Example #1
0
 def predict_fn(model_target, batch):
     emb = models.predict_step(model_target,
                               batch,
                               bos_token=model.bos_token,
                               output_head=output_head)
     if reduce_fn:
         emb = reduce_fn(emb)
     return emb
Example #2
0
    def predict_fn(model_target, inputs):

        emb = models.predict_step(model_target,
                                  inputs,
                                  preprocess_fn=model.preprocess,
                                  output_head=output_head)
        if reduce_fn:
            emb = reduce_fn(emb)
        return emb
Example #3
0
    def predict_fn(model_target, inputs):
        emb = models.predict_step(model_target,
                                  inputs,
                                  preprocess_fn=model.preprocess,
                                  output_head=output_head)

        if reduce_fn:
            # Pass the inputs to allow padding-aware aggregation.
            emb = reduce_fn(emb, inputs)
        return emb
 def test_output_head(self, output_head, multiple_heads):
     domain = domains.FixedLengthDiscreteDomain(vocab_size=2, length=2)
     inputs = domain.sample_uniformly(8)
     lm = lm_cls(domain=domain, pmap=False)
     outputs = models.predict_step(lm.optimizer.target,
                                   inputs,
                                   preprocess_fn=lm.preprocess,
                                   output_head=output_head)
     if multiple_heads:
         self.assertIsInstance(outputs, dict)
         self.assertLen(outputs, len(output_head))
     else:
         # We should have gotten a single output, the logits.
         self.assertEqual(outputs.shape,
                          (inputs.shape[0], inputs.shape[1], lm.vocab_size))