def test_superlu_2_dense(small_superlu):
    """ Tests the superlu wrapper to dense matrix function. """
    superlu_mat = small_superlu

    dense_mat = LinearAlgebraTools.superlu_sparse_2_dense(superlu_mat)
    comparison_mat = numpy.loadtxt(
        os.path.join(os.path.dirname(__file__), 'sparse_mat_1.txt'))
    assert numpy.allclose(dense_mat, comparison_mat)
def test_superlu_2_dense(small_superlu):
    """ Tests the superlu wrapper to dense matrix function. """
    superlu_mat = small_superlu

    dense_mat = LinearAlgebraTools.superlu_sparse_2_dense(superlu_mat)
    comparison_mat = numpy.loadtxt(os.path.join(os.path.dirname(__file__),
                                                'sparse_mat_1.txt'))
    assert numpy.allclose(dense_mat,comparison_mat)
Example #3
0
 def test_1(self):
     """ Initial test to check whether this is working """
     self.laplace_object.modelList[0].levelModelList[0].calculateCoefficients()
     rowptr, colind, nzval = self.laplace_object.modelList[0].levelModelList[0].jacobian.getCSRrepresentation()
     self.laplace_object.modelList[0].levelModelList[0].scale_dt = False
     self.Asys_rowptr = rowptr.copy()
     self.Asys_colptr = colind.copy()
     self.Asys_nzval = nzval.copy()
     nn = len(self.Asys_rowptr)-1
     self.Asys = LinearAlgebraTools.SparseMatrix(nn,nn,
                                                 self.Asys_nzval.shape[0],
                                                 self.Asys_nzval,
                                                 self.Asys_colptr,
                                                 self.Asys_rowptr)
     self.petsc4py_A = self.laplace_object.modelList[0].levelModelList[0].getSpatialJacobian(self.Asys)
     laplace_mat = LinearAlgebraTools.superlu_sparse_2_dense(self.petsc4py_A)
     expected_output = os.path.dirname(os.path.abspath(__file__)) + '/comparison_files/laplace_reference_c0p1_2D.txt'
     comparison_mat = numpy.loadtxt(expected_output)
     assert numpy.allclose(laplace_mat,comparison_mat)
Example #4
0
def test_superlu_2_dense():
    """ Tests the superlu wrapper to dense matrix function. """

    vals = numpy.array([
        10., -2., 3., 9., 3., 7., 8., 7., 3., 8., 7., 5., 8., 9., 9., 13., 4.,
        2., -1.
    ])
    col_idx = numpy.array(
        [0, 4, 0, 1, 5, 1, 2, 3, 0, 2, 3, 4, 1, 3, 4, 5, 1, 4, 5],
        dtype='int32')
    row_idx = numpy.array([0, 2, 5, 8, 12, 16, 19], dtype='int32')
    size_n = len(row_idx) - 1

    superlu_mat = LinearAlgebraTools.SparseMat(size_n, size_n, len(vals), vals,
                                               col_idx, row_idx)

    dense_mat = LinearAlgebraTools.superlu_sparse_2_dense(superlu_mat)
    comparison_mat = numpy.loadtxt(
        os.path.join(os.path.dirname(__file__), 'sparse_mat_1.txt'))
    assert numpy.allclose(dense_mat, comparison_mat)
Example #5
0
def test_superlu_2_dense():
    """ Tests the superlu wrapper to dense matrix function. """

    vals    = numpy.array([10.,-2.,3.,9.,3.,7.,8.,7.,3.,
                           8.,7.,5.,8.,9.,9.,13.,4.,2.,-1.])
    col_idx = numpy.array([0, 4 ,0 ,1 ,5 ,1 ,2 ,3 ,0 ,2 ,
                           3 ,4 ,1 ,3 ,4 ,5  ,1 ,4 , 5 ],
                          dtype='int32')
    row_idx = numpy.array([0, 2, 5, 8, 12, 16, 19],
                          dtype='int32')
    size_n  = len(row_idx)-1

    superlu_mat = LinearAlgebraTools.SparseMat(size_n,
                                               size_n,
                                               len(vals),
                                               vals,
                                               col_idx,
                                               row_idx)

    dense_mat = LinearAlgebraTools.superlu_sparse_2_dense(superlu_mat)
    comparison_mat = numpy.loadtxt(os.path.join(os.path.dirname(__file__),
                                                'sparse_mat_1.txt'))
    assert numpy.allclose(dense_mat,comparison_mat)
Example #6
0
 def test_1(self):
     """ Initial test to check whether this is working """
     self.laplace_object.modelList[0].levelModelList[
         0].calculateCoefficients()
     rowptr, colind, nzval = self.laplace_object.modelList[
         0].levelModelList[0].jacobian.getCSRrepresentation()
     self.laplace_object.modelList[0].levelModelList[0].scale_dt = False
     self.Asys_rowptr = rowptr.copy()
     self.Asys_colptr = colind.copy()
     self.Asys_nzval = nzval.copy()
     nn = len(self.Asys_rowptr) - 1
     self.Asys = LinearAlgebraTools.SparseMatrix(nn, nn,
                                                 self.Asys_nzval.shape[0],
                                                 self.Asys_nzval,
                                                 self.Asys_colptr,
                                                 self.Asys_rowptr)
     self.petsc4py_A = self.laplace_object.modelList[0].levelModelList[
         0].getSpatialJacobian(self.Asys)
     laplace_mat = LinearAlgebraTools.superlu_sparse_2_dense(
         self.petsc4py_A)
     expected_output = os.path.dirname(os.path.abspath(
         __file__)) + '/comparison_files/laplace_reference_c0p1_3D.txt'
     comparison_mat = numpy.loadtxt(expected_output)
     assert numpy.allclose(laplace_mat, comparison_mat)