def super_vertex(knns, k, th, th_step, max_sz):
    pairs, scores = filter_knns(knns, k, th)
    assert len(pairs) == len(scores)
    if len(pairs) == 0:
        return []
    components = graph_clustering_dynamic_th(pairs, scores, max_sz, th_step)
    return components
def test_lgcn(model, cfg, logger):
    for k, v in cfg.model['kwargs'].items():
        setattr(cfg.test_data, k, v)
    dataset = build_dataset(cfg.test_data)

    ofn_pred = os.path.join(cfg.work_dir, 'pred_edges_scores.npz')
    if os.path.isfile(ofn_pred) and not cfg.force:
        data = np.load(ofn_pred)
        edges = data['edges']
        scores = data['scores']
        inst_num = data['inst_num']
        if inst_num != len(dataset):
            logger.warn(
                'instance number in {} is different from dataset: {} vs {}'.
                format(ofn_pred, inst_num, len(dataset)))
    else:
        edges, scores, inst_num = test(model, dataset, cfg, logger)

    # produce predicted labels
    clusters = graph_clustering_dynamic_th(edges,
                                           scores,
                                           max_sz=cfg.max_sz,
                                           step=cfg.step,
                                           pool=cfg.pool)
    pred_idx2lb = clusters2labels(clusters)
    pred_labels = intdict2ndarray(pred_idx2lb)

    if cfg.save_output:
        print('save predicted edges and scores to {}'.format(ofn_pred))
        np.savez_compressed(ofn_pred,
                            edges=edges,
                            scores=scores,
                            inst_num=inst_num)
        ofn_meta = os.path.join(cfg.work_dir, 'pred_labels.txt')
        write_meta(ofn_meta, pred_idx2lb, inst_num=inst_num)

    # evaluation
    if not dataset.ignore_label:
        print('==> evaluation')
        gt_labels = dataset.labels
        for metric in cfg.metrics:
            evaluate(gt_labels, pred_labels, metric)

        single_cluster_idxs = get_cluster_idxs(clusters, size=1)
        print('==> evaluation (removing {} single clusters)'.format(
            len(single_cluster_idxs)))
        remain_idxs = np.setdiff1d(np.arange(len(dataset)),
                                   np.array(single_cluster_idxs))
        remain_idxs = np.array(remain_idxs)
        for metric in cfg.metrics:
            evaluate(gt_labels[remain_idxs], pred_labels[remain_idxs], metric)
Example #3
0
def super_vertex(knn, k, th, th_step, max_sz):
    pairs, scores = filter_knn(knn, k, th)
    comps = graph_clustering_dynamic_th(pairs, scores, max_sz, th_step)
    clusters = [sorted([n.name for n in c]) for c in comps]
    return clusters
Example #4
0
def super_vertex(knns, k, th, th_step, max_sz):
    pairs, scores = filter_knns(knns, k, th)
    components = graph_clustering_dynamic_th(pairs, scores, max_sz, th_step)
    return components