaseb_proper.lib_dir +
                                '/examples/hlc_with_aberrations_dm2.fits')
    (fields, sampling) = proper.prop_run_multi('wfirst_phaseb', lam_array, n, QUIET=True, \
        PASSVALUE={'cor_type':'hlc', 'use_errors':1, 'polaxis':10,
        'use_hlc_dm_patterns':0, 'final_sampling_lam0':final_sampling,
        'use_dm1':1, 'dm1_m':dm1, 'use_dm2':1, 'dm2_m':dm2} )
    images = np.abs(fields)**2
    image_ab = np.sum(images, 0) / nlam

    # move source to 7 lam/D

    print("Computing offset source to compute NI...")
    (fields, sampling) = proper.prop_run_multi('wfirst_phaseb_compact', lam_array, n, QUIET=True, \
        PASSVALUE={'cor_type':'hlc','source_x_offset':7.0,'use_hlc_dm_patterns':1,'final_sampling_lam0':final_sampling} )
    psfs = np.abs(fields)**2
    psf = np.sum(psfs, 0) / nlam

    max_psf = np.max(psf)

    ni = image / max_psf
    ni_dm = image_dm / max_psf
    ni_ab = image_ab / max_psf

    fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(11, 4))

    im = ax[0].imshow(ni,
                      norm=LogNorm(vmin=1e-10, vmax=1e-7),
                      cmap=plt.get_cmap('jet'))
    circ_in = Circle((n / 2, n / 2),
                     3 / final_sampling,
                     edgecolor='white',
                     facecolor='none')
    circ_out = Circle((n / 2, n / 2),
                      9 / final_sampling,
                      edgecolor='white',
                      facecolor='none')
    ax[0].add_patch(circ_in)
    ax[0].add_patch(circ_out)
    ax[0].set_title('Unaberrated,\nUsing wavefront maps')
    fig.colorbar(im, ax=ax[0], shrink=0.5)

    im = ax[1].imshow(ni_dm,
                      norm=LogNorm(vmin=1e-10, vmax=1e-7),
                      cmap=plt.get_cmap('jet'))
    circ_in = Circle((n / 2, n / 2),
                     3 / final_sampling,
                     edgecolor='white',
                     facecolor='none')
    circ_out = Circle((n / 2, n / 2),
                      9 / final_sampling,
                      edgecolor='white',
                      facecolor='none')
    ax[1].add_patch(circ_in)
    ax[1].add_patch(circ_out)
    ax[1].set_title('Unaberrated,\nUsing DM piston maps')
    fig.colorbar(im, ax=ax[1], shrink=0.5)

    im = ax[2].imshow(ni_ab,
                      norm=LogNorm(vmin=1e-10, vmax=1e-7),
                      cmap=plt.get_cmap('jet'))
    circ_in = Circle((n / 2, n / 2),
                     3 / final_sampling,
                     edgecolor='white',
                     facecolor='none')
    circ_out = Circle((n / 2, n / 2),
                      9 / final_sampling,
                      edgecolor='white',
                      facecolor='none')
    ax[2].add_patch(circ_in)
    ax[2].add_patch(circ_out)
    ax[2].set_title('Aberrated,\nUsing DM piston maps')
    fig.colorbar(im, ax=ax[2], shrink=0.5)

    plt.show()
def wfirst_phaseb_compact(lambda_m, output_dim0, PASSVALUE={'dummy': 0}):

    # "output_dim" is used to specify the output dimension in pixels at the final image plane.
    # Computational grid sizes are hardcoded for each coronagraph.
    # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang.

    data_dir = wfirst_phaseb_proper.data_dir
    if 'PASSVALUE' in locals():
        if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir']

    cor_type = 'hlc'  # coronagraph type ('hlc', 'spc', 'none')
    input_field_rootname = ''  # rootname of files containing aberrated pupil
    polaxis = 0  # polarization condition (only used with input_field_rootname)
    source_x_offset = 0  # source offset in lambda0_m/D radians (tilt applied at primary)
    source_y_offset = 0
    use_hlc_dm_patterns = 0  # use Dwight's HLC default DM wavefront patterns? 1 or 0
    use_dm1 = 0  # use DM1? 1 or 0
    use_dm2 = 0  # use DM2? 1 or 0
    dm_sampling_m = 0.9906e-3  # actuator spacing in meters
    dm1_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm1_yc_act = 23.5
    dm1_xtilt_deg = 0  # tilt around X axis (deg)
    dm1_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm1_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    dm2_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm2_yc_act = 23.5
    dm2_xtilt_deg = 0  # tilt around X axis (deg)
    dm2_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm2_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    fpm_axis = 'p'  # HLC FPM axis: '', 's', 'p'
    final_sampling_lam0 = 0  # final sampling in lambda0/D
    output_dim = output_dim0  # dimension of output in pixels (overrides output_dim0)

    if 'PASSVALUE' in locals():
        if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type']
        if 'fpm_axis' in PASSVALUE: fpm_axis = PASSVALUE['fpm_axis']

    is_hlc = False
    is_spc = False

    if cor_type == 'hlc':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07,
            5.55833333333e-07, 5.59027777778e-07, 5.60625e-07,
            5.62222222222e-07, 5.65416666667e-07, 5.678125e-07,
            5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07,
            5.81388888889e-07, 5.821875e-07, 5.84583333333e-07,
            5.87777777778e-07, 5.89375e-07, 5.90972222222e-07,
            5.94166666667e-07, 5.965625e-07, 5.97361111111e-07,
            6.00555555556e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07',
            '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07',
            '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07',
            '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07',
            '5.75e-07', '5.78194444444e-07', '5.81388888889e-07',
            '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07',
            '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07',
            '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07',
            '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69pol' + fpm_axis + '_'
            for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real_rotated.fits'
        occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits'
        n_small = 1024  # gridsize in non-critical areas
        n_big = 2048  # gridsize to/from FPM
    elif cor_type == 'hlc_erkin':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190206_v3/'  # must have trailing "/"
        prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_'
        pupil_diam_pix = 310.0
        pupil_file = prefix + 'pupil.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07,
            5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07,
            5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07,
            5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07',
            '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07',
            '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07',
            '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07',
            '6.0056e-07', '6.0375e-07'
        ]
        fpm_axis = 's'
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69pol' + fpm_axis + '_'
            for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real.fits'
        occulter_file_i = lam_occs[wlam] + 'imag.fits'
        n_small = 1024  # gridsize in non-critical areas
        n_big = 2048  # gridsize to/from FPM
    elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long':
        is_spc = True
        file_dir = data_dir + '/spc_20190130/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20190130_rotated.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in lambda0/D of FPM mask
        if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short':
            fpm_sampling_lambda_m = 0.66e-6
            lambda0_m = 0.66e-6
        else:
            fpm_sampling_lambda_m = 0.73e-6
            lambda0_m = 0.73e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'lyotstop_0.5mag.fits'
        n_small = 2048  # gridsize in non-critical areas
        n_big = 1400  # gridsize to FPM (propagation to/from FPM handled by MFT)
    elif cor_type == 'spc-wide':
        is_spc = True
        file_dir = data_dir + '/spc_20181220/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray_rotated.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in lambda0/D of FPM mask
        lyot_stop_file = file_dir + 'LS_half_symm_CGI180718_Str3.20pct_38D91_N500_pixel.fits'
        fpm_sampling_lambda_m = 0.825e-6
        lambda0_m = 0.825e-6  # FPM scaled for this central wavelength
        n_small = 2048  # gridsize in non-critical areas
        n_big = 1400  # gridsize to FPM (propagation to/from FPM handled by MFT)
    elif cor_type == 'none':
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        use_fpm = 0
        use_lyot_stop = 0
        n_small = 1024
        n_big = 1024
    else:
        raise Exception('wfirst_phaseb_compact: Unsuported cor_type: ' +
                        cor_type)

    if 'PASSVALUE' in locals():
        if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6
        if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m']
        if 'input_field_rootname' in PASSVALUE:
            input_field_rootname = PASSVALUE['input_field_rootname']
        if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis']
        if 'source_x_offset' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset']
        if 'source_y_offset' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset']
        if 'use_hlc_dm_patterns' in PASSVALUE:
            use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns']
        if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1']
        if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m']
        if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act']
        if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act']
        if 'dm1_xtilt_deg' in PASSVALUE:
            dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg']
        if 'dm1_ytilt_deg' in PASSVALUE:
            dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg']
        if 'dm1_ztilt_deg' in PASSVALUE:
            dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg']
        if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2']
        if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m']
        if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act']
        if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act']
        if 'dm2_xtilt_deg' in PASSVALUE:
            dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg']
        if 'dm2_ytilt_deg' in PASSVALUE:
            dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg']
        if 'dm2_ztilt_deg' in PASSVALUE:
            dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg']
        if 'final_sampling_lam0' in PASSVALUE:
            final_sampling_lam0 = PASSVALUE['final_sampling_lam0']
        if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim']

    if polaxis != 0 and input_field_rootname == '':
        raise Exception(
            'wfirst_phaseb_compact: polaxis can only be defined when input_field_rootname is given'
        )

    diam_at_dm1 = 0.0463
    d_dm1_dm2 = 1.0

    n = n_small  # start off with less padding

    wavefront = proper.prop_begin(diam_at_dm1, lambda_m, n,
                                  float(pupil_diam_pix) / n)
    if input_field_rootname == '':
        pupil = proper.prop_fits_read(pupil_file)
        proper.prop_multiply(wavefront, trim(pupil, n))
        pupil = 0
    else:
        lams = format(lambda_m * 1e6, "6.4f")
        pols = format(int(round(polaxis)))
        rval = proper.prop_fits_read(input_field_rootname + '_' + lams +
                                     'um_' + pols + '_real.fits')
        ival = proper.prop_fits_read(input_field_rootname + '_' + lams +
                                     'um_' + pols + '_imag.fits')
        proper.prop_multiply(wavefront, trim(rval + 1j * ival, n))
        rval = 0
        ival = 0
    proper.prop_define_entrance(wavefront)
    if source_x_offset != 0 or source_y_offset != 0:
        # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D
        xtilt_lam = -source_x_offset * lambda0_m / lambda_m
        ytilt_lam = -source_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0

    if use_dm1 != 0:
        prop_dm(wavefront,
                dm1_m,
                dm1_xc_act,
                dm1_yc_act,
                dm_sampling_m,
                XTILT=dm1_xtilt_deg,
                YTILT=dm1_ytilt_deg,
                ZTILT=dm1_ztilt_deg)
    if is_hlc == True and use_hlc_dm_patterns == 1:
        dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits')
        proper.prop_add_phase(wavefront, trim(dm1wfe, n))
        dm1wfe = 0

    proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2')
    if use_dm2 == 1:
        prop_dm(wavefront,
                dm2_m,
                dm2_xc_act,
                dm2_yc_act,
                dm_sampling_m,
                XTILT=dm2_xtilt_deg,
                YTILT=dm2_ytilt_deg,
                ZTILT=dm2_ztilt_deg)
    if is_hlc == True:
        if use_hlc_dm_patterns == 1:
            dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits')
            proper.prop_add_phase(wavefront, trim(dm2wfe, n))
            dm2wfe = 0
        dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits')
        proper.prop_multiply(wavefront, trim(dm2mask, n))
        dm2mask = 0

    proper.prop_propagate(wavefront, -d_dm1_dm2, 'back to DM1')

    (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)

    # apply shape pupil mask

    if is_spc == True:
        pupil_mask = proper.prop_fits_read(pupil_mask_file)
        wavefront *= trim(pupil_mask, n)
        pupil_mask = 0

    # propagate to FPM and apply FPM

    if is_hlc == True:
        n = n_big
        wavefront = trim(wavefront, n)
        wavefront = ffts(wavefront, -1)  # to focus
        occ_r = proper.prop_fits_read(occulter_file_r)
        occ_i = proper.prop_fits_read(occulter_file_i)
        occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128)
        wavefront *= trim(occ, n)
        occ_r = 0
        occ_i = 0
        occ = 0
        wavefront = ffts(wavefront, +1)  # to lyot stop
    elif is_spc == True:
        n = n_big
        wavefront = trim(wavefront, n)
        fpm = proper.prop_fits_read(fpm_file)
        nfpm = fpm.shape[1]
        fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m
        wavefront = mft2(wavefront, fpm_sampling_lam, pupil_diam_pix, nfpm,
                         -1)  # MFT to highly-sampled focal plane
        wavefront *= fpm
        fpm = 0
        pupil_diam_pix = pupil_diam_pix / 2.0  # Shrink pupil by 1/2
        wavefront = mft2(wavefront, fpm_sampling_lam, pupil_diam_pix,
                         int(pupil_diam_pix),
                         +1)  # MFT to Lyot stop with 1/2 magnification

    n = n_small
    wavefront = trim(wavefront, n)
    lyot = proper.prop_fits_read(lyot_stop_file)
    wavefront *= trim(lyot, n)
    lyot = 0

    wavefront *= n
    wavefront = ffts(wavefront, -1)  # to focus

    # rotate to convention used by full prescription

    wavefront[:, :] = np.rot90(wavefront, 2)
    wavefront[:, :] = np.roll(wavefront, 1, axis=0)
    wavefront[:, :] = np.roll(wavefront, 1, axis=1)

    if final_sampling_lam0 != 0:
        mag = (float(pupil_diam_pix) / n) / final_sampling_lam0 * (lambda_m /
                                                                   lambda0_m)
        wavefront = proper.prop_magnify(wavefront,
                                        mag,
                                        output_dim,
                                        AMP_CONSERVE=True)
    else:
        wavefront = trim(wavefront, output_dim)

    sampling_m = 0.0
    return wavefront, sampling_m
Example #7
0
def run_flatten():

    nlam = 7
    lam0 = 0.575
    bandwidth = 0.1
    minlam = lam0 * (1 - bandwidth / 2)
    maxlam = lam0 * (1 + bandwidth / 2)
    lam_array = np.linspace(minlam, maxlam, nlam)

    n = 256
    final_sampling = 0.1

    # compute field before flattening (use HLC DM WFE maps)

    print("Computing field before flattening...")
    fields, sampling = proper.prop_run_multi( 'wfirst_phaseb', lam_array, n, QUIET=True, \
        PASSVALUE={'final_sampling_lam0':final_sampling, 'use_hlc_dm_patterns':1, 'use_errors':1, 'polaxis':10} )
    images = np.abs(fields)**2
    image_before = np.sum(images, 0) / nlam

    # compute field after flattening

    dm1 = proper.prop_fits_read(wfirst_phaseb_proper.lib_dir +
                                '/examples/errors_polaxis10_dm.fits')

    print("Computing field after flattening...")
    fields, sampling = proper.prop_run_multi( 'wfirst_phaseb', lam_array, n, QUIET=True, \
        PASSVALUE={'final_sampling_lam0':final_sampling, 'use_dm1':1, 'dm1_m':dm1, 'use_hlc_dm_patterns':1, 'use_errors':1, 'polaxis':10} )
    images = np.abs(fields)**2
    image_after = np.sum(images, 0) / nlam

    # move source by 7.0 lam/D

    print("Computing offset source to compute NI...")
    fields, sampling = proper.prop_run_multi( 'wfirst_phaseb_compact', lam_array, n, QUIET=True, \
        PASSVALUE={'source_x_offset':7.0,'final_sampling_lam0':final_sampling,'use_hlc_dm_patterns':1} )
    images = np.abs(fields)**2
    psf = np.sum(images, 0) / nlam
    max_psf = np.max(psf)

    ni_before = image_before / max_psf
    ni_after = image_after / max_psf

    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(9, 4))

    im = ax[0].imshow(ni_before,
                      norm=LogNorm(vmin=1e-7, vmax=1e-2),
                      cmap=plt.get_cmap('jet'))
    circ = Circle((n / 2, n / 2),
                  3 / final_sampling,
                  edgecolor='white',
                  facecolor='none')
    ax[0].add_patch(circ)
    circ = Circle((n / 2, n / 2),
                  9 / final_sampling,
                  edgecolor='white',
                  facecolor='none')
    ax[0].add_patch(circ)
    ax[0].set_title('Before')
    fig.colorbar(im, ax=ax[0], shrink=0.5)

    im = ax[1].imshow(ni_after,
                      norm=LogNorm(vmin=1e-7, vmax=1e-2),
                      cmap=plt.get_cmap('jet'))
    circ = Circle((n / 2, n / 2),
                  3 / final_sampling,
                  edgecolor='white',
                  facecolor='none')
    ax[1].add_patch(circ)
    circ = Circle((n / 2, n / 2),
                  9 / final_sampling,
                  edgecolor='white',
                  facecolor='none')
    ax[1].add_patch(circ)
    ax[1].set_title('After')
    fig.colorbar(im, ax=ax[1], shrink=0.5)

    plt.show()
Example #8
0
def run_spc_wide_new():

    nlam = 7
    lam0 = 0.825
    bandwidth = 0.1
    minlam = lam0 * (1 - bandwidth / 2)
    maxlam = lam0 * (1 + bandwidth / 2)
    lam_array = np.linspace(minlam, maxlam, nlam)

    n = 512  # output image dimension (must be power of 2)
    final_sampling = 0.1  # output sampling in lam0/D

    # compute unaberrated coronagraphic field

    print("Computing unaberrated coronagraphic field using compact model...")
    (fields, sampling) = proper.prop_run_multi('wfirst_phaseb_compact', lam_array, n, QUIET=True, \
        PASSVALUE={'cor_type':'spc-wide','final_sampling_lam0':final_sampling} )
    images = np.abs(fields)**2
    image_noab = np.sum(images, 0) / nlam

    # compute aberrated coronagraphic field using EFC-derived DM actuator settings

    print(
        "Computing aberrated coronagraphic field using DM actuator pistons...")
    dm1 = proper.prop_fits_read(wfirst_phaseb_proper.lib_dir +
                                '/examples/spc-wide_with_aberrations_dm1.fits')
    dm2 = proper.prop_fits_read(wfirst_phaseb_proper.lib_dir +
                                '/examples/spc-wide_with_aberrations_dm2.fits')
    (fields, sampling) = proper.prop_run_multi('wfirst_phaseb', lam_array, n, QUIET=True, \
        PASSVALUE={'cor_type':'spc-wide', 'use_errors':1, 'polaxis':10,
        'final_sampling_lam0':final_sampling, 'use_dm1':1, 'dm1_m':dm1, 'use_dm2':1, 'dm2_m':dm2} )
    images = np.abs(fields)**2
    image_ab = np.sum(images, 0) / nlam

    # move source to 10 lam/D

    print("Computing offset source to compute NI...")
    (fields, sampling) = proper.prop_run_multi('wfirst_phaseb_compact', lam_array, n, QUIET=True, \
        PASSVALUE={'cor_type':'spc-wide','source_x_offset':10.0,'final_sampling_lam0':final_sampling} )
    psfs = np.abs(fields)**2
    psf = np.sum(psfs, 0) / nlam

    max_psf = np.max(psf)

    ni_noab = image_noab / max_psf
    ni_ab = image_ab / max_psf

    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8, 4))

    im = ax[0].imshow(ni_noab,
                      norm=LogNorm(vmin=1e-10, vmax=1e-7),
                      cmap=plt.get_cmap('jet'))
    circ_in = Circle((n / 2, n / 2),
                     5.4 / final_sampling,
                     edgecolor='white',
                     facecolor='none')
    circ_out = Circle((n / 2, n / 2),
                      20 / final_sampling,
                      edgecolor='white',
                      facecolor='none')
    ax[0].add_patch(circ_in)
    ax[0].add_patch(circ_out)
    ax[0].set_title('Unaberrated')
    fig.colorbar(im, ax=ax[0], shrink=0.5)

    im = ax[1].imshow(ni_ab,
                      norm=LogNorm(vmin=1e-10, vmax=1e-7),
                      cmap=plt.get_cmap('jet'))
    circ_in = Circle((n / 2, n / 2),
                     5.4 / final_sampling,
                     edgecolor='white',
                     facecolor='none')
    circ_out = Circle((n / 2, n / 2),
                      20 / final_sampling,
                      edgecolor='white',
                      facecolor='none')
    ax[1].add_patch(circ_in)
    ax[1].add_patch(circ_out)
    ax[1].set_title('Aberrated,\nUsing DM piston maps')
    fig.colorbar(im, ax=ax[1], shrink=0.5)

    plt.show()