def gen_cached_name(label, wfo): prefix = 'cached' # Most of the cacheable steps depend upon wfo for: ngrid = proper.prop_get_gridsize(wfo) beamradius = proper.prop_get_beamradius(wfo) sampling = proper.prop_get_sampling(wfo) return '{}_{}_{}_{}_{}.npy'.format(prefix, label, ngrid, sampling, beamradius)
def quick_ao(wfo, iwf, f_lens, beam_ratio, iter, CPA_map): nact = tp.ao_act # 49 # number of DM actuators along one axis nact_across_pupil = nact - 2 # 47 # number of DM actuators across pupil dm_xc = (nact / 2) - 0.5 dm_yc = (nact / 2) - 0.5 d_beam = 2 * proper.prop_get_beamradius(wfo) # beam diameter act_spacing = d_beam / nact_across_pupil # actuator spacing # map_spacing = proper.prop_get_sampling(wfo) # map sampling # dm_map = np.zeros((65, 65)) # quicklook_im(CPA_map, logAmp=False, vmin=-3.14, vmax=3.14) dm_map = CPA_map[tp.grid_size / 2 - (beam_ratio * tp.grid_size / 2):tp.grid_size / 2 + (beam_ratio * tp.grid_size / 2) + 1, tp.grid_size / 2 - (beam_ratio * tp.grid_size / 2):tp.grid_size / 2 + (beam_ratio * tp.grid_size / 2) + 1] # quicklook_im(dm_map, logAmp=False) f = interpolate.interp2d(range(dm_map.shape[0]), range(dm_map.shape[0]), dm_map) dm_map = f(np.linspace(0, dm_map.shape[0], nact), np.linspace(0, dm_map.shape[0], nact)) # dm_map = proper.prop_magnify(CPA_map, map_spacing / act_spacing, nact) # quicklook_im(CPA_map, logAmp=False) # quicklook_im(dm_map, logAmp=False) # quicklook_wf(wfo) if tp.piston_error: # dprint('doing this') mean_dm_map = np.mean(np.abs(dm_map)) # var = mean_dm_map/50. var = 0.001 # 1e-11 dm_map = dm_map + np.random.normal(0, var, (dm_map.shape[0], dm_map.shape[1])) dm_map = -dm_map * proper.prop_get_wavelength(wfo) / (4 * np.pi ) # <--- here # dmap = proper.prop_dm(wfo, dm_map, dm_xc, dm_yc, N_ACT_ACROSS_PUPIL=nact, FIT=True) # <-- here dmap = proper.prop_dm(wfo, dm_map, dm_xc, dm_yc, act_spacing, FIT=True) # <-- here # quicklook_wf(wfo) # I = np.real(wfo.wfarr) # Q = np.imag(wfo.wfarr) # I = proper.prop_shift_center(I) # Q = proper.prop_shift_center(Q) # # anomaly = int(np.round(beam_ratio*tp.grid_size/2 + tp.grid_size/2)) # # dprint((anomaly)) # Q[anomaly] = 0 # 89 # Q[:, anomaly] = 0 # I[anomaly] = 0 # I[:, anomaly] = 0 # I = proper.prop_shift_center(I) # Q = proper.prop_shift_center(Q) # wfo.wfarr = I + 1j * Q return
def deformable_mirror(wf, WFS_map, iter, plane_name=None): """ combine different DM actuator commands into single map to send to prop_dm prop_dm needs an input map of n_actuators x n_actuators in units of actuator command height. quick_ao will handle the conversion to actuator command height, and the CDI probe must be scaled in cdip.probe_amp in params in units of m. Each subroutine is also responsible for creating a map of n_actuators x n_actuators spacing. prop_dm handles the resampling of this map onto the wavefront, including the influence function. Its some wizardry that happens in c, and presumably it is taken care of so you don't have to worry about it. In the call to proper.prop_dm, we apply the flag tp.fit_dm, which switches between two 'modes' of proper's DM surface fitting. If FALSE, the DM is driven to the heights specified by dm_map, and the influence function will act on these heights to define the final surface shape applied to the DM, which may differ substantially from the initial heights specified by dm_map. If TRUE, proper will iterate applying the influence function to the input heights, and adjust the heights until the difference between the influenced-map and input map meets some proper-defined convergence criterea. Setting tp.fit_dm=TRUE will obviously slow down the code, but will (likely) more accurately represent a well-calibrated DM response function. much of this code copied over from example from Proper manual on pg 94 :param wf: single wavefront :param WFS_map: wavefront sensor map, should be in units of phase delay :param iter: the current index of iteration (which timestep this is) :param plane_name: name of plane (should be 'woofer' or 'tweeter' for best functionality :return: nothing is returned, but the probe map has been applied to the DM via proper.prop_dm """ # AO Actuator Count from DM Type if plane_name == 'tweeter' and hasattr('tp', 'act_tweeter'): nact = tp.act_tweeter elif plane_name == 'woofer' and hasattr('tp', 'act_woofer'): nact = tp.act_woofer else: nact = tp.ao_act # DM Coordinates nact_across_pupil = nact - 2 # number of full DM actuators across pupil (oversizing DM extent) dm_xc = ( nact / 2 ) - 0.5 # The location of the optical axis (center of the wavefront) on the DM in dm_yc = ( nact / 2 ) - 0.5 # actuator units. First actuator is centered on (0.0, 0.0). The 0.5 is a # parameter introduced/tuned by Rupert to remove weird errors (address this). # KD verified this needs to be here or else suffer weird errors 9/19 # TODO address/remove the 0.5 in DM x,y coordinates ############################ # Creating DM Surface Map ############################ d_beam = 2 * proper.prop_get_beamradius(wf) # beam diameter act_spacing = d_beam / nact_across_pupil # actuator spacing [m] # map_spacing = proper.prop_get_sampling(wfo.wf_collection[iw,0]) ####### # AO ####### dm_map = quick_ao(wf, nact, WFS_map[wf.iw]) ####### # CDI ###### if cdip.use_cdi: # dprint(f"Applying CDI probe, lambda = {wfo.wsamples[iw]*1e9:.2f} nm") probe = cdi.CDIprobe(iter) # Add Probe to DM map dm_map = dm_map + probe ######################### # Applying Piston Error ######################### if tp.piston_error: mean_dm_map = np.mean(np.abs(dm_map)) var = 1e-4 # 1e-11 dm_map = dm_map + np.random.normal(0, var, (dm_map.shape[0], dm_map.shape[1])) ######################### # proper.prop_dm ######################### proper.prop_dm(wf, dm_map, dm_xc, dm_yc, act_spacing, FIT=tp.fit_dm) # # proper.prop_dm(wfo, dm_map, dm_xc, dm_yc, N_ACT_ACROSS_PUPIL=nact, FIT=True) # # check_sampling(0, wfo, "E-Field after DM", getframeinfo(stack()[0][0]), units='um') # check sampling from optics.py return
def quick_ao(wf, nact, WFS_map): """ calculate the offset map to send to the DM from the WFS map The main idea is to apply the DM only to the region of the wavefront that contains the beam. The phase map from the wfs saved the whole wavefront, so that must be cropped. During the wavefront initialization in wavefront.initialize_proper, the beam ratio set in sp.beam_ratio is scaled per wavelength (to achieve constant sampling sto create white light images), so the cropped value must also be scaled by wavelength. Note, beam ratio is scaled differently depending on if sp.focused_sys is True or not. See params-->sp.focused_sys and Proper manual pg 36 for more info. Then, we interpolate the cropped beam onto a grid of (n_actuators,n_actuators), such that the DM can apply a actuator height to each represented actuator, not a over or sub-sampled form. If the number of actuators is low compared to the number of samples on the beam, you should anti-alias the WFS map via a lowpass filter before interpolating. There is a discrepancy between the sampling of the wavefront at this location (the size you cropped) vs the size of the DM. proper.prop_dm handles this, so just plug in the n_actuator sized DM map with specified parameters, and assume that prop_dm handles the resampling correctly via the spacing or n_act_across_pupil flag. FYI the resampling is done via a c library you installed/compiled when installing proper. The WFS map is a map of real values in units of phase delay in radians. However, the AO map that gets passed to proper.prop_dm wants input in nm height of each actuator. Therefore, you need to convert the phase delay to a DM height. For the ideal AO, you would do this individually for each wavelength. However, for a 'real' AO system you do this for the median wavelength. You also need to account for a factor of 2, since the DM is modeled as a mirror so it travels the length of the phase delay twice. much of this code copied over from example from Proper manual on pg 94 :param wfo: wavefront object created by optics.Wavefronts() [n_wavelengths, n_objects] of tp.gridsize x tp.gridsize :param WFS_map: returned from quick_wfs (as of Aug 2019, its an idealized image) :return: ao_map: map of DM actuator command heights in units of m """ nact_across_pupil = nact - 2 # number of full DM actuators across pupil (oversizing DM extent) # Note: oversample by 2 actuators hardcoded here, check if this is appropriate ############################ # Creating AO Surface Map ############################ d_beam = 2 * proper.prop_get_beamradius(wf) # beam diameter act_spacing = d_beam / nact_across_pupil # actuator spacing [m] # map_spacing = proper.prop_get_sampling(wfo.wf_collection[iw,0]) ################################### # Cropping the Beam from WFS map ################################### # cropping here by beam_ratio rather than d_beam is valid since the beam size was initialized # using the scaled beam_ratios when the wfo was created # dprint(f"{WFS_map[0,0,0]}") ao_map = WFS_map[ sp.grid_size // 2 - np.int_(wf.beam_ratio * sp.grid_size // 2):sp.grid_size // 2 + np.int_(wf.beam_ratio * sp.grid_size // 2) + 1, sp.grid_size // 2 - np.int_(wf.beam_ratio * sp.grid_size // 2):sp.grid_size // 2 + np.int_(wf.beam_ratio * sp.grid_size // 2) + 1] ######################################################## # Interpolating the WFS map onto the actuator spacing # (tp.nact,tp.nact) ######################################################## # Lowpass Filter- prevents aliasing; uses Gaussian filter nyquist_dm = tp.ao_act / 2 * act_spacing # [m] sigma = [nyquist_dm / 2.355, nyquist_dm / 2.355] # assume we want sigma to be twice the HWHM ao_map = ndimage.gaussian_filter(ao_map, sigma=sigma, mode='nearest') f = interpolate.interp2d(range(ao_map.shape[0]), range(ao_map.shape[0]), ao_map, kind='cubic') ao_map = f(np.linspace(0, ao_map.shape[0], nact), np.linspace(0, ao_map.shape[0], nact)) # dm_map = proper.prop_magnify(dm_map, map_spacing / act_spacing, nact) ################################################ # Converting phase delay to DM actuator height ################################################ # Apply the inverse of the WFS image to the DM, so use -dm_map (dm_map is in phase units, divide by k=2pi/lambda) surf_height = proper.prop_get_wavelength(wf) / (4 * np.pi) # [m/rad] ao_map = -ao_map * surf_height # Converts DM map to units of [m] of actuator heights return ao_map
def wfirst_phaseb(lambda_m, output_dim0, PASSVALUE={'dummy': 0}): # "output_dim" is used to specify the output dimension in pixels at the final image plane. # Computational grid sizes are hardcoded for each coronagraph. # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang. data_dir = wfirst_phaseb_proper.data_dir if 'PASSVALUE' in locals(): if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir'] map_dir = data_dir + wfirst_phaseb_proper.map_dir polfile = data_dir + wfirst_phaseb_proper.polfile cor_type = 'hlc' # coronagraph type ('hlc', 'spc', 'none') source_x_offset_mas = 0 # source offset in mas (tilt applied at primary) source_y_offset_mas = 0 source_x_offset = 0 # source offset in lambda0_m/D radians (tilt applied at primary) source_y_offset = 0 polaxis = 0 # polarization axis aberrations: # -2 = -45d in, Y out # -1 = -45d in, X out # 1 = +45d in, X out # 2 = +45d in, Y out # 5 = mean of modes -1 & +1 (X channel polarizer) # 6 = mean of modes -2 & +2 (Y channel polarizer) # 10 = mean of all modes (no polarization filtering) use_errors = 1 # use optical surface phase errors? 1 or 0 zindex = np.array([0, 0]) # array of Zernike polynomial indices zval_m = np.array([0, 0]) # array of Zernike coefficients (meters RMS WFE) use_aperture = 0 # use apertures on all optics? 1 or 0 cgi_x_shift_pupdiam = 0 # X,Y shear of wavefront at FSM (bulk displacement of CGI); normalized relative to pupil diameter cgi_y_shift_pupdiam = 0 cgi_x_shift_m = 0 # X,Y shear of wavefront at FSM (bulk displacement of CGI) in meters cgi_y_shift_m = 0 fsm_x_offset_mas = 0 # offset in focal plane caused by tilt of FSM in mas fsm_y_offset_mas = 0 fsm_x_offset = 0 # offset in focal plane caused by tilt of FSM in lambda0/D fsm_y_offset = 0 end_at_fsm = 0 # end propagation after propagating to FSM (no FSM errors) focm_z_shift_m = 0 # offset (meters) of focus correction mirror (+ increases path length) use_hlc_dm_patterns = 0 # use Dwight's HLC default DM wavefront patterns? 1 or 0 use_dm1 = 0 # use DM1? 1 or 0 use_dm2 = 0 # use DM2? 1 or 0 dm_sampling_m = 0.9906e-3 # actuator spacing in meters dm1_xc_act = 23.5 # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center dm1_yc_act = 23.5 dm1_xtilt_deg = 0 # tilt around X axis (deg) dm1_ytilt_deg = 5.7 # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity dm1_ztilt_deg = 0 # rotation of DM about optical axis (deg) dm2_xc_act = 23.5 # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center dm2_yc_act = 23.5 dm2_xtilt_deg = 0 # tilt around X axis (deg) dm2_ytilt_deg = 5.7 # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity dm2_ztilt_deg = 0 # rotation of DM about optical axis (deg) use_pupil_mask = 1 # SPC only: use SPC pupil mask (0 or 1) mask_x_shift_pupdiam = 0 # X,Y shear of shaped pupil mask; normalized relative to pupil diameter mask_y_shift_pupdiam = 0 mask_x_shift_m = 0 # X,Y shear of shaped pupil mask in meters mask_y_shift_m = 0 use_fpm = 1 # use occulter? 1 or 0 fpm_x_offset = 0 # FPM x,y offset in lambda0/D fpm_y_offset = 0 fpm_x_offset_m = 0 # FPM x,y offset in meters fpm_y_offset_m = 0 fpm_z_shift_m = 0 # occulter offset in meters along optical axis (+ = away from prior optics) pinhole_diam_m = 0 # FPM pinhole diameter in meters end_at_fpm_exit_pupil = 0 # return field at FPM exit pupil? output_field_rootname = '' # rootname of FPM exit pupil field file (must set end_at_fpm_exit_pupil=1) use_lyot_stop = 1 # use Lyot stop? 1 or 0 lyot_x_shift_pupdiam = 0 # X,Y shear of Lyot stop mask; normalized relative to pupil diameter lyot_y_shift_pupdiam = 0 lyot_x_shift_m = 0 # X,Y shear of Lyot stop mask in meters lyot_y_shift_m = 0 use_field_stop = 1 # use field stop (HLC)? 1 or 0 field_stop_radius_lam0 = 0 # field stop radius in lambda0/D (HLC or SPC-wide mask only) field_stop_x_offset = 0 # field stop offset in lambda0/D field_stop_y_offset = 0 field_stop_x_offset_m = 0 # field stop offset in meters field_stop_y_offset_m = 0 use_pupil_lens = 0 # use pupil imaging lens? 0 or 1 use_defocus_lens = 0 # use defocusing lens? Options are 1, 2, 3, 4, corresponding to +18.0, +9.0, -4.0, -8.0 waves P-V @ 550 nm defocus = 0 # instead of specific lens, defocus in waves P-V @ 550 nm (-8.7 to 42.0 waves) final_sampling_m = 0 # final sampling in meters (overrides final_sampling_lam0) final_sampling_lam0 = 0 # final sampling in lambda0/D output_dim = output_dim0 # dimension of output in pixels (overrides output_dim0) if 'PASSVALUE' in locals(): if 'use_fpm' in PASSVALUE: use_fpm = PASSVALUE['use_fpm'] if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type'] is_spc = False is_hlc = False if cor_type == 'hlc': is_hlc = True file_directory = data_dir + '/hlc_20190210/' # must have trailing "/" prefix = file_directory + 'run461_' pupil_diam_pix = 309.0 pupil_file = prefix + 'pupil_rotated.fits' lyot_stop_file = prefix + 'lyot.fits' lambda0_m = 0.575e-6 lam_occ = [ 5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07, 5.55833333333e-07, 5.59027777778e-07, 5.60625e-07, 5.62222222222e-07, 5.65416666667e-07, 5.678125e-07, 5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07, 5.81388888889e-07, 5.821875e-07, 5.84583333333e-07, 5.87777777778e-07, 5.89375e-07, 5.90972222222e-07, 5.94166666667e-07, 5.965625e-07, 5.97361111111e-07, 6.00555555556e-07, 6.0375e-07 ] lam_occs = [ '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07', '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07', '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07', '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07', '5.75e-07', '5.78194444444e-07', '5.81388888889e-07', '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07', '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07', '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07', '6.0375e-07' ] lam_occs = [ prefix + 'occ_lam' + s + 'theta6.69polp_' for s in lam_occs ] # find nearest matching FPM wavelength wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin() occulter_file_r = lam_occs[wlam] + 'real.fits' occulter_file_i = lam_occs[wlam] + 'imag.fits' n_default = 1024 # gridsize in non-critical areas if use_fpm == 1: n_to_fpm = 2048 else: n_to_fpm = 1024 n_from_lyotstop = 1024 field_stop_radius_lam0 = 9.0 elif cor_type == 'hlc_erkin': is_hlc = True file_directory = data_dir + '/hlc_20190206_v3/' # must have trailing "/" prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_' pupil_diam_pix = 310.0 pupil_file = prefix + 'pupil.fits' lyot_stop_file = prefix + 'lyot.fits' lambda0_m = 0.575e-6 lam_occ = [ 5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07, 5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07, 5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07, 5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07 ] lam_occs = [ '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07', '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07', '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07', '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07', '6.0056e-07', '6.0375e-07' ] lam_occs = [ prefix + 'occ_lam' + s + 'theta6.69pols_' for s in lam_occs ] # find nearest matching FPM wavelength wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin() occulter_file_r = lam_occs[wlam] + 'real_rotated.fits' occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits' n_default = 1024 # gridsize in non-critical areas if use_fpm == 1: n_to_fpm = 2048 else: n_to_fpm = 1024 n_from_lyotstop = 1024 field_stop_radius_lam0 = 9.0 elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long': is_spc = True file_dir = data_dir + '/spc_20190130/' # must have trailing "/" pupil_diam_pix = 1000.0 pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits' pupil_mask_file = file_dir + 'SPM_SPC-20190130.fits' fpm_file = file_dir + 'fpm_0.05lamdivD.fits' fpm_sampling = 0.05 # sampling in fpm_sampling_lambda_m/D of FPM mask if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short': fpm_sampling_lambda_m = 0.66e-6 lambda0_m = 0.66e-6 else: fpm_sampling_lambda_m = 0.73e-6 lambda0_m = 0.73e-6 # FPM scaled for this central wavelength lyot_stop_file = file_dir + 'LS_SPC-20190130.fits' n_default = 2048 # gridsize in non-critical areas n_to_fpm = 2048 # gridsize to/from FPM n_mft = 1400 # gridsize to FPM (propagation to/from FPM handled by MFT) n_from_lyotstop = 4096 elif cor_type == 'spc-wide': is_spc = True file_dir = data_dir + '/spc_20181220/' # must have trailing "/" pupil_diam_pix = 1000.0 pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits' pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray.fits' fpm_file = file_dir + 'fpm_0.05lamdivD.fits' fpm_sampling = 0.05 # sampling in lambda0/D of FPM mask fpm_sampling_lambda_m = 0.825e-6 lambda0_m = 0.825e-6 # FPM scaled for this central wavelength lyot_stop_file = file_dir + 'LS_SPC-20181220_1k.fits' n_default = 2048 # gridsize in non-critical areas n_to_fpm = 2048 # gridsize to/from FPM n_mft = 1400 n_from_lyotstop = 4096 elif cor_type == 'none': file_directory = data_dir + '/hlc_20190210/' # must have trailing "/" prefix = file_directory + 'run461_' pupil_diam_pix = 309.0 pupil_file = prefix + 'pupil_rotated.fits' lambda0_m = 0.575e-6 use_fpm = 0 use_lyot_stop = 0 use_field_stop = 0 n_default = 1024 n_to_fpm = 1024 n_from_lyotstop = 1024 else: raise Exception('ERROR: Unsupported cor_type: ' + cor_type) if 'PASSVALUE' in locals(): if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6 if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m'] mas_per_lamD = lambda0_m * 360.0 * 3600.0 / ( 2 * np.pi * 2.363) * 1000 # mas per lambda0/D if 'source_x_offset' in PASSVALUE: source_x_offset = PASSVALUE['source_x_offset'] if 'source_y_offset' in PASSVALUE: source_y_offset = PASSVALUE['source_y_offset'] if 'source_x_offset_mas' in PASSVALUE: source_x_offset = PASSVALUE['source_x_offset_mas'] / mas_per_lamD if 'source_y_offset_mas' in PASSVALUE: source_y_offset = PASSVALUE['source_y_offset_mas'] / mas_per_lamD if 'use_errors' in PASSVALUE: use_errors = PASSVALUE['use_errors'] if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis'] if 'zindex' in PASSVALUE: zindex = np.array(PASSVALUE['zindex']) if 'zval_m' in PASSVALUE: zval_m = np.array(PASSVALUE['zval_m']) if 'end_at_fsm' in PASSVALUE: end_at_fsm = PASSVALUE['end_at_fsm'] if 'cgi_x_shift_pupdiam' in PASSVALUE: cgi_x_shift_pupdiam = PASSVALUE['cgi_x_shift_pupdiam'] if 'cgi_y_shift_pupdiam' in PASSVALUE: cgi_y_shift_pupdiam = PASSVALUE['cgi_y_shift_pupdiam'] if 'cgi_x_shift_m' in PASSVALUE: cgi_x_shift_m = PASSVALUE['cgi_x_shift_m'] if 'cgi_y_shift_m' in PASSVALUE: cgi_y_shift_m = PASSVALUE['cgi_y_shift_m'] if 'fsm_x_offset' in PASSVALUE: fsm_x_offset = PASSVALUE['fsm_x_offset'] if 'fsm_y_offset' in PASSVALUE: fsm_y_offset = PASSVALUE['fsm_y_offset'] if 'fsm_x_offset_mas' in PASSVALUE: fsm_x_offset = PASSVALUE['fsm_x_offset_mas'] / mas_per_lamD if 'fsm_y_offset_mas' in PASSVALUE: fsm_y_offset = PASSVALUE['fsm_y_offset_mas'] / mas_per_lamD if 'focm_z_shift_m' in PASSVALUE: focm_z_shift_m = PASSVALUE['focm_z_shift_m'] if 'use_hlc_dm_patterns' in PASSVALUE: use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns'] if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1'] if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m'] if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act'] if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act'] if 'dm1_xtilt_deg' in PASSVALUE: dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg'] if 'dm1_ytilt_deg' in PASSVALUE: dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg'] if 'dm1_ztilt_deg' in PASSVALUE: dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg'] if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2'] if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m'] if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act'] if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act'] if 'dm2_xtilt_deg' in PASSVALUE: dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg'] if 'dm2_ytilt_deg' in PASSVALUE: dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg'] if 'dm2_ztilt_deg' in PASSVALUE: dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg'] if 'use_pupil_mask' in PASSVALUE: use_pupil_mask = PASSVALUE['use_pupil_mask'] if 'mask_x_shift_pupdiam' in PASSVALUE: mask_x_shift_pupdiam = PASSVALUE['mask_x_shift_pupdiam'] if 'mask_y_shift_pupdiam' in PASSVALUE: mask_y_shift_pupdiam = PASSVALUE['mask_y_shift_pupdiam'] if 'mask_x_shift_m' in PASSVALUE: mask_x_shift_m = PASSVALUE['mask_x_shift_m'] if 'mask_y_shift_m' in PASSVALUE: mask_y_shift_m = PASSVALUE['mask_y_shift_m'] if 'fpm_x_offset' in PASSVALUE: fpm_x_offset = PASSVALUE['fpm_x_offset'] if 'fpm_y_offset' in PASSVALUE: fpm_y_offset = PASSVALUE['fpm_y_offset'] if 'fpm_x_offset_m' in PASSVALUE: fpm_x_offset_m = PASSVALUE['fpm_x_offset_m'] if 'fpm_y_offset_m' in PASSVALUE: fpm_y_offset_m = PASSVALUE['fpm_y_offset_m'] if 'fpm_z_shift_m' in PASSVALUE: fpm_z_shift_m = PASSVALUE['fpm_z_shift_m'] if 'pinhole_diam_m' in PASSVALUE: pinhole_diam_m = PASSVALUE['pinhole_diam_m'] if 'end_at_fpm_exit_pupil' in PASSVALUE: end_at_fpm_exit_pupil = PASSVALUE['end_at_fpm_exit_pupil'] if 'output_field_rootname' in PASSVALUE: output_field_rootname = PASSVALUE['output_field_rootname'] if 'use_lyot_stop' in PASSVALUE: use_lyot_stop = PASSVALUE['use_lyot_stop'] if 'lyot_x_shift_pupdiam' in PASSVALUE: lyot_x_shift_pupdiam = PASSVALUE['lyot_x_shift_pupdiam'] if 'lyot_y_shift_pupdiam' in PASSVALUE: lyot_y_shift_pupdiam = PASSVALUE['lyot_y_shift_pupdiam'] if 'lyot_x_shift_m' in PASSVALUE: lyot_x_shift_m = PASSVALUE['lyot_x_shift_m'] if 'lyot_y_shift_m' in PASSVALUE: lyot_y_shift_m = PASSVALUE['lyot_y_shift_m'] if 'use_field_stop' in PASSVALUE: use_field_stop = PASSVALUE['use_field_stop'] if 'field_stop_x_offset' in PASSVALUE: field_stop_x_offset = PASSVALUE['field_stop_x_offset'] if 'field_stop_y_offset' in PASSVALUE: field_stop_y_offset = PASSVALUE['field_stop_y_offset'] if 'field_stop_x_offset_m' in PASSVALUE: field_stop_x_offset_m = PASSVALUE['field_stop_x_offset_m'] if 'field_stop_y_offset_m' in PASSVALUE: field_stop_y_offset_m = PASSVALUE['field_stop_y_offset_m'] if 'use_pupil_lens' in PASSVALUE: use_pupil_lens = PASSVALUE['use_pupil_lens'] if 'use_defocus_lens' in PASSVALUE: use_defocus_lens = PASSVALUE['use_defocus_lens'] if 'defocus' in PASSVALUE: defocus = PASSVALUE['defocus'] if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim'] if 'final_sampling_m' in PASSVALUE: final_sampling_m = PASSVALUE['final_sampling_m'] if 'final_sampling_lam0' in PASSVALUE: final_sampling_lam0 = PASSVALUE['final_sampling_lam0'] diam = 2.3633372 fl_pri = 2.83459423440 * 1.0013 d_pri_sec = 2.285150515460035 d_focus_sec = d_pri_sec - fl_pri fl_sec = -0.653933011 * 1.0004095 d_sec_focus = 3.580188916677103 diam_sec = 0.58166 d_sec_fold1 = 2.993753476654728 d_fold1_focus = 0.586435440022375 diam_fold1 = 0.09 d_fold1_m3 = 1.680935841598811 fl_m3 = 0.430216463069001 d_focus_m3 = 1.094500401576436 d_m3_pupil = 0.469156807701977 d_m3_focus = 0.708841602661368 diam_m3 = 0.2 d_m3_m4 = 0.943514749358944 fl_m4 = 0.116239114833590 d_focus_m4 = 0.234673014520402 d_m4_pupil = 0.474357941656967 d_m4_focus = 0.230324117970585 diam_m4 = 0.07 d_m4_m5 = 0.429145636743193 d_m5_focus = 0.198821518772608 fl_m5 = 0.198821518772608 d_m5_pupil = 0.716529242882632 diam_m5 = 0.07 d_m5_fold2 = 0.351125431220770 diam_fold2 = 0.06 d_fold2_fsm = 0.365403811661862 d_fsm_oap1 = 0.354826767220001 fl_oap1 = 0.503331895563883 diam_oap1 = 0.06 d_oap1_focm = 0.768005607094041 d_focm_oap2 = 0.314483210543378 fl_oap2 = 0.579156922073536 diam_oap2 = 0.06 d_oap2_dm1 = 0.775775726154228 d_dm1_dm2 = 1.0 d_dm2_oap3 = 0.394833855161549 fl_oap3 = 1.217276467668519 diam_oap3 = 0.06 d_oap3_fold3 = 0.505329955078121 diam_fold3 = 0.06 d_fold3_oap4 = 1.158897671642761 fl_oap4 = 0.446951159052363 diam_oap4 = 0.06 d_oap4_pupilmask = 0.423013568764728 d_pupilmask_oap5 = 0.408810648253099 fl_oap5 = 0.548189351937178 diam_oap5 = 0.06 d_oap5_fpm = 0.548189083164429 d_fpm_oap6 = 0.548189083164429 fl_oap6 = 0.548189083164429 diam_oap6 = 0.06 d_oap6_lyotstop = 0.687567667550736 d_lyotstop_oap7 = 0.401748843470518 fl_oap7 = 0.708251083480054 diam_oap7 = 0.06 d_oap7_fieldstop = 0.708251083480054 d_fieldstop_oap8 = 0.210985967281651 fl_oap8 = 0.210985967281651 diam_oap8 = 0.06 d_oap8_pupil = 0.238185804200797 d_oap8_filter = 0.368452268225530 diam_filter = 0.01 d_filter_lens = 0.170799548215162 fl_lens = 0.246017378417573 + 0.050001306014153 diam_lens = 0.01 d_lens_fold4 = 0.246017378417573 diam_fold4 = 0.02 d_fold4_image = 0.050001578514650 fl_pupillens = 0.149260576823040 n = n_default # start off with less padding wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n) pupil = proper.prop_fits_read(pupil_file) proper.prop_multiply(wavefront, trim(pupil, n)) pupil = 0 if polaxis != 0: polmap(wavefront, polfile, pupil_diam_pix, polaxis) proper.prop_define_entrance(wavefront) proper.prop_lens(wavefront, fl_pri) if source_x_offset != 0 or source_y_offset != 0: # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D xtilt_lam = -source_x_offset * lambda0_m / lambda_m ytilt_lam = -source_y_offset * lambda0_m / lambda_m x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) proper.prop_multiply( wavefront, np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y))) x = 0 y = 0 if zindex[0] != 0: proper.prop_zernikes(wavefront, zindex, zval_m) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_PRIMARY_phase_error_V1.0.fits', WAVEFRONT=True) proper.prop_errormap( wavefront, map_dir + 'wfirst_phaseb_GROUND_TO_ORBIT_4.2X_phase_error_V1.0.fits', WAVEFRONT=True) proper.prop_propagate(wavefront, d_pri_sec, 'secondary') proper.prop_lens(wavefront, fl_sec) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_SECONDARY_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_sec / 2.0) proper.prop_propagate(wavefront, d_sec_fold1, 'FOLD_1') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD1_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold1 / 2.0) proper.prop_propagate(wavefront, d_fold1_m3, 'M3') proper.prop_lens(wavefront, fl_m3) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_M3_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_m3 / 2.0) proper.prop_propagate(wavefront, d_m3_m4, 'M4') proper.prop_lens(wavefront, fl_m4) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_M4_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_m4 / 2.0) proper.prop_propagate(wavefront, d_m4_m5, 'M5') proper.prop_lens(wavefront, fl_m5) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_M5_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_m5 / 2.0) proper.prop_propagate(wavefront, d_m5_fold2, 'FOLD_2') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD2_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold2 / 2.0) proper.prop_propagate(wavefront, d_fold2_fsm, 'FSM') if end_at_fsm == 1: (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True) wavefront = trim(wavefront, n) return wavefront, sampling_m if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0 or cgi_x_shift_m != 0 or cgi_y_shift_m != 0: # bulk coronagraph pupil shear # FFT the field, apply a tilt, FFT back if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0: # offsets are normalized to pupil diameter xt = -cgi_x_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n yt = -cgi_y_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n else: # offsets are meters d_m = proper.prop_get_sampling(wavefront) xt = -cgi_x_shift_m / d_m * float(pupil_diam_pix) / n yt = -cgi_y_shift_m / d_m * float(pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * xt + y * yt) x = 0 y = 0 wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, -1) wavefront0 *= np.exp(tilt) wavefront0 = ffts(wavefront0, 1) tilt = 0 wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FSM_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fsm / 2.0) if (fsm_x_offset != 0.0 or fsm_y_offset != 0.0): # compute tilted wavefront to offset source by fsm_x_offset,fsm_y_offset lambda0_m/D xtilt_lam = fsm_x_offset * lambda0_m / lambda_m ytilt_lam = fsm_y_offset * lambda0_m / lambda_m x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) proper.prop_multiply( wavefront, np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y))) x = 0 y = 0 proper.prop_propagate(wavefront, d_fsm_oap1, 'OAP1') proper.prop_lens(wavefront, fl_oap1) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP1_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap1 / 2.0) proper.prop_propagate(wavefront, d_oap1_focm + focm_z_shift_m, 'FOCM') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOCM_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_focm / 2.0) proper.prop_propagate(wavefront, d_focm_oap2 + focm_z_shift_m, 'OAP2') proper.prop_lens(wavefront, fl_oap2) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP2_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap2 / 2.0) proper.prop_propagate(wavefront, d_oap2_dm1, 'DM1') if use_dm1 != 0: proper.prop_dm(wavefront, dm1_m, dm1_xc_act, dm1_yc_act, dm_sampling_m, XTILT=dm1_xtilt_deg, YTILT=dm1_ytilt_deg, ZTILT=dm1_ztilt_deg) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_DM1_phase_error_V1.0.fits', WAVEFRONT=True) if is_hlc == True and use_hlc_dm_patterns == 1: dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits') proper.prop_add_phase(wavefront, trim(dm1wfe, n)) dm1wfe = 0 proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2') if use_dm2 == 1: proper.prop_dm(wavefront, dm2_m, dm2_xc_act, dm2_yc_act, dm_sampling_m, XTILT=dm2_xtilt_deg, YTILT=dm2_ytilt_deg, ZTILT=dm2_ztilt_deg) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_DM2_phase_error_V1.0.fits', WAVEFRONT=True) if is_hlc == True: if use_hlc_dm_patterns == 1: dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits') proper.prop_add_phase(wavefront, trim(dm2wfe, n)) dm2wfe = 0 dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits') proper.prop_multiply(wavefront, trim(dm2mask, n)) dm2mask = 0 proper.prop_propagate(wavefront, d_dm2_oap3, 'OAP3') proper.prop_lens(wavefront, fl_oap3) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP3_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap3 / 2.0) proper.prop_propagate(wavefront, d_oap3_fold3, 'FOLD_3') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD3_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold3 / 2.0) proper.prop_propagate(wavefront, d_fold3_oap4, 'OAP4') proper.prop_lens(wavefront, fl_oap4) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP4_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap4 / 2.0) proper.prop_propagate(wavefront, d_oap4_pupilmask, 'PUPIL_MASK') # flat/reflective shaped pupil if is_spc == True and use_pupil_mask != 0: pupil_mask = proper.prop_fits_read(pupil_mask_file) pupil_mask = trim(pupil_mask, n) if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0 or mask_x_shift_m != 0 or mask_y_shift_m != 0: # shift SP mask by FFTing it, applying tilt, and FFTing back if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0: # offsets are normalized to pupil diameter xt = -mask_x_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n yt = -mask_y_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n else: d_m = proper.prop_get_sampling(wavefront) xt = -mask_x_shift_m / d_m * float(pupil_diam_pix) / n yt = -mask_y_shift_m / d_m * float(pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * xt + y * yt) x = 0 y = 0 pupil_mask = ffts(pupil_mask, -1) pupil_mask *= np.exp(tilt) pupil_mask = ffts(pupil_mask, 1) pupil_mask = pupil_mask.real tilt = 0 proper.prop_multiply(wavefront, pupil_mask) pupil_mask = 0 if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_PUPILMASK_phase_error_V1.0.fits', WAVEFRONT=True) # while at a pupil, use more padding to provide 2x better sampling at FPM diam = 2 * proper.prop_get_beamradius(wavefront) (wavefront, dx) = proper.prop_end(wavefront, NOABS=True) n = n_to_fpm wavefront0 = trim(wavefront, n) wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 proper.prop_propagate(wavefront, d_pupilmask_oap5, 'OAP5') proper.prop_lens(wavefront, fl_oap5) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP5_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap5 / 2.0) proper.prop_propagate(wavefront, d_oap5_fpm + fpm_z_shift_m, 'FPM', TO_PLANE=True) if use_fpm == 1: if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0: # To shift FPM, FFT field to pupil, apply tilt, FFT back to focus, # apply FPM, FFT to pupil, take out tilt, FFT back to focus if fpm_x_offset != 0 or fpm_y_offset != 0: # shifts are specified in lambda0/D x_offset_lamD = fpm_x_offset * lambda0_m / lambda_m y_offset_lamD = fpm_y_offset * lambda0_m / lambda_m else: d_m = proper.prop_get_sampling(wavefront) x_offset_lamD = fpm_x_offset_m / d_m * float( pupil_diam_pix) / n y_offset_lamD = fpm_y_offset_m / d_m * float( pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * x_offset_lamD + y * y_offset_lamD) x = 0 y = 0 wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, -1) wavefront0 *= np.exp(tilt) wavefront0 = ffts(wavefront0, 1) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if is_hlc == True: occ_r = proper.prop_fits_read(occulter_file_r) occ_i = proper.prop_fits_read(occulter_file_i) occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128) proper.prop_multiply(wavefront, trim(occ, n)) occ_r = 0 occ_i = 0 occ = 0 elif is_spc == True: # super-sample FPM wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, 1) # to virtual pupil wavefront0 = trim(wavefront0, n_mft) fpm = proper.prop_fits_read(fpm_file) nfpm = fpm.shape[1] fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, nfpm, -1) # MFT to highly-sampled focal plane wavefront0 *= fpm fpm = 0 wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, n, +1) # MFT to virtual pupil wavefront0 = ffts(wavefront0, -1) # back to normally-sampled focal plane wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0: wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, -1) wavefront0 *= np.exp(-tilt) wavefront0 = ffts(wavefront0, 1) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 tilt = 0 if pinhole_diam_m != 0: # "pinhole_diam_m" is pinhole diameter in meters dx_m = proper.prop_get_sampling(wavefront) dx_pinhole_diam_m = pinhole_diam_m / 101.0 # 101 samples across pinhole n_out = 105 m_per_lamD = dx_m * n / float( pupil_diam_pix) # current focal plane sampling in lambda_m/D dx_pinhole_lamD = dx_pinhole_diam_m / m_per_lamD # pinhole sampling in lambda_m/D n_in = int(round(pupil_diam_pix * 1.2)) wavefront0 = proper.prop_get_wavefront(wavefront) wavefront0 = ffts(wavefront0, +1) # to virtual pupil wavefront0 = trim(wavefront0, n_in) m = dx_pinhole_lamD * n_in * float(n_out) / pupil_diam_pix wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n_out, -1) # MFT to highly-sampled focal plane p = (radius(n_out) * dx_pinhole_diam_m) <= (pinhole_diam_m / 2.0) p = p.astype(np.int) wavefront0 *= p p = 0 wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n, +1) # MFT back to virtual pupil wavefront0 = ffts(wavefront0, -1) # back to normally-sampled focal plane wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 proper.prop_propagate(wavefront, d_fpm_oap6 - fpm_z_shift_m, 'OAP6') proper.prop_lens(wavefront, fl_oap6) if use_errors != 0 and end_at_fpm_exit_pupil == 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP6_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap6 / 2.0) proper.prop_propagate(wavefront, d_oap6_lyotstop, 'LYOT_STOP') # while at a pupil, switch back to less padding diam = 2 * proper.prop_get_beamradius(wavefront) (wavefront, dx) = proper.prop_end(wavefront, NOABS=True) n = n_from_lyotstop wavefront = trim(wavefront, n) if output_field_rootname != '': lams = format(lambda_m * 1e6, "6.4f") pols = format(int(round(polaxis))) hdu = pyfits.PrimaryHDU() hdu.data = np.real(wavefront) hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols + '_real.fits', overwrite=True) hdu = pyfits.PrimaryHDU() hdu.data = np.imag(wavefront) hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols + '_imag.fits', overwrite=True) if end_at_fpm_exit_pupil == 1: return wavefront, dx wavefront0 = wavefront.copy() wavefront = 0 wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n) wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0) wavefront0 = 0 if use_lyot_stop != 0: lyot = proper.prop_fits_read(lyot_stop_file) lyot = trim(lyot, n) if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0 or lyot_x_shift_m != 0 or lyot_y_shift_m != 0: # apply shift to lyot stop by FFTing the stop, applying a tilt, and FFTing back if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0: # offsets are normalized to pupil diameter xt = -lyot_x_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n yt = -lyot_y_shift_pupdiam * pupil_diam_pix * float( pupil_diam_pix) / n else: d_m = proper.prop_get_sampling(wavefront) xt = -lyot_x_shift_m / d_m * float(pupil_diam_pix) / n yt = -lyot_y_shift_m / d_m * float(pupil_diam_pix) / n x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1)) y = np.transpose(x) tilt = complex(0, 1) * np.pi * (x * xt + y * yt) x = 0 y = 0 lyot = ffts(lyot, -1) lyot *= np.exp(tilt) lyot = ffts(lyot, 1) lyot = lyot.real tilt = 0 proper.prop_multiply(wavefront, lyot) lyot = 0 if use_pupil_lens != 0 or pinhole_diam_m != 0: proper.prop_circular_aperture(wavefront, 1.1, NORM=True) proper.prop_propagate(wavefront, d_lyotstop_oap7, 'OAP7') proper.prop_lens(wavefront, fl_oap7) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP7_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap7 / 2.0) proper.prop_propagate(wavefront, d_oap7_fieldstop, 'FIELD_STOP') if use_field_stop != 0 and (cor_type == 'hlc' or cor_type == 'hlc_erkin'): sampling_lamD = float( pupil_diam_pix) / n # sampling at focus in lambda_m/D stop_radius = field_stop_radius_lam0 / sampling_lamD * ( lambda0_m / lambda_m) * proper.prop_get_sampling(wavefront) if field_stop_x_offset != 0 or field_stop_y_offset != 0: # convert offsets in lambda0/D to meters x_offset_lamD = field_stop_x_offset * lambda0_m / lambda_m y_offset_lamD = field_stop_y_offset * lambda0_m / lambda_m pupil_ratio = float(pupil_diam_pix) / n field_stop_x_offset_m = x_offset_lamD / pupil_ratio * proper.prop_get_sampling( wavefront) field_stop_y_offset_m = y_offset_lamD / pupil_ratio * proper.prop_get_sampling( wavefront) proper.prop_circular_aperture(wavefront, stop_radius, -field_stop_x_offset_m, -field_stop_y_offset_m) proper.prop_propagate(wavefront, d_fieldstop_oap8, 'OAP8') proper.prop_lens(wavefront, fl_oap8) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_OAP8_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_oap8 / 2.0) proper.prop_propagate(wavefront, d_oap8_filter, 'filter') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FILTER_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_filter / 2.0) proper.prop_propagate(wavefront, d_filter_lens, 'LENS') if use_pupil_lens == 0 and use_defocus_lens == 0 and defocus == 0: # use imaging lens to create normal focus proper.prop_lens(wavefront, fl_lens) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_LENS_phase_error_V1.0.fits', WAVEFRONT=True) elif use_pupil_lens != 0: # use pupil imaging lens proper.prop_lens(wavefront, fl_pupillens) if use_errors != 0: proper.prop_errormap( wavefront, map_dir + 'wfirst_phaseb_PUPILLENS_phase_error_V1.0.fits', WAVEFRONT=True) else: # table is waves P-V @ 575 nm z4_pv_waves = np.array([ -9.0545, -8.5543, -8.3550, -8.0300, -7.54500, -7.03350, -6.03300, -5.03300, -4.02000, -2.51980, 0.00000000, 3.028000, 4.95000, 6.353600, 8.030000, 10.10500, 12.06000, 14.06000, 20.26000, 28.34000, 40.77500, 56.65700 ]) fl_defocus_lens = np.array([ 5.09118, 1.89323, 1.54206, 1.21198, 0.914799, 0.743569, 0.567599, 0.470213, 0.406973, 0.350755, 0.29601868, 0.260092, 0.24516, 0.236606, 0.228181, 0.219748, 0.213278, 0.207816, 0.195536, 0.185600, 0.176629, 0.169984 ]) # subtract ad-hoc function to make z4 vs f_length more accurately spline interpolatible f = fl_defocus_lens / 0.005 f0 = 59.203738 z4t = z4_pv_waves - (0.005 * (f0 - f - 40)) / f**2 / 0.575e-6 if use_defocus_lens != 0: # use one of 4 defocusing lenses defocus = np.array([18.0, 9.0, -4.0, -8.0]) # waves P-V @ 575 nm f = interp1d(z4_pv_waves, z4t, kind='cubic') z4x = f(defocus) f = interp1d(z4t, fl_defocus_lens, kind='cubic') lens_fl = f(z4x) proper.prop_lens(wavefront, lens_fl[use_defocus_lens - 1]) if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_DEFOCUSLENS' + str(use_defocus_lens) + '_phase_error_V1.0.fits', WAVEFRONT=True) defocus = defocus[use_defocus_lens - 1] else: # specify amount of defocus (P-V waves @ 575 nm) f = interp1d(z4_pv_waves, z4t, kind='cubic') z4x = f(defocus) f = interp1d(z4t, fl_defocus_lens, kind='cubic') lens_fl = f(z4x) proper.prop_lens(wavefront, lens_fl) if use_errors != 0: proper.prop_errormap( wavefront, map_dir + 'wfirst_phaseb_DEFOCUSLENS1_phase_error_V1.0.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_lens / 2.0) proper.prop_propagate(wavefront, d_lens_fold4, 'FOLD_4') if use_errors != 0: proper.prop_errormap(wavefront, map_dir + 'wfirst_phaseb_FOLD4_phase_error_V1.1.fits', WAVEFRONT=True) if use_aperture != 0: proper.prop_circular_aperture(wavefront, diam_fold4 / 2.0) if defocus != 0 or use_defocus_lens != 0: if np.abs(defocus) <= 4: proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE', TO_PLANE=True) else: proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE') else: proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE') (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True) if final_sampling_lam0 != 0 or final_sampling_m != 0: if final_sampling_m != 0: mag = sampling_m / final_sampling_m sampling_m = final_sampling_m else: mag = (float(pupil_diam_pix) / n) / final_sampling_lam0 * (lambda_m / lambda0_m) sampling_m = sampling_m / mag wavefront = proper.prop_magnify(wavefront, mag, output_dim, AMP_CONSERVE=True) else: wavefront = trim(wavefront, output_dim) return wavefront, sampling_m
def deformable_mirror(wf, WFS_map, iter, previous_output=None, apodize=False, plane_name='', debug=False): """ combine different DM actuator commands into single map to send to prop_dm prop_dm needs an input map of n_actuators x n_actuators in units of actuator command height. quick_ao will handle the conversion to actuator command height, and the CDI probe must be scaled in cdi.probe_amp in params in units of m. Each subroutine is also responsible for creating a map of n_actuators x n_actuators spacing. prop_dm handles the resampling of this map onto the wavefront, including the influence function. Its some wizardry that happens in c, and presumably it is taken care of so you don't have to worry about it. In the call to proper.prop_dm, we apply the flag tp.fit_dm, which switches between two 'modes' of proper's DM surface fitting. If FALSE, the DM is driven to the heights specified by dm_map, and the influence function will act on these heights to define the final surface shape applied to the DM, which may differ substantially from the initial heights specified by dm_map. If TRUE, proper will iterate applying the influence function to the input heights, and adjust the heights until the difference between the influenced-map and input map meets some proper-defined convergence criterea. Setting tp.fit_dm=TRUE will obviously slow down the code, but will (likely) more accurately represent a well-calibrated DM response function. much of this code copied over from example from Proper manual on pg 94 :param wf: single wavefront :param WFS_map: wavefront sensor map, should be in units of phase delay :param previous_output: :param iter: the current index of iteration (which timestep this is) :param plane_name: name of plane (should be 'woofer' or 'tweeter' for best functionality) :return: nothing is returned, but the probe map has been applied to the DM via proper.prop_dm. DM plane post DM application can be saved via the sp.save_list functionality """ assert np.logical_xor(WFS_map is None, previous_output is None) # AO Actuator Count from DM Type if plane_name == 'tweeter' and hasattr(tp, 'act_tweeter'): nact = tp.act_tweeter elif plane_name == 'woofer' and hasattr(tp, 'act_woofer'): nact = tp.act_woofer else: nact = tp.ao_act # DM Coordinates nact_across_pupil = nact - 2 # number of full DM actuators across pupil (oversizing DM extent) dm_xc = ( nact / 2 ) # The location of the optical axis (center of the wavefront) on the DM in dm_yc = ( nact / 2 ) # actuator units. First actuator is centered on (0.0, 0.0). The 0.5 is a # parameter introduced/tuned by Rupert to remove weird errors (address this). # KD verified this needs to be here or else suffer weird errors 9/19 # TODO address/remove the 0.5 in DM x,y coordinates ############################ # Creating DM Surface Map ############################ d_beam = 2 * proper.prop_get_beamradius(wf) # beam diameter act_spacing = d_beam / nact_across_pupil # actuator spacing [m] ####### # AO ####### if previous_output is not None and WFS_map is None: dm_map = update_dm(previous_output) else: dm_map = quick_ao(wf, nact, WFS_map[wf.iw]) ######### # Waffle ######### if tp.satelite_speck['apply'] and plane_name is not 'woofer': waffle = make_speckle_kxy(tp.satelite_speck['xloc'], tp.satelite_speck['yloc'], tp.satelite_speck['amp'], tp.satelite_speck['phase']) waffle += make_speckle_kxy(tp.satelite_speck['xloc'], -tp.satelite_speck['yloc'], tp.satelite_speck['amp'], tp.satelite_speck['phase']) dm_map += waffle ####### # CDI ###### if cdi.use_cdi and plane_name == cdi.which_DM: theta = cdi.phase_series[iter] if not np.isnan(theta): # dprint(f"Applying CDI probe, lambda = {wfo.wsamples[iw]*1e9:.2f} nm") cdi.save_tseries(iter, datetime.datetime.now()) probe = config_probe(theta, nact, iw=wf.iw, ib=wf.ib, tstep=iter) dm_map = dm_map + probe # Add Probe to DM map ######################### # Applying Piston Error ######################### if tp.piston_error: mean_dm_map = np.mean(np.abs(dm_map)) var = 1e-4 # 1e-11 dm_map = dm_map + np.random.normal(0, var, (dm_map.shape[0], dm_map.shape[1])) ######################### # proper.prop_dm ######################### dmap = proper.prop_dm(wf, dm_map, dm_xc, dm_yc, act_spacing, FIT=tp.fit_dm) # if debug and wf.iw == 0 and wf.ib == 0 and iter == 0: dprint(plane_name) check_sampling(wf, iter, plane_name + ' DM pupil plane', getframeinfo(stack()[0][0]), units='mm') quick2D(WFS_map[wf.iw], title=f"WFS map after masking", zlabel='unwrapped phase (rad)', vlim=[-3 * np.pi, 3 * np.pi]) fig, ax = plt.subplots(1, 1) cax = ax.imshow(dm_map * 1e9, interpolation='none', origin='lower') plt.title(f'{plane_name} dm_map (actuator coordinates)') cb = plt.colorbar(cax) cb.set_label('nm') plt.show() post_ao = unwrap_phase( proper.prop_get_phase(wf)) * wf.lamda / (2 * np.pi) # quick2D(pre_ao_dist*1e9, title='unwrapped wavefront before DM', zlabel='nm', show=False) # , vlim=(-0.5e-7,0.5e-7)) # quick2D(np.abs(pre_ao_amp)**2, title='Pre-AO Intensity', show=False)#, vlim=(-0.5e-7,0.5e-7)) # quick2D(dmap, title='the phase map prop_dm is applying', zlabel='distance (m)', show=False)#, vlim=(-0.5e-7,0.5e-7)) # plt.figure() # plt.plot(pre_ao_dist[len(pre_ao_dist)//2], label=f'pre_ao 1D cut, row {len(pre_ao_dist)//2}') # plt.plot(2*dmap[len(dmap)//2], label=f'dmap 1D cut (x2), row {len(dmap)//2}') # plt.plot((pre_ao_dist + (2*dmap))[len(dmap)//2], label='difference') # plt.legend() # plt.xlim(sp.grid_size//2*np.array([1-sp.beam_ratio*1.1, 1+sp.beam_ratio*1.1])) # quick2D(pre_ao + (2*dmap), title='diff', zlabel='m', show=False, vlim=(-0.5e-7,0.5e-7)) # quick2D(post_ao, title='unwrapped wavefront after DM', zlabel='m', show=True, vlim=(-0.5e-7,0.5e-7)) # quick2D(np.abs(proper.prop_get_amplitude(wf))**2, title='wavefront after DM intensity', show=False) # quick2D(proper.prop_get_phase(wf), title='wavefront after DM in phase units', zlabel='Phase', # show=True) # colormap='sunlight', if apodize: hardmask_pupil(wf) return dmap
def propcustom_dm(wf, dm_z0, dm_xc, dm_yc, spacing=0., **kwargs): """ Generate a deformable mirror surface almost exactly like PROPER. Simulate a deformable mirror of specified actuator spacing, including the effects of the DM influence function. Has two more optional keywords compared to proper.prop_dm Parameters ---------- wf : obj WaveFront class object dm_z0 : str or numpy ndarray Either a 2D numpy array containing the surface piston of each DM actuator in meters or the name of a 2D FITS image file containing the above dm_xc, dm_yc : list or numpy ndarray The location of the optical axis (center of the wavefront) on the DM in actuator units (0 ro num_actuator-1). The center of the first actuator is (0.0, 0.0) spacing : float Defines the spacing in meters between actuators; must not be used when n_act_across_pupil is specified. Returns ------- dmap : numpy ndarray Returns DM surface (not wavefront) map in meters Other Parameters ---------------- FIT : bool Switch that tells routine that the values in "dm_z" are the desired surface heights rather than commanded actuator heights, and so the routine should fit this map, accounting for actuator influence functions, to determine the necessary actuator heights. An iterative error-minimizing loop is used for the fit. NO_APPLY : bool If set, the DM pattern is not added to the wavefront. Useful if the DM surface map is needed but should not be applied to the wavefront N_ACT_ACROSS_PUPIL : int Specifies the number of actuators that span the X-axis beam diameter. If it is a whole number, the left edge of the left pixel is aligned with the left edge of the beam, and the right edge of the right pixel with the right edge of the beam. This determines the spacing and size of the actuators. Should not be used when "spacing" value is specified. XTILT, YTILT, ZTILT : float Specify the rotation of the DM surface with respect to the wavefront plane in degrees about the X, Y, Z axes, respectively, with the origin at the center of the wavefront. The DM surface is interpolated and orthographically projected onto the wavefront grid. The coordinate system assumes that the wavefront and initial DM surface are in the X,Y plane with a lower left origin with Z towards the observer. The rotations are left handed. The default rotation order is X, Y, then Z unless the /ZYX switch is set. XYZ or ZYX : bool Specifies the rotation order if two or more of XTILT, YTILT, or ZTILT are specified. The default is /XYZ for X, Y, then Z rotations. inf_fn : string specify a new influence function as a FITS file with the same header keywords as PROPER's default influence function. Needs these values in info.PrimaryData.Keywords: 'P2PDX_M' % pixel width x (m) 'P2PDY_M' % pixel width y (m) 'C2CDX_M' % actuator pitch x (m) 'C2CDY_M' % actuator pitch y (m) inf_sign : {+,-} specifies the sign (+/-) of the influence function. Given as an option because the default influence function file is positive, but positive DM actuator commands make a negative deformation for Xinetics and BMC DMs. Raises ------ ValueError: User cannot specify both actuator spacing and N_ACT_ACROSS_PUPIL ValueError: User must specify either actuator spacing or N_ACT_ACROSS_PUPIL """ if "ZYX" in kwargs and "XYZ" in kwargs: raise ValueError('PROP_DM: Error: Cannot specify both XYZ and ZYX ' + 'rotation orders. Stopping') elif "ZYX" not in kwargs and 'XYZ' not in kwargs: XYZ = 1 # default is rotation around X, then Y, then Z # ZYX = 0 elif "ZYX" in kwargs: # ZYX = 1 XYZ = 0 elif "XYZ" in kwargs: XYZ = 1 # ZYX = 0 if "XTILT" in kwargs: xtilt = kwargs["XTILT"] else: xtilt = 0. if "YTILT" in kwargs: ytilt = kwargs["YTILT"] else: ytilt = 0. if "ZTILT" in kwargs: ztilt = kwargs["ZTILT"] else: ztilt = 0. if type(dm_z0) == str: dm_z = proper.prop_fits_read(dm_z0) # Read DM setting from FITS file else: dm_z = dm_z0 if "inf_fn" in kwargs: inf_fn = kwargs["inf_fn"] else: inf_fn = "influence_dm5v2.fits" if "inf_sign" in kwargs: if(kwargs["inf_sign"] == '+'): sign_factor = 1. elif(kwargs["inf_sign"] == '-'): sign_factor = -1. else: sign_factor = 1. n = proper.prop_get_gridsize(wf) dx_surf = proper.prop_get_sampling(wf) # sampling of surface in meters beamradius = proper.prop_get_beamradius(wf) # Default influence function sampling is 0.1 mm, peak at (x,y)=(45,45) # Default influence function has shape = 1x91x91. Saving it as a 2D array # before continuing with processing dir_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "data") inf = proper.prop_fits_read(os.path.join(dir_path, inf_fn)) inf = sign_factor*np.squeeze(inf) s = inf.shape nx_inf = s[1] ny_inf = s[0] xc_inf = nx_inf // 2 yc_inf = ny_inf // 2 dx_inf = 0.1e-3 # influence function spacing in meters dx_dm_inf = 1.0e-3 # nominal spacing between DM actuators in meters inf_mag = 10 if spacing != 0 and "N_ACT_ACROSS_PUPIL" in kwargs: raise ValueError("PROP_DM: User cannot specify both actuator spacing" + "and N_ACT_ACROSS_PUPIL. Stopping.") if spacing == 0 and "N_ACT_ACROSS_PUPIL" not in kwargs: raise ValueError("PROP_DM: User must specify either actuator spacing" + " or N_ACT_ACROSS_PUPIL. Stopping.") if "N_ACT_ACROSS_PUPIL" in kwargs: dx_dm = 2. * beamradius / int(kwargs["N_ACT_ACROSS_PUPIL"]) else: dx_dm = spacing dx_inf = dx_inf * dx_dm / dx_dm_inf # Influence function sampling scaled # to specified DM actuator spacing if "FIT" in kwargs: x = (np.arange(5, dtype=np.float64) - 2) * dx_dm if proper.use_cubic_conv: inf_kernel = proper.prop_cubic_conv(inf.T, x/dx_inf+xc_inf, x/dx_inf+yc_inf, GRID=True) else: xygrid = np.meshgrid(x/dx_inf+xc_inf, x/dx_inf+yc_inf) inf_kernel = map_coordinates(inf.T, xygrid, order=3, mode="nearest") (dm_z_commanded, dms) = proper.prop_fit_dm(dm_z, inf_kernel) else: dm_z_commanded = dm_z s = dm_z.shape nx_dm = s[1] ny_dm = s[0] # Create subsampled DM grid margin = 9 * inf_mag nx_grid = nx_dm * inf_mag + 2 * margin ny_grid = ny_dm * inf_mag + 2 * margin xoff_grid = margin + inf_mag/2 # pixel location of 1st actuator center in subsampled grid yoff_grid = xoff_grid dm_grid = np.zeros([ny_grid, nx_grid], dtype = np.float64) x = np.arange(nx_dm, dtype=int) * int(inf_mag) + int(xoff_grid) y = np.arange(ny_dm, dtype=int) * int(inf_mag) + int(yoff_grid) dm_grid[np.tile(np.vstack(y), (nx_dm,)), np.tile(x, (ny_dm, 1))] = dm_z_commanded dm_grid = ss.fftconvolve(dm_grid, inf, mode='same') # 3D rotate DM grid and project orthogonally onto wavefront xdim = int(np.round(np.sqrt(2) * nx_grid * dx_inf / dx_surf)) # grid dimensions (pix) projected onto wavefront ydim = int(np.round(np.sqrt(2) * ny_grid * dx_inf / dx_surf)) if xdim > n: xdim = n if ydim > n: ydim = n x = np.ones((ydim, 1), dtype=int) * ((np.arange(xdim) - xdim // 2) * dx_surf) y = (np.ones((xdim, 1), dtype=int) * ((np.arange(ydim) - ydim // 2) * dx_surf)).T a = xtilt * np.pi / 180 b = ytilt * np.pi / 180 g = ztilt * np.pi /180 if XYZ: m = np.array([[cos(b)*cos(g), -cos(b)*sin(g), sin(b), 0], [cos(a)*sin(g) + sin(a)*sin(b)*cos(g), cos(a)*cos(g)-sin(a)*sin(b)*sin(g), -sin(a)*cos(b), 0], [sin(a)*sin(g)-cos(a)*sin(b)*cos(g), sin(a)*cos(g)+cos(a)*sin(b)*sin(g), cos(a)*cos(b), 0], [0, 0, 0, 1] ]) else: m = np.array([ [cos(b)*cos(g), cos(g)*sin(a)*sin(b)-cos(a)*sin(g), cos(a)*cos(g)*sin(b)+sin(a)*sin(g), 0], [cos(b)*sin(g), cos(a)*cos(g)+sin(a)*sin(b)*sin(g), -cos(g)*sin(a)+cos(a)*sin(b)*sin(g), 0], [-sin(b), cos(b)*sin(a), cos(a)*cos(b), 0], [0, 0, 0, 1] ]) # Forward project a square edge = np.array([[-1.0, -1.0, 0.0, 0.0], [1.0, -1.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], [-1.0, 1.0, 0.0, 0.0]]) new_xyz = np.dot(edge, m) # determine backward projection for screen-raster-to-DM-surce computation dx_dxs = (new_xyz[0, 0] - new_xyz[1, 0]) / (edge[0, 0] - edge[1, 0]) dx_dys = (new_xyz[1, 0] - new_xyz[2, 0]) / (edge[1, 1] - edge[2, 1]) dy_dxs = (new_xyz[0, 1] - new_xyz[1, 1]) / (edge[0, 0] - edge[1, 0]) dy_dys = (new_xyz[1, 1] - new_xyz[2, 1]) / (edge[1, 1] - edge[2, 1]) xs = (x/dx_dxs - y*dx_dys/(dx_dxs*dy_dys)) / \ (1 - dy_dxs*dx_dys/(dx_dxs*dy_dys)) ys = (y/dy_dys - x*dy_dxs/(dx_dxs*dy_dys)) / \ (1 - dx_dys*dy_dxs/(dx_dxs*dy_dys)) xdm = (xs + dm_xc * dx_dm) / dx_inf + xoff_grid ydm = (ys + dm_yc * dx_dm) / dx_inf + yoff_grid if proper.use_cubic_conv: grid = proper.prop_cubic_conv(dm_grid.T, xdm, ydm, GRID = False) grid = grid.reshape([xdm.shape[1], xdm.shape[0]]) else: grid = map_coordinates(dm_grid.T, [xdm, ydm], order=3, mode="nearest", prefilter = True) dmap = np.zeros([n, n], dtype=np.float64) nx_grid, ny_grid = grid.shape xmin, xmax = n // 2 - xdim // 2, n // 2 - xdim // 2 + nx_grid ymin, ymax = n // 2 - ydim // 2, n // 2 - ydim // 2 + ny_grid dmap[ymin:ymax, xmin:xmax] = grid if "NO_APPLY" not in kwargs: proper.prop_add_phase(wf, 2 * dmap) # convert surface to WFE return dmap
def adaptive_optics(wfo, iwf, iw, f_lens, beam_ratio, iter): # print 'Including Adaptive Optics' # PSF = proper.prop_shift_center(np.abs(wfo.wfarr)**2) # quicklook_im(obj_map, logAmp=False) # code to distort measured phase map goes here.... # print 'add code to distort phase measurment' nact = tp.ao_act #49 # number of DM actuators along one axis nact_across_pupil = nact - 2 #/1.075#nact #47 # number of DM actuators across pupil dm_xc = (nact / 2) - 0.5 #-1#0.5#- 0.5 dm_yc = (nact / 2) - 0.5 #-1#0.5#- 0.5 d_beam = 2 * proper.prop_get_beamradius(wfo) # beam diameter # dprint((d_beam, d_beam/nact_across_pupil)) act_spacing = d_beam / (nact_across_pupil) # actuator spacing map_spacing = proper.prop_get_sampling(wfo) # map sampling # have passed through focus, so pupil has rotated 180 deg; # need to rotate error map (also need to shift due to the way # the rotate() function operates to recenter map) # obj_map = np.roll(np.roll(np.rot90(obj_map, 2), 1, 0), 1, 1) # obj_map = np.roll(obj_map, 1, -1) # quicklook_im(obj_map[45:83,45:83], logAmp=False, show=False) # plt.figure() # plt.plot(range(44, 84), obj_map[64, 44:84]) # print map_spacing # interpolate map to match number of DM actuators # print map_spacing/act_spacing # print 'Interpolation boundary uncertainty is likely because of beam ratio causing a non-integer' # print '128*0.3 ~ 38 so thats what is being used for now. Needs some T.L.C.' # true_width = tp.grid_size*beam_ratio # width = int(np.ceil(true_width)) # # width = int(np.ceil(tp.grid_size*beam_ratio)) # if width%2 != 0: # width += 1 # exten = width/true_width # print exten # mid = int(tp.grid_size/2.) # lower = int(mid-width/2.) # upper = int(mid+width/2.) # print width, mid, lower, upper # # # # f= interpolate.interp2d(range(width+1), range(width+1), obj_map[lower:upper, lower:upper]) # # dm_map = f(np.linspace(0,width+1,nact),np.linspace(0,width+1,nact)) # # import skimage.transform # dm_map = skimage.transform.resize(obj_map[lower:upper, lower:upper], (nact,nact)) # print map_spacing, act_spacing, map_spacing/act_spacing try: with open(iop.CPA_meas, 'rb') as handle: CPA_maps, iters = pickle.load(handle) except EOFError: print 'CPA file not ready?' import time time.sleep(10) with open(iop.CPA_meas, 'rb') as handle: CPA_maps, iters = pickle.load(handle) # loop_frames(CPA_maps, logAmp=False) if iwf[:9] == 'companion': CPA_map = CPA_maps[1, iw] else: CPA_map = CPA_maps[0, iw] # loop_frames(CPA_maps, logAmp=False) # quicklook_im(CPA_map, logAmp=False) # dprint((map_spacing, act_spacing, map_spacing/act_spacing)) # dm_map = proper.prop_magnify(CPA_map, map_spacing/act_spacing, nact) dm_map = CPA_map[tp.grid_size / 2 - (beam_ratio * tp.grid_size / 2):tp.grid_size / 2 + (beam_ratio * tp.grid_size / 2) + 1, tp.grid_size / 2 - (beam_ratio * tp.grid_size / 2):tp.grid_size / 2 + (beam_ratio * tp.grid_size / 2) + 1] f = interpolate.interp2d(range(dm_map.shape[0]), range(dm_map.shape[0]), dm_map) dm_map = f(np.linspace(0, dm_map.shape[0], nact), np.linspace(0, dm_map.shape[0], nact)) # quicklook_im(dm_map, logAmp=False, show=True) dm_map = -dm_map * proper.prop_get_wavelength(wfo) / (4 * np.pi ) #<--- here # dm_map = -dm_map * proper.prop_get_wavelength(wfo) / (2 * np.pi) # dm_map = np.zeros((65,65)) # quicklook_im(dm_map, logAmp=False, show=True, colormap='jet') # if tp.piston_error: # mean_dm_map = np.mean(np.abs(dm_map)) # var = mean_dm_map/200.#40. # print var # # var = 0.001#1e-11 # if var != 0.0: # dm_map = dm_map + np.random.normal(0, var, (dm_map.shape[0], dm_map.shape[1])) # quicklook_im(dm_map, logAmp=False, show=True, colormap='jet') # plt.figure() # quicklook_wf(wfo) # plt.plot(np.linspace(44, 84, nact),dm_map[16]) # plt.figure() # quicklook_im( obj_map[lower:upper, lower:upper], logAmp=False, show=True) # act_spacing /= 0.625 # print act_spacing, proper.prop_get_beamradius(wfo) # Need to put on opposite pattern; convert wavefront error to surface height # plt.plot(range(44,84), proper.prop_get_phase(wfo)[64, 44:84]) # proper.prop_add_phase(wfo, waffle) # quicklook_im(dm_map) if tp.active_null: with open(iop.NCPA_meas, 'rb') as handle: _, null_map, _ = pickle.load(handle) # dprint('null_map') # quicklook_im(null_map, logAmp=False) # dm_NCPA = -proper.prop_magnify(NCPA_map, map_spacing / act_spacing, nact) dm_NCPA = null_map * proper.prop_get_wavelength(wfo) / (4 * np.pi) # quicklook_im(dm_map, logAmp=False) dm_map += dm_NCPA # quicklook_im(dm_map, logAmp=False, show=True, colormap ='jet') # dm_map /= 2 # if tp.speckle_kill: # with open(iop.NCPA_meas, 'rb') as handle: # Imaps, NCPA_map,_ = pickle.load(handle) # quicklook_im(NCPA_map, logAmp=False) # loop_frames(Imaps+1e-9, logAmp=True) # with open(iop.NCPA_meas, 'rb') as handle: # _, NCPA_map,_ = pickle.load(handle) # quicklook_im(NCPA_map, logAmp=False) # # dm_NCPA = -proper.prop_magnify(NCPA_map, map_spacing / act_spacing, nact) # dm_NCPA = dm_NCPA*proper.prop_get_wavelength(wfo)/(4*np.pi) # # # quicklook_im(dm_map, logAmp=False) # dm_map = dm_NCPA if tp.active_modulate and iter >= 8: # import dm_functions as DM # # speck.generate_flatmap(phase) # s_amp = DM.amplitudemodel(0.05, 30, c=1.6) # tp.null_ao_act = tp.ao_act # xloc, yloc = 4, 0 # # rotate_angle = iter%30 * 360/30 # # rotate_angle = np.pi * rotate_angle / 180. # # rot_matrix = [[np.cos(rotate_angle), -np.sin(rotate_angle)], [np.sin(rotate_angle), np.cos(rotate_angle)]] # # xloc, yloc = np.matmul(rot_matrix, [xloc, yloc]) # # phase = iter % 10 * 2 * np.pi / 10. # s_amp = iter % 5 * s_amp/ 5. # print xloc, yloc, phase # waffle = DM.make_speckle_kxy(xloc, yloc, s_amp, phase) / 1e6 # waffle += DM.make_speckle_kxy(yloc, xloc, s_amp, -phase) / 1e6 # waffle += DM.make_speckle_kxy(0.71 * xloc, 0.71 * xloc, s_amp, -phase) / 1e6 # waffle += DM.make_speckle_kxy(0.71 * xloc, -0.71 * xloc, s_amp, -phase) / 1e6 # waffle /= 4 # # quicklook_im(waffle, logAmp=False) # # print dm_map.shape # # print waffle.shape # # dmap =proper.prop_dm(wfo, waffle, dm_xc, dm_yc, N_ACT_ACROSS_PUPIL=nact, FIT = True) # dm_map = -dm_map * proper.prop_get_wavelength(wfo) / (4 * np.pi * 5) * (iter % 10 - 5) print 1 / 5. * (iter % 10 - 5) dm_map = dm_map / 5. * (iter % 10 - 5) # dmap = proper.prop_dm(wfo, pattern, dm_xc, dm_yc, # N_ACT_ACROSS_PUPIL=nact, FIT=True) # quicklook_wf(wfo) # quicklook_wf(wfo) # dmap =proper.prop_dm(wfo, dm_map, dm_xc, dm_yc, N_ACT_ACROSS_PUPIL=nact, FIT = True) #<-- here dmap = proper.prop_dm(wfo, dm_map, dm_xc, dm_yc, act_spacing, FIT=True) #<-- here # quicklook_im(dmap, logAmp=False, show=True) # quicklook_im(CPA_map*proper.prop_get_wavelength(wfo)/(4*np.pi), logAmp=False) # quicklook_im(CPA_map*proper.prop_get_wavelength(wfo)/(4*np.pi) + dmap, logAmp=False, show=True) # # # There's a boundary effect that needs to be mitigated # phase_map = proper.prop_get_phase(wfo) # artefacts = np.abs(phase_map) > 1 # # print np.shape(artefacts), np.shape(phase_map) # # quicklook_im(phase_map, logAmp=False) # # width = round(tp.grid_size*beam_ratio) # mid = int(tp.grid_size/2.) # lower = int(mid-width/2.) # upper = int(mid+width/2.) # mask = np.zeros((tp.grid_size, tp.grid_size)) # mask[upper,:] = 1 # mask[:, upper] = 1 # mask[lower,:] = 1 # mask[:,lower] = 1 # mask = mask*artefacts # # # print width, upper # # # wfo.wfarr[upper] = phase_map[tp.grid_size/2,tp.grid_size/2] # # quicklook_im( phase_map*mask, logAmp=False) # # proper.prop_add_phase(wfo,-phase_map*mask*proper.prop_get_wavelength(wfo)/(2*np.pi)) # quicklook_IQ(wfo) # I = np.real(wfo.wfarr) # Q = np.imag(wfo.wfarr) # I = proper.prop_shift_center(I) # Q = proper.prop_shift_center(Q) # Q[89] = 0 # Q[:,89] = 0 # # Q[39] = 0 # # Q[:,39] = 0 # I = proper.prop_shift_center(I) # Q = proper.prop_shift_center(Q) # wfo.wfarr = I+1j*Q # quicklook_wf(wfo) # quicklook_IQ(wfo) # print phase_map[artefacts] # plt.imshow(phase_map) # # plt.figure() # # plt.imshow(dmap) # # # plt.show() # # # proper.prop_propagate(wfo, f_lens, "coronagraph lens") # quicklook_wf(wfo) return
def propcustom_zernikes(a, zernike_num, zernike_val, eps=0., **kwargs): """ Add Zernike-polynomial wavefront errors to current wavefront. Noll ordering is used and a circular system is assumed. An arbitrary number of Zernikes normalized for an unobscured circular region can be computed, but only the first 22 Zernikes can be computed normalized for a centrally-obscured region. Parameters ---------- a : object WaveFront class object zernike_num : numpy ndarray Scalar or 1D array specifying which Zernike polynomials to include zernike_val : numpy ndarray Scalar or 1D array containing Zernike coefficients (in meters of RMS wavefront phase error or dimensionless RMS amplitude error) for Zernike polynomials indexed by "zernike_num". eps : float Central obscuration ratio (0.0-1.0); default is 0.0 Returns ------- None Adds wavefront errors to current wavefront array dmap : numpy ndarray Aberration map Other Parameters ---------------- AMPLITUDE : bool Optional keyword that specifies that the Zernike values in "zernike_val" represent the wavefront RMS amplitude (rather than phase) variation. The current wavefront will be multipled by the generated map. NAME : str String containing name of surface that will be printed when executed. NO_APPLY : bool If set, the aberration map will be generated but will not be applied to the wavefront. This is useful if you just want to generate a map for your own use and modification (e.g. to create an error map for a multi- segmented system, each with its own aberration map). RADIUS : float Optional keyword specifying the radius to which the Zernike polynomials are normalized. If not specified, the pilot beam radius is used. CENTERING : str String containing the centering of the array. "interpixel" centers the array between pixels. Any other value gives pixel centering. Raises ------ ValueError: Maximum index for an obscured Zernike polynomial is 22 Notes ----- The user specifies 1D arrays containing the Zernike polynomial coefficient indicies, the respective coefficients, and if an obstructed circular aperture the central obscuration ratio. A wavefront error map will be generated and added to the current wavefront. Zernike index and corresponding aberration for 1st 22 zernikes 1 : Piston 2 : X tilt 3 : Y tilt 4 : Focus 5 : 45 degree astigmatism 6 : 0 degree astigmatism 7 : Y coma 8 : X coma 9 : Y clover (trefoil) 10 : X clover (trefoil) 11 : 3rd order spherical 12 : 5th order 0 degree astig 13 : 5th order 45 degree astig 14 : X quadrafoil 15 : Y quadrafoil 16 : 5th order X coma 17 : 5th order Y coma 18 : 5th order X clover 19 : 5th order Y clover 20 : X pentafoil 21 : Y pentafoil 22 : 5th order spherical Update - JEK - Fixed use of ** instead of ** in obscured Zernikes Update - AR - Added CENTERING as keyword """ zernike_num = np.asarray(zernike_num) zernike_val = np.asarray(zernike_val) n = proper.n if proper.print_it and not ("NO_APPLY" in kwargs and kwargs["NO_APPLY"]): if "NAME" in kwargs: print("Applying aberrations at %s" % kwargs["NAME"]) else: print("Applying aberrations") max_z = zernike_num.max() if eps != 0. and max_z > 22: raise ValueError("PROP_ZERNIKES: Maximum index for an obscured Zernike polynomial is 22.") dmap = np.zeros([n, n], dtype=np.float64) if "RADIUS" not in kwargs: beam_radius = proper.prop_get_beamradius(a) else: beam_radius = kwargs["RADIUS"] dx = proper.prop_get_sampling(a) / beam_radius x_offset = 0. y_offset = 0. if("CENTERING" in kwargs): if kwargs["CENTERING"] not in _VALID_CENTERING: raise ValueError(_CENTERING_ERR) # Shift by half pixel if('interpixel' in kwargs["CENTERING"]): x_offset = dx/2. y_offset = dx/2. x = (np.arange(n, dtype=np.float64) - n//2) * dx + x_offset # x_pow_2 = x**2 if (eps == 0.): # get list of executable equations defining Zernike polynomials zlist, maxrp, maxtc = proper.prop_noll_zernikes(max_z, COMPACT=True, EXTRA_VALUES=True) for j in range(n): ab = np.zeros(n, dtype=np.float64) y = (j - n//2) * dx + y_offset r = np.sqrt(x**2 + y**2) t = np.arctan2(y, x) # predefine r**power, cos(const*theta), sin(const*theta) vectors for i in range(2, maxrp+1): rps = str(i).strip() cmd = "r_pow_" + rps + " = r**i" exec(cmd) for i in range(1, maxtc+1): tcs = str(i).strip() cmd = "cos" + tcs + "t = np.cos(i*t)" exec(cmd) cmd = "sin" + tcs + "t = np.sin(i*t)" exec(cmd) # assemble aberrations for iz in range(zernike_num.size): tmp = eval(zlist[zernike_num[iz]]) ab += zernike_val[iz] * tmp dmap[j, :] += ab else: for j in range(n): y = (j-n//2) * dx + y_offset r = np.sqrt(x**2 + y**2) r2 = r**2 r3 = r**3 r4 = r**4 r5 = r**5 t = np.arctan2(y, x) for iz in range(len(zernike_num)): if zernike_num[iz] == 1: ab = 1. elif zernike_num[iz] == 2: ab = (2*r*np.cos(t))/np.sqrt(1 + eps**2) elif zernike_num[iz] == 3: ab = (2*r*np.sin(t))/np.sqrt(1 + eps**2) elif zernike_num[iz] == 4: ab = (np.sqrt(3)*(1 + eps**2 - 2*r2))/(-1 + eps**2) elif zernike_num[iz] == 5: ab = (np.sqrt(6)*r2*np.sin(2*t))/np.sqrt(1 + eps**2 + eps**4) elif zernike_num[iz] == 6: ab = (np.sqrt(6)*r2*np.cos(2*t))/np.sqrt(1 + eps**2 + eps**4) elif zernike_num[iz] == 7: ab = (2*np.sqrt(2)*r*(2 + 2*eps**4 - 3*r2 + eps**2*(2 - 3*r2))*np.sin(t))/((-1 + eps**2)*np.sqrt(1 + 5*eps**2 + 5*eps**4 + eps**6)) elif zernike_num[iz] == 8: ab = (2*np.sqrt(2)*r*(2 + 2*eps**4 - 3*r2 + eps**2*(2 - 3*r2))*np.cos(t))/((-1 + eps**2)*np.sqrt(1 + 5*eps**2 + 5*eps**4 + eps**6)) elif zernike_num[iz] == 9: ab = (2*np.sqrt(2)*r3*np.sin(3*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6) elif zernike_num[iz] == 10: ab = (2*np.sqrt(2)*r3*np.cos(3*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6) elif zernike_num[iz] == 11: ab = (np.sqrt(5)*(1 + eps**4 - 6*r2 + 6*r4 + eps**2*(4 - 6*r2)))/ (-1 + eps**2)**2 elif zernike_num[iz] == 12: ab = (np.sqrt(10)*r2*(3 + 3*eps**6 - 4*r2 + eps**2*(3 - 4*r2) + eps**4*(3 - 4*r2))*np.cos(2*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4)*(1 + 4*eps**2 + 10*eps**4 + 4*eps**6 + eps**8))) elif zernike_num[iz] == 13: ab = (np.sqrt(10)*r2*(3 + 3*eps**6 - 4*r2 + eps**2*(3 - 4*r2) + eps**4*(3 - 4*r2))*np.sin(2*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4)*(1 + 4*eps**2 + 10*eps**4 + 4*eps**6 + eps**8))) elif zernike_num[iz] == 14: ab = (np.sqrt(10)*r4*np.cos(4*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8) elif zernike_num[iz] == 15: ab = (np.sqrt(10)*r4*np.sin(4*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8) elif zernike_num[iz] == 16: ab = (2*np.sqrt(3)*r*(3 + 3*eps**8 - 12*r2 + 10*r4 - 12*eps**6*(-1 + r2) + 2*eps**4*(15 - 24*r2 + 5*r4) + 4*eps**2*(3 - 12*r2 + 10*r4))*np.cos(t))/((-1 + eps**2)**2*np.sqrt((1 + 4*eps**2 + eps**4)* (1 + 9*eps**2 + 9*eps**4 + eps**6))) elif zernike_num[iz] == 17: ab = (2*np.sqrt(3)*r*(3 + 3*eps**8 - 12*r2 + 10*r4 - 12*eps**6*(-1 + r2) + 2*eps**4*(15 - 24*r2 + 5*r4) + 4*eps**2*(3 - 12*r2 + 10*r4))*np.sin(t))/((-1 + eps**2)**2*np.sqrt((1 + 4*eps**2 + eps**4)* (1 + 9*eps**2 + 9*eps**4 + eps**6))) elif zernike_num[iz] == 18: ab = (2*np.sqrt(3)*r3*(4 + 4*eps**8 - 5*r2 + eps**2*(4 - 5*r2) + eps**4*(4 - 5*r2) + eps**6*(4 - 5*r2))*np.cos(3*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4 + eps**6)*(1 + 4*eps**2 + 10*eps**4 + 20*eps**6 + 10*eps**8 + 4*eps**10 + eps**12))) elif zernike_num[iz] == 19: ab = (2*np.sqrt(3)*r3*(4 + 4*eps**8 - 5*r2 + eps**2*(4 - 5*r2) + eps**4*(4 - 5*r2) + eps**6*(4 - 5*r2))*np.sin(3*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4 + eps**6)*(1 + 4*eps**2 + 10*eps**4 + 20*eps**6 + 10*eps**8 + 4*eps**10 + eps**12))) elif zernike_num[iz] == 20: ab = (2*np.sqrt(3)*r5*np.cos(5*t))/ np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8 + eps**10) elif zernike_num[iz] == 21: ab = (2*np.sqrt(3)*r5*np.sin(5*t))/ np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8 + eps**10) elif zernike_num[iz] == 22: ab = (np.sqrt(7)*(1 + eps**6 - 12*r2 + 30*r4 - 20*r**6 + eps**4*(9 - 12*r2) + eps**2*(9 - 36*r2 + 30*r4)))/ (-1 + eps**2)**3 dmap[j, :] += zernike_val[iz] * ab if not ("NO_APPLY" in kwargs and kwargs["NO_APPLY"]): if ("AMPLITUDE" in kwargs and kwargs["AMPLITUDE"]): a.wfarr *= proper.prop_shift_center(dmap) else: i = complex(0, 1) a.wfarr *= np.exp(i*2*np.pi/a.lamda*proper.prop_shift_center(dmap)) return dmap