def find_segmented_regions(seeds, autof_stack, imsave): min_autof_proj = min_intensity_projection(autof_stack) equal_autof = equalize_adaptive(min_autof_proj, "equal_autof") smoothed_autof = gaussian_filter(equal_autof, sigma=5, name="smooth_autof") edge_autof = find_edges(smoothed_autof, name="edge_autof") thresh_autof = threshold_otsu(smoothed_autof, mult=0.6, name="thresh_autof") # ndfeed = skimage.img_as_uint(edge_autof.image_array & thresh_autof) # imsave('ndfeed.png', ndfeed) # altseg = watershed_ift(ndfeed, seeds.image_array) # imsave('altseg.png', altseg) # segmentation = watershed_with_seeds(smoothed_autof, ImageArray(altseg, 'atseg'), segmentation = watershed_with_seeds(smoothed_autof, seeds, mask_image=thresh_autof) # my_maker = make_named_transform('hughbert') # my_filter = my_maker(filter_segmentation) # filtered_segmentation = my_filter(segmentation) filtered_segmentation = filter_segmentation(segmentation) re_watershed = watershed_with_seeds( smoothed_autof, filtered_segmentation, mask_image=thresh_autof, name="re_watershed" ) return re_watershed
def generate_segmentation_seeds(nuclear_stack): """Given the nuclear fluorescence channel, find markers representing the locations of those nuclei so that they can be used to seed a segmentation. """ normed_stack = normalise_stack(nuclear_stack) max_nuclear_proj = max_intensity_projection(normed_stack) eq_proj = equalize_adaptive(max_nuclear_proj, n_tiles=16, name="equalized_nuclear_proj") gauss = gaussian_filter(eq_proj, sigma=3) edges = find_edges(gauss, name="seed_edges") thresh = threshold_otsu(edges, mult=1) nosmall = remove_small_objects(thresh, min_size=500) # dilated = dilate_simple(nosmall) connected_components = find_connected_components(nosmall, background=0, name="conn_seeds") seeds = component_centroids(connected_components, name="seed_centroids") return seeds
def hough_stuff(imsave): """Deprecated. Template matching works better.""" thresh = threshold_otsu(edges, mult=1.5) hough_radii = np.arange(1, 3, 1) hough_res = skimage.transform.hough_circle(thresh.image_array, hough_radii) hough_data = hough_res[0] + hough_res[1] #loc_array = peak_local_max(hough_data, min_distance=5, threshold_rel=0.5) cloc_array = peak_local_max(hough_data, min_distance=5, threshold_rel=0.5, indices=False) imsave('cloc.png', cloc_array) connected_components, n_cc = skimage.measure.label(cloc_array, neighbors=8, return_num=True) labels = np.unique(connected_components) annot = np.zeros((512, 512, 3), dtype=np.uint8) annot[:,:] = 255, 255, 255 annot[np.where(thresh.image_array)] = [0, 0, 0] def draw_cross(x, y, c): for xo in np.arange(-4, 5, 1): annot[x+xo, y] = c for yo in np.arange(-4, 5, 1): annot[x,y+yo] = c probe_locs = [] for label in labels: coord_list = zip(*np.where(connected_components == label)) probe_locs.append(coord_list[0]) for coords in probe_locs: x, y = coords c = random_rgb() draw_cross(x, y, c) imsave('probe_locations.png', annot) #print '\n'.join(thresh.history) return probe_locs