Example #1
0
def solve(psi_fns, omega_fns, lmb=1.0, mu=None, quad_funcs=None,
          max_iters=1000, eps_abs=1e-3, eps_rel=1e-3,
          lin_solver="cg", lin_solver_options=None,
          try_diagonalize=True, try_fast_norm=True, scaled=False,
          metric=None, convlog=None, verbose=0):

    # Can only have one omega function.
    assert len(omega_fns) <= 1
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    # Select optimal parameters if wanted
    if lmb is None or mu is None:
        lmb, mu = est_params_lin_admm(K, lmb, verbose, scaled, try_fast_norm)

    # Initialize everything to zero.
    v = np.zeros(K.input_size)
    z = np.zeros(K.output_size)
    u = np.zeros(K.output_size)

    # Buffers.
    Kv = np.zeros(K.output_size)
    KTu = np.zeros(K.input_size)
    s = np.zeros(K.input_size)

    Kvzu = np.zeros(K.output_size)
    v_prev = np.zeros(K.input_size)
    z_prev = np.zeros(K.output_size)

    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("LIN-ADMM iteration")
    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(v)
        objval = sum([fn.value for fn in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    for i in range(max_iters):
        iter_timing.tic()
        if convlog is not None:
            convlog.tic()

        v_prev[:] = v
        z_prev[:] = z

        # Update v
        K.forward(v, Kv)
        Kvzu[:] = Kv - z + u
        K.adjoint(Kvzu, v)
        v[:] = v_prev - (mu / lmb) * v

        if len(omega_fns) > 0:
            v[:] = omega_fns[0].prox(1.0 / mu, v, x_init=v_prev.copy(),
                                     lin_solver=lin_solver, options=lin_solver_options)

        # Update z.
        K.forward(v, Kv)
        Kv_u = Kv + u
        offset = 0
        for fn in psi_fns:
            slc = slice(offset, offset + fn.lin_op.size, None)
            Kv_u_slc = np.reshape(Kv_u[slc], fn.lin_op.shape)
            # Apply and time prox.
            prox_log[fn].tic()
            z[slc] = fn.prox(1.0 / lmb, Kv_u_slc, i).flatten()
            prox_log[fn].toc()
            offset += fn.lin_op.size

        # Update u.
        u += Kv - z
        K.adjoint(u, KTu)

        # Check convergence.
        r = Kv - z
        K.adjoint((1.0 / lmb) * (z - z_prev), s)
        eps_pri = np.sqrt(K.output_size) * eps_abs + eps_rel * \
            max([np.linalg.norm(Kv), np.linalg.norm(z)])
        eps_dual = np.sqrt(K.input_size) * eps_abs + eps_rel * np.linalg.norm(KTu) / (1.0 / lmb)

        # Convergence log
        if convlog is not None:
            convlog.toc()
            K.update_vars(v)
            objval = sum([fn.value for fn in prox_fns])
            convlog.record_objective(objval)

        # Show progess
        if verbose > 0:
            # Evaluate objective only if required (expensive !)
            objstr = ''
            if verbose == 2:
                K.update_vars(v)
                objstr = ", obj_val = %02.03e" % sum([fn.value for fn in prox_fns])

            # Evaluate metric potentially
            metstr = '' if metric is None else ", {}".format(metric.message(v))
            print "iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s" % (
                i, np.linalg.norm(r), eps_pri, np.linalg.norm(s), eps_dual, objstr, metstr)

        iter_timing.toc()
        if np.linalg.norm(r) <= eps_pri and np.linalg.norm(s) <= eps_dual:
            break

    # Print out timings info.
    if verbose > 0:
        print iter_timing
        print "prox funcs:"
        print prox_log
        print "K forward ops:"
        print K.forward_log
        print "K adjoint ops:"
        print K.adjoint_log

    # Assign values to variables.
    K.update_vars(v)

    # Return optimal value.
    return sum([fn.value for fn in prox_fns])
Example #2
0
def solve(psi_fns,
          omega_fns,
          lmb=1.0,
          mu=None,
          quad_funcs=None,
          max_iters=1000,
          eps_abs=1e-3,
          eps_rel=1e-3,
          lin_solver="cg",
          lin_solver_options=None,
          try_diagonalize=True,
          try_fast_norm=True,
          scaled=False,
          metric=None,
          convlog=None,
          verbose=0):
    # Can only have one omega function.
    assert len(omega_fns) <= 1
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    # Select optimal parameters if wanted
    if lmb is None or mu is None:
        lmb, mu = est_params_lin_admm(K, lmb, verbose, scaled, try_fast_norm)

    # Initialize everything to zero.
    v = np.zeros(K.input_size)
    z = np.zeros(K.output_size)
    u = np.zeros(K.output_size)

    # Buffers.
    Kv = np.zeros(K.output_size)
    KTu = np.zeros(K.input_size)
    s = np.zeros(K.input_size)

    Kvzu = np.zeros(K.output_size)
    v_prev = np.zeros(K.input_size)
    z_prev = np.zeros(K.output_size)

    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("LIN-ADMM iteration")
    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(v)
        objval = sum([fn.value for fn in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    for i in range(max_iters):
        iter_timing.tic()
        if convlog is not None:
            convlog.tic()

        v_prev[:] = v
        z_prev[:] = z

        # Update v
        K.forward(v, Kv)
        Kvzu[:] = Kv - z + u
        K.adjoint(Kvzu, v)
        v[:] = v_prev - (mu / lmb) * v

        if len(omega_fns) > 0:
            v[:] = omega_fns[0].prox(1.0 / mu,
                                     v,
                                     x_init=v_prev.copy(),
                                     lin_solver=lin_solver,
                                     options=lin_solver_options)

        # Update z.
        K.forward(v, Kv)
        Kv_u = Kv + u
        offset = 0
        for fn in psi_fns:
            slc = slice(offset, offset + fn.lin_op.size, None)
            Kv_u_slc = np.reshape(Kv_u[slc], fn.lin_op.shape)
            # Apply and time prox.
            prox_log[fn].tic()
            z[slc] = fn.prox(1.0 / lmb, Kv_u_slc, i).flatten()
            prox_log[fn].toc()
            offset += fn.lin_op.size

        # Update u.
        u += Kv - z
        K.adjoint(u, KTu)

        # Check convergence.
        r = Kv - z
        K.adjoint((1.0 / lmb) * (z - z_prev), s)
        eps_pri = np.sqrt(K.output_size) * eps_abs + eps_rel * \
                  max([np.linalg.norm(Kv), np.linalg.norm(z)])
        eps_dual = np.sqrt(K.input_size) * eps_abs + eps_rel * np.linalg.norm(
            KTu) / (1.0 / lmb)

        # Convergence log
        if convlog is not None:
            convlog.toc()
            K.update_vars(v)
            objval = sum([fn.value for fn in prox_fns])
            convlog.record_objective(objval)

        # Show progess
        if verbose > 0:
            # Evaluate objective only if required (expensive !)
            objstr = ''
            if verbose == 2:
                K.update_vars(v)
                objstr = ", obj_val = %02.03e" % sum(
                    [fn.value for fn in prox_fns])

            # Evaluate metric potentially
            metstr = '' if metric is None else ", {}".format(metric.message(v))
            print(
                "iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s"
                % (i, np.linalg.norm(r), eps_pri, np.linalg.norm(s), eps_dual,
                   objstr, metstr))

        iter_timing.toc()
        if np.linalg.norm(r) <= eps_pri and np.linalg.norm(s) <= eps_dual:
            break

    # Print out timings info.
    if verbose > 0:
        print(iter_timing)
        print("prox funcs:")
        print(prox_log)
        print("K forward ops:")
        print(K.forward_log)
        print("K adjoint ops:")
        print(K.adjoint_log)

    # Assign values to variables.
    K.update_vars(v)

    # Return optimal value.
    return sum([fn.value for fn in prox_fns])
def solve(psi_fns, omega_fns,
          rho_0=1.0, rho_scale=math.sqrt(2.0) * 2.0, rho_max=2**8,
          max_iters=-1, max_inner_iters=100, x0=None,
          eps_rel=1e-3, eps_abs=1e-3,
          lin_solver="cg", lin_solver_options=None,
          try_diagonalize=True, scaled=False, try_fast_norm=False,
          metric=None, convlog=None, verbose=0):
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    # Rescale so (1/2)||x - b||^2_2
    rescaling = np.sqrt(2.)
    quad_ops = []
    quad_weights = []
    const_terms = []
    for fn in omega_fns:
        fn = fn.absorb_params()
        quad_ops.append(scale(rescaling * fn.beta, fn.lin_op))
        quad_weights.append(rescaling * fn.beta)
        const_terms.append(fn.b.flatten() * rescaling)

    # Get optimize inverse (tries spatial and frequency diagonalization)
    op_list = [func.lin_op for func in psi_fns] + quad_ops
    stacked_ops = vstack(op_list)
    x_update = get_least_squares_inverse(op_list, None,
                                         try_diagonalize, verbose)

    # Initialize
    if x0 is not None:
        x = np.reshape(x0, K.input_size)
    else:
        x = np.zeros(K.input_size)

    Kx = np.zeros(K.output_size)
    w = Kx.copy()

    # Temporary iteration counts
    x_prev = x.copy()

    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("HQS iteration")
    inner_iter_timing = TimingsEntry("HQS inner iteration")
    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(x)
        objval = sum([func.value for func in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    # Rho scedule
    rho = rho_0
    i = 0
    while rho < rho_max and i < max_iters:
        iter_timing.tic()
        if convlog is not None:
            convlog.tic()

        # Update rho for quadratics
        for idx, op in enumerate(quad_ops):
            op.scalar = quad_weights[idx] / np.sqrt(rho)
        x_update = get_least_squares_inverse(op_list, CompGraph(stacked_ops),
                                             try_diagonalize, verbose)

        for ii in range(max_inner_iters):
            inner_iter_timing.tic()
            # Update Kx.
            K.forward(x, Kx)

            # Prox update to get w.
            offset = 0
            w_prev = w.copy()
            for fn in psi_fns:
                slc = slice(offset, offset + fn.lin_op.size, None)
                # Apply and time prox.
                prox_log[fn].tic()
                w[slc] = fn.prox(rho, np.reshape(Kx[slc], fn.lin_op.shape), ii).flatten()
                prox_log[fn].toc()
                offset += fn.lin_op.size

            # Update x.
            x_prev[:] = x
            tmp = np.hstack([w] + [cterm / np.sqrt(rho) for cterm in const_terms])
            x = x_update.solve(tmp, x_init=x, lin_solver=lin_solver, options=lin_solver_options)

            # Very basic convergence check.
            r_x = np.linalg.norm(x_prev - x)
            eps_x = eps_rel * np.prod(K.input_size)

            r_w = np.linalg.norm(w_prev - w)
            eps_w = eps_rel * np.prod(K.output_size)

            # Convergence log
            if convlog is not None:
                convlog.toc()
                K.update_vars(x)
                objval = sum([fn.value for fn in prox_fns])
                convlog.record_objective(objval)

            # Show progess
            if verbose > 0:
                # Evaluate objective only if required (expensive !)
                objstr = ''
                if verbose == 2:
                    K.update_vars(x)
                    objstr = ", obj_val = %02.03e" % sum([fn.value for fn in prox_fns])

                # Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format(metric.message(x))
                print("iter [%02d (rho=%2.1e) || %02d]:"
                      "||w - w_prev||_2 = %02.02e (eps=%02.03e)"
                      "||x - x_prev||_2 = %02.02e (eps=%02.03e)%s%s"
                      % (i, rho, ii, r_x, eps_x, r_w, eps_w, objstr, metstr))

            inner_iter_timing.toc()
            if r_x < eps_x and r_w < eps_w:
                break

        # Update rho
        rho = np.minimum(rho * rho_scale, rho_max)
        i += 1
        iter_timing.toc()

    # Print out timings info.
    if verbose > 0:
        print(iter_timing)
        print(inner_iter_timing)
        print("prox funcs:")
        print(prox_log)
        print("K forward ops:")
        print(K.forward_log)
        print("K adjoint ops:")
        print(K.adjoint_log)

    # Assign values to variables.
    K.update_vars(x)

    # Return optimal value.
    return sum([fn.value for fn in prox_fns])
Example #4
0
def solve(psi_fns, omega_fns, tau=None, sigma=None, theta=None,
          max_iters=1000, eps_abs=1e-3, eps_rel=1e-3, x0=None,
          lin_solver="cg", lin_solver_options=None,
          try_diagonalize=True, try_fast_norm=False, scaled=True,
          metric=None, convlog=None, verbose=0):
    # Can only have one omega function.
    assert len(omega_fns) <= 1
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    v = np.zeros(K.input_size)
    # Select optimal parameters if wanted
    if tau is None or sigma is None or theta is None:
        tau, sigma, theta = est_params_pc(K, tau, sigma, verbose, scaled, try_fast_norm)

    # Initialize
    x = np.zeros(K.input_size)
    y = np.zeros(K.output_size)
    xbar = np.zeros(K.input_size)
    u = np.zeros(K.output_size)
    z = np.zeros(K.output_size)

    if x0 is not None:
        x[:] = np.reshape(x0, K.input_size)
        K.forward(x, y)
        xbar[:] = x

    # Buffers.
    Kxbar = np.zeros(K.output_size)
    Kx = np.zeros(K.output_size)
    KTy = np.zeros(K.input_size)
    KTu = np.zeros(K.input_size)
    s = np.zeros(K.input_size)

    prev_x = x.copy()
    prev_Kx = Kx.copy()
    prev_z = z.copy()
    prev_u = u.copy()

    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("PC iteration")

    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(x)
        objval = sum([fn.value for fn in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    for i in range(max_iters):
        iter_timing.tic()
        if convlog is not None:
            convlog.tic()

        # Keep track of previous iterates
        np.copyto(prev_x, x)
        np.copyto(prev_z, z)
        np.copyto(prev_u, u)
        np.copyto(prev_Kx, Kx)

        # Compute z
        K.forward(xbar, Kxbar)
        z = y + sigma * Kxbar

        # Update y.
        offset = 0
        for fn in psi_fns:
            slc = slice(offset, offset + fn.lin_op.size, None)
            z_slc = np.reshape(z[slc], fn.lin_op.shape)

            # Moreau identity: apply and time prox.
            prox_log[fn].tic()
            y[slc] = (z_slc - sigma * fn.prox(sigma, z_slc / sigma, i)).flatten()
            prox_log[fn].toc()
            offset += fn.lin_op.size
        y[offset:] = 0

        # Update x
        K.adjoint(y, KTy)
        x -= tau * KTy

        if len(omega_fns) > 0:
            xtmp = np.reshape(x, omega_fns[0].lin_op.shape)
            x[:] = omega_fns[0].prox(1.0 / tau, xtmp, x_init=prev_x,
                                     lin_solver=lin_solver, options=lin_solver_options).flatten()

        # Update xbar
        np.copyto(xbar, x)
        xbar += theta * (x - prev_x)

        # Convergence log
        if convlog is not None:
            convlog.toc()
            K.update_vars(x)
            objval = sum([fn.value for fn in prox_fns])
            convlog.record_objective(objval)

        """ Old convergence check
        #Very basic convergence check.
        r_x = np.linalg.norm(x - prev_x)
        r_xbar = np.linalg.norm(xbar - prev_xbar)
        r_ybar = np.linalg.norm(y - prev_y)
        error = r_x + r_xbar + r_ybar
        """

        # Residual based convergence check
        K.forward(x, Kx)
        u = 1.0 / sigma * y + theta * (Kx - prev_Kx)
        z = prev_u + prev_Kx - 1.0 / sigma * y

        # Iteration order is different than
        # lin-admm (--> start checking at iteration 1)
        if i > 0:

            # Check convergence
            r = prev_Kx - z
            K.adjoint(sigma * (z - prev_z), s)
            eps_pri = np.sqrt(K.output_size) * eps_abs + eps_rel * \
                max([np.linalg.norm(prev_Kx), np.linalg.norm(z)])

            K.adjoint(u, KTu)
            eps_dual = np.sqrt(K.input_size) * eps_abs + eps_rel * np.linalg.norm(KTu) / sigma

            # Progress
            if verbose > 0:
                # Evaluate objective only if required (expensive !)
                objstr = ''
                if verbose == 2:
                    K.update_vars(x)
                    objstr = ", obj_val = %02.03e" % sum([fn.value for fn in prox_fns])

                """ Old convergence check
                #Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format( metric.message(x.copy()) )
                print "iter [%04d]:" \
                      "||x - x_prev||_2 = %02.02e " \
                      "||xbar - xbar_prev||_2 = %02.02e " \
                      "||y - y_prev||_2 = %02.02e " \
                      "SUM = %02.02e (eps=%02.03e)%s%s" \
                        % (i, r_x, r_xbar, r_ybar, error, eps, objstr, metstr)
                """

                # Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format(metric.message(v))
                print(
                    "iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s"
                    % (i, np.linalg.norm(r), eps_pri, np.linalg.norm(s), eps_dual, objstr, metstr)
                )

            iter_timing.toc()
            if np.linalg.norm(r) <= eps_pri and np.linalg.norm(s) <= eps_dual:
                break

        else:
            iter_timing.toc()

        """ Old convergence check
        if error <= eps:
            break
        """

    # Print out timings info.
    if verbose > 0:
        print iter_timing
        print "prox funcs:"
        print prox_log
        print "K forward ops:"
        print K.forward_log
        print "K adjoint ops:"
        print K.adjoint_log

    # Assign values to variables.
    K.update_vars(x)

    # Return optimal value.
    return sum([fn.value for fn in prox_fns])
Example #5
0
def solve(psi_fns,
          omega_fns,
          tau=None,
          sigma=None,
          theta=None,
          max_iters=1000,
          eps_abs=1e-3,
          eps_rel=1e-3,
          x0=None,
          lin_solver="cg",
          lin_solver_options=None,
          conv_check=100,
          try_diagonalize=True,
          try_fast_norm=False,
          scaled=True,
          metric=None,
          convlog=None,
          verbose=0):
    # Can only have one omega function.
    assert len(omega_fns) <= 1
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    v = np.zeros(K.input_size)
    # Select optimal parameters if wanted
    if tau is None or sigma is None or theta is None:
        tau, sigma, theta = est_params_pc(K, tau, sigma, verbose, scaled,
                                          try_fast_norm)

    # Initialize
    x = np.zeros(K.input_size)
    y = np.zeros(K.output_size)
    xbar = np.zeros(K.input_size)
    u = np.zeros(K.output_size)
    z = np.zeros(K.output_size)

    if x0 is not None:
        x[:] = np.reshape(x0, K.input_size)
        K.forward(x, y)
        xbar[:] = x

    # Buffers.
    Kxbar = np.zeros(K.output_size)
    Kx = np.zeros(K.output_size)
    KTy = np.zeros(K.input_size)
    KTu = np.zeros(K.input_size)
    s = np.zeros(K.input_size)

    prev_x = x.copy()
    prev_Kx = Kx.copy()
    prev_z = z.copy()
    prev_u = u.copy()

    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("PC iteration")

    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(x)
        objval = sum([fn.value for fn in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    for i in range(max_iters):
        iter_timing.tic()
        if convlog is not None:
            convlog.tic()

        # Keep track of previous iterates
        np.copyto(prev_x, x)
        np.copyto(prev_z, z)
        np.copyto(prev_u, u)
        np.copyto(prev_Kx, Kx)

        # Compute z
        K.forward(xbar, Kxbar)
        z = y + sigma * Kxbar

        # Update y.
        offset = 0
        for fn in psi_fns:
            slc = slice(offset, offset + fn.lin_op.size, None)
            z_slc = np.reshape(z[slc], fn.lin_op.shape)

            # Moreau identity: apply and time prox.
            prox_log[fn].tic()
            y[slc] = (z_slc -
                      sigma * fn.prox(sigma, z_slc / sigma, i)).flatten()
            prox_log[fn].toc()
            offset += fn.lin_op.size
        y[offset:] = 0

        # Update x
        K.adjoint(y, KTy)
        x -= tau * KTy

        if len(omega_fns) > 0:
            xtmp = np.reshape(x, omega_fns[0].lin_op.shape)
            x[:] = omega_fns[0].prox(1.0 / tau,
                                     xtmp,
                                     x_init=prev_x,
                                     lin_solver=lin_solver,
                                     options=lin_solver_options).flatten()

        # Update xbar
        np.copyto(xbar, x)
        xbar += theta * (x - prev_x)

        # Convergence log
        if convlog is not None:
            convlog.toc()
            K.update_vars(x)
            objval = sum([fn.value for fn in prox_fns])
            convlog.record_objective(objval)
        """ Old convergence check
        #Very basic convergence check.
        r_x = np.linalg.norm(x - prev_x)
        r_xbar = np.linalg.norm(xbar - prev_xbar)
        r_ybar = np.linalg.norm(y - prev_y)
        error = r_x + r_xbar + r_ybar
        """

        # Residual based convergence check
        K.forward(x, Kx)
        u = 1.0 / sigma * y + theta * (Kx - prev_Kx)
        z = prev_u + prev_Kx - 1.0 / sigma * y

        # Iteration order is different than
        # lin-admm (--> start checking at iteration 1)
        if i > 0 and i % conv_check == 0:

            # Check convergence
            r = prev_Kx - z
            K.adjoint(sigma * (z - prev_z), s)
            eps_pri = np.sqrt(K.output_size) * eps_abs + eps_rel * \
                max([np.linalg.norm(prev_Kx), np.linalg.norm(z)])

            K.adjoint(u, KTu)
            eps_dual = np.sqrt(
                K.input_size) * eps_abs + eps_rel * np.linalg.norm(KTu) / sigma

            # Progress
            if verbose > 0:
                # Evaluate objective only if required (expensive !)
                objstr = ''
                if verbose == 2:
                    K.update_vars(x)
                    objstr = ", obj_val = %02.03e" % sum(
                        [fn.value for fn in prox_fns])
                """ Old convergence check
                #Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format( metric.message(x.copy()) )
                print "iter [%04d]:" \
                      "||x - x_prev||_2 = %02.02e " \
                      "||xbar - xbar_prev||_2 = %02.02e " \
                      "||y - y_prev||_2 = %02.02e " \
                      "SUM = %02.02e (eps=%02.03e)%s%s" \
                        % (i, r_x, r_xbar, r_ybar, error, eps, objstr, metstr)
                """

                # Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format(
                    metric.message(v))
                print(
                    "iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s"
                    % (i, np.linalg.norm(r), eps_pri, np.linalg.norm(s),
                       eps_dual, objstr, metstr))

            iter_timing.toc()
            if np.linalg.norm(r) <= eps_pri and np.linalg.norm(s) <= eps_dual:
                break

        else:
            iter_timing.toc()
        """ Old convergence check
        if error <= eps:
            break
        """

    # Print out timings info.
    if verbose > 0:
        print(iter_timing)
        print("prox funcs:")
        print(prox_log)
        print("K forward ops:")
        print(K.forward_log)
        print("K adjoint ops:")
        print(K.adjoint_log)

    # Assign values to variables.
    K.update_vars(x)

    # Return optimal value.
    return sum([fn.value for fn in prox_fns])
Example #6
0
def solve(psi_fns,
          omega_fns,
          rho=1.0,
          max_iters=1000,
          eps_abs=1e-10,
          eps_rel=1e-3,
          x0=None,
          lin_solver="cg",
          lin_solver_options=None,
          try_diagonalize=True,
          try_fast_norm=False,
          scaled=True,
          metric=None,
          convlog=None,
          verbose=0):
    # C=np.array([[1,0],[0,0]]);
    # b=np.array([2,0]);
    # print(np.linalg.lstsq(C,b,rcond=None)[0])
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    # Rescale so (rho/2)||x - b||^2_2
    rescaling = np.sqrt(2. / rho)
    quad_ops = []
    const_terms = []
    for fn in omega_fns:
        fn = fn.absorb_params()
        quad_ops.append(scale(rescaling * fn.beta, fn.lin_op))
        const_terms.append(fn.b.flatten() * rescaling)
    # Check for fast inverse.
    op_list = [func.lin_op for func in psi_fns] + quad_ops
    stacked_ops = vstack(op_list)

    # Get optimize inverse (tries spatial and frequency diagonalization)
    v_update = get_least_squares_inverse(op_list, None, try_diagonalize,
                                         verbose)

    # Initialize everything to zero.
    input_size = K.input_size
    output_size = K.output_size
    v = np.zeros(input_size)
    z = np.zeros(output_size)
    u = np.zeros(output_size)

    print(output_size)

    # Initialize
    if x0 is not None:
        v[:] = np.reshape(x0, input_size)
        K.forward(v, z)

    # Buffers.
    v0 = v.copy()
    z0 = z.copy()
    u0 = u.copy()
    N_z = len(z[:])
    Kv = np.zeros(output_size)
    KTu = np.zeros(input_size)
    s = np.zeros(input_size)
    Kv_pre = Kv.copy()
    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("ADMM iteration")
    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(v)
        objval = sum([func.value for func in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    # --------------------------------------------------------------------------------------------------
    print("Anderson Acceleration:")
    for andersonmk in range(6, 7):
        v = v0.copy()
        u = u0.copy()
        v_d = v.copy()
        u_d = u.copy()
        res_pre = 9e20
        total_energy = []
        total_time = []
        Combine_res = []
        reset = False
        sca_z = 1
        size = v.flatten().shape[0]
        total_size = (u.flatten()).shape[0] + size
        print(size)
        sign = 0
        curr_time = 0
        AA_compute_time = 0
        acc1 = Anderson(
            np.concatenate((v.flatten(), sca_z * u.flatten()), axis=0),
            total_size, andersonmk)
        for i in range(max_iters):
            t1 = time.time()
            if convlog is not None:
                convlog.tic()

            K.forward(v, Kv)
            # Update z.
            Kv_pre = Kv.copy()
            K.forward(v, Kv)
            Kv_u = Kv + u
            offset = 0
            for fn in psi_fns:
                tmp = np.hstack([z - u] + const_terms)
                v = v_update.solve(tmp,
                                   x_init=v,
                                   lin_solver=lin_solver,
                                   options=lin_solver_options)
                K.forward(v, Kv)
                Kv_u = Kv + u
                slc = slice(offset, offset + fn.lin_op.size, None)
                Kv_u_slc = np.reshape(Kv_u[slc], fn.lin_op.shape)
                # Apply and time prox.
                z_pre = z.copy()
                prox_log[fn].tic()
                z[slc] = fn.prox(rho, Kv_u_slc, i).flatten()
                prox_log[fn].toc()
                offset += fn.lin_op.size
            # Update u.
            r = Kv - z
            u += r
            K.adjoint(u, KTu)
            # print(np.linalg.norm(u))

            # Check convergence.

            # K.adjoint(rho * (z - z_prev), s)
            s = z - z_pre
            res = np.linalg.norm(r)**2 + np.linalg.norm(s)**2
            # K.adjoint((z-z_prev),s)
            # eps_pri = np.sqrt(output_size) * eps_abs + eps_rel * \
            #           max([np.linalg.norm(Kv), np.linalg.norm(z)])
            # eps_dual = np.sqrt(input_size) * eps_abs + eps_rel * np.linalg.norm(KTu) / rho

            t3 = time.time()
            if res < res_pre or reset == True:
                v_d = v.copy()
                u_d = u.copy()
                res_pre = res
                reset = False
                tt = acc1.compute(
                    np.concatenate((v.flatten(), sca_z * u.flatten()), axis=0))
                v = tt[0:size].reshape(v.shape)
                u = tt[size:].reshape(u.shape) / sca_z
            else:
                sign = sign + 1
                v = v_d.copy()
                u = u_d.copy()
                reset = True
                acc1.reset(
                    np.concatenate((v.flatten(), sca_z * u.flatten()), axis=0))
            t4 = time.time()
            AA_compute_time += t4 - t3

            t2 = time.time()
            curr_time += t2 - t1

            # Convergence log
            if convlog is not None:
                convlog.toc()
                K.update_vars(v)
                objval = sum([fn.value for fn in prox_fns])
                convlog.record_objective(objval)

            # Show progess
            if verbose > 0:
                # Evaluate objective only if required (expensive !)
                objstr = ''
                if verbose == 2:
                    K.update_vars(v)
                    objstr = ", obj_val = %02.03e" % sum(
                        [fn.value for fn in prox_fns])

                # Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format(
                    metric.message(v))
                # print("iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s" % (
                #     i, np.linalg.norm(r), eps_pri, np.linalg.norm(s), eps_dual, objstr, metstr))
                print("iter %d: combine residual = %.8f" % (i, res))

            Combine_res.append(np.sqrt(rho * res_pre / N_z))
            total_time.append(curr_time)
            # Exit if converged.
            if (res) < eps_abs:
                break
        print("current time: %.6f, AA compute: %.6f, sign: %d" %
              (curr_time, AA_compute_time, sign))

        hm_src_path = 'residual-' + str(andersonmk) + '.txt'
        iter_num = []
        iter_num.append(len(total_time))
        iter_num.append(len(Combine_res))
        with open(hm_src_path, 'w') as f:
            for i in range(0, min(iter_num)):
                f.write('%f\t%.20f\n' % (total_time[i], Combine_res[i]))
        f.close()
    print("Anderson Acceleration with Douglas-Rachford splitting:")
    for andersonmk in range(6, 7):
        v = v0.copy()
        u = u0.copy()
        K.forward(v, Kv)
        v_d = v.copy()
        u_d = u.copy()
        d_s = z0.copy()
        d_u = d_s.copy()
        d_s_d = d_s.copy()
        d_v = d_s.copy()
        d_unew = d_u.copy()
        res_pre = 9e20
        r_com = 0
        r_com_pre = r_com
        total_energy = []
        total_time = []
        Combine_res = []
        reset = False
        size = v.flatten().shape[0]
        sign = 0
        curr_time = 0
        acc1 = Anderson(d_s.flatten(), size, andersonmk)
        for i in range(max_iters):
            t1 = time.time()
            if convlog is not None:
                convlog.tic()
            # K.forward(v, Kv)
            # Update v.
            Kv_u = d_s.copy()
            offset = 0
            for fn in psi_fns:
                slc = slice(offset, offset + fn.lin_op.size, None)
                Kv_u_slc = np.reshape(Kv_u[slc], fn.lin_op.shape)
                # Apply and time prox.
                prox_log[fn].tic()
                z[slc] = fn.prox(rho, Kv_u_slc, i).flatten()
                prox_log[fn].toc()
                offset += fn.lin_op.size

            d_u = z.copy()
            temp = 2 * d_u - d_s
            tmp = np.hstack([temp] + const_terms)
            v = v_update.solve(tmp,
                               x_init=v,
                               lin_solver=lin_solver,
                               options=lin_solver_options)
            K.forward(v, d_v)
            # z_prev = z.copy()
            # Update z.
            # Update d_s
            r = d_v - d_u
            d_s += r
            res = np.linalg.norm(r)**2
            t2 = time.time()
            curr_time += t2 - t1
            # print(np.linalg.norm(u))
            Kv_u = d_s.copy()
            offset = 0
            for fn in psi_fns:
                slc = slice(offset, offset + fn.lin_op.size, None)
                Kv_u_slc = np.reshape(Kv_u[slc], fn.lin_op.shape)
                # Apply and time prox.
                prox_log[fn].tic()
                z[slc] = fn.prox(rho, Kv_u_slc, i).flatten()
                prox_log[fn].toc()
                offset += fn.lin_op.size
            d_unew = z.copy()
            # Check convergence.
            # K.adjoint(rho * (z - z_prev),

            r_com = np.linalg.norm(d_unew - d_v)**2 + np.linalg.norm(d_unew -
                                                                     d_u)**2
            # K.adjoint((z-z_prev),s)
            # eps_pri = np.sqrt(output_size) * eps_abs + eps_rel * \
            #           max([np.linalg.norm(Kv), np.linalg.norm(z)])
            # eps_dual = np.sqrt(input_size) * eps_abs + eps_rel * np.linalg.norm(KTu) / rho

            # Convergence log
            if convlog is not None:
                convlog.toc()
                K.update_vars(v)
                objval = sum([fn.value for fn in prox_fns])
                convlog.record_objective(objval)
            t1 = time.time()
            if res < res_pre or reset == True:
                d_s_d = d_s.copy()
                res_pre = res
                r_com_pre = r_com
                reset = False
                tt = acc1.compute(d_s.flatten())
                d_s = tt.reshape(d_s.shape)
            else:
                sign = sign + 1
                d_s = d_s_d.copy()
                reset = True
                acc1.reset(d_s.flatten())
            # Show progess
            if verbose > 0:
                # Evaluate objective only if required (expensive !)
                objstr = ''
                if verbose == 2:
                    K.update_vars(v)
                    objstr = ", obj_val = %02.03e" % sum(
                        [fn.value for fn in prox_fns])

                # Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format(
                    metric.message(v))
                # print("iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s" % (
                #     i, np.linalg.norm(r), eps_pri, np.linalg.norm(s), eps_dual, objstr, metstr))
                print("iter %d: combine residual = %.8f" % (i, r_com))
            t2 = time.time()
            curr_time += t2 - t1
            Combine_res.append(np.sqrt(rho * r_com_pre / N_z))
            total_time.append(curr_time)
            # Exit if converged.
            # if (res) < eps_abs:
            #     break
        hm_src_path = 'dr-' + str(andersonmk) + '.txt'
        iter_num = []
        iter_num.append(len(total_time))
        iter_num.append(len(Combine_res))
        with open(hm_src_path, 'w') as f:
            for i in range(0, min(iter_num)):
                f.write('%f\t%.20f\n' % (total_time[i], Combine_res[i]))
        f.close()
    # Print out timings info.
    if verbose > 0:
        print(iter_timing)
        print("prox funcs:")
        print(prox_log)
        print("K forward ops:")
        print(K.forward_log)
        print("K adjoint ops:")
        print(K.adjoint_log)

    # Assign values to variables.
    K.update_vars(v)
    # Return optimal value.
    # return sum([fn.value for fn in prox_fns])
    return total_time, Combine_res
Example #7
0
def solve(psi_fns,
          omega_fns,
          rho=1.0,
          max_iters=1000,
          eps_abs=1e-1,
          eps_rel=1e-3,
          x0=None,
          lin_solver="cg",
          lin_solver_options=None,
          try_diagonalize=True,
          try_fast_norm=False,
          scaled=True,
          metric=None,
          convlog=None,
          verbose=0):
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    # Rescale so (rho/2)||x - b||^2_2
    rescaling = np.sqrt(2. / rho)
    quad_ops = []
    const_terms = []
    for fn in omega_fns:
        fn = fn.absorb_params()
        quad_ops.append(scale(rescaling * fn.beta, fn.lin_op))
        const_terms.append(fn.b.flatten() * rescaling)
    # Check for fast inverse.
    op_list = [func.lin_op for func in psi_fns] + quad_ops
    stacked_ops = vstack(op_list)

    # Get optimize inverse (tries spatial and frequency diagonalization)
    v_update = get_least_squares_inverse(op_list, None, try_diagonalize,
                                         verbose)

    # Initialize everything to zero.
    input_size = K.input_size
    output_size = K.output_size
    v = np.zeros(input_size)
    z = np.zeros(output_size)
    u = np.zeros(output_size)
    N_z = len(z[:])
    print(input_size)
    print(output_size)

    # Initialize
    if x0 is not None:
        v[:] = np.reshape(x0, input_size)
        K.forward(v, z)

    # Buffers.

    Kv = np.zeros(output_size)
    KTu = np.zeros(input_size)
    s = np.zeros(input_size)
    Kv_pre = Kv.copy()
    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("ADMM iteration")
    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(v)
        objval = sum([func.value for func in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)
    res_pre = 9e20
    res = 0

    curr_time = 0
    total_time = []
    Combine_res = []
    # ------------------------------------------------------------------------------------
    for i in range(max_iters):
        # iter_timing.tic()
        t1 = time.time()
        if convlog is not None:
            convlog.tic()
        K.forward(v, Kv)
        Kv_pre = Kv.copy()
        # z_prev = z.copy()
        # Update z.
        K.forward(v, Kv)
        Kv_u = Kv + u
        offset = 0
        for fn in psi_fns:
            tmp = np.hstack([z - u] + const_terms)
            v = v_update.solve(tmp,
                               x_init=v,
                               lin_solver=lin_solver,
                               options=lin_solver_options)
            K.forward(v, Kv)
            Kv_u = Kv + u
            slc = slice(offset, offset + fn.lin_op.size, None)
            Kv_u_slc = np.reshape(Kv_u[slc], fn.lin_op.shape)
            # Apply and time prox.
            z_pre = z.copy()
            prox_log[fn].tic()
            z[slc] = fn.prox(rho, Kv_u_slc, i).flatten()
            prox_log[fn].toc()
            offset += fn.lin_op.size
        # Update v.

        # Check convergence.
        r = Kv - z
        # Update u.
        u += r
        K.adjoint(u, KTu)

        # K.adjoint(rho * (z - z_prev), s)
        s = z - z_pre
        t2 = time.time()
        curr_time += t2 - t1

        res = np.linalg.norm(r)**2 + np.linalg.norm(s)**2

        # K.adjoint((z-z_prev),s)
        # eps_pri = np.sqrt(output_size) * eps_abs + eps_rel * \
        #   max([np.linalg.norm(Kv), np.linalg.norm(z)])
        # eps_dual = np.sqrt(input_size) * eps_abs + eps_rel * np.linalg.norm(KTu) / rho

        # Convergence log
        if convlog is not None:
            convlog.toc()
            K.update_vars(v)
            objval = sum([fn.value for fn in prox_fns])
            convlog.record_objective(objval)

        # Show progess
        if verbose > 0:
            # Evaluate objective only if required (expensive !)
            objstr = ''
            if verbose == 2:
                K.update_vars(v)
                objstr = ", obj_val = %02.03e" % sum(
                    [fn.value for fn in prox_fns])

            # Evaluate metric potentially
            metstr = '' if metric is None else ", {}".format(metric.message(v))
            # print("iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s" % (
            #     i, np.linalg.norm(r), eps_pri, np.linalg.norm(s), eps_dual, objstr, metstr))
            print("iter %d: combine residual = %.8f" % (i, res))

        #curr_time = curr_time + iter_timing.toc()

        Combine_res.append(np.sqrt(rho * res / N_z))
        total_time.append(curr_time)
        # Exit if converged.
        if (res) < eps_abs:
            break

    # Print out timings info.
    if verbose > 0:
        print(iter_timing)
        print("prox funcs:")
        print(prox_log)
        print("K forward ops:")
        print(K.forward_log)
        print("K adjoint ops:")
        print(K.adjoint_log)

    # Assign values to variables.
    K.update_vars(v)
    # Return optimal value.
    # return sum([fn.value for fn in prox_fns])
    return total_time, Combine_res
Example #8
0
def solve(psi_fns,
          omega_fns,
          rho_0=1.0,
          rho_scale=math.sqrt(2.0) * 2.0,
          rho_max=2**8,
          max_iters=-1,
          max_inner_iters=100,
          x0=None,
          eps_rel=1e-3,
          eps_abs=1e-3,
          lin_solver="cg",
          lin_solver_options=None,
          try_diagonalize=True,
          scaled=False,
          try_fast_norm=False,
          metric=None,
          convlog=None,
          verbose=0):
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    # Rescale so (1/2)||x - b||^2_2
    rescaling = np.sqrt(2.)
    quad_ops = []
    quad_weights = []
    const_terms = []
    for fn in omega_fns:
        fn = fn.absorb_params()
        quad_ops.append(scale(rescaling * fn.beta, fn.lin_op))
        quad_weights.append(rescaling * fn.beta)
        const_terms.append(fn.b.flatten() * rescaling)

    # Get optimize inverse (tries spatial and frequency diagonalization)
    op_list = [func.lin_op for func in psi_fns] + quad_ops
    stacked_ops = vstack(op_list)
    x_update = get_least_squares_inverse(op_list, None, try_diagonalize,
                                         verbose)

    # Initialize
    if x0 is not None:
        x = np.reshape(x0, K.input_size)
    else:
        x = np.zeros(K.input_size)

    Kx = np.zeros(K.output_size)
    w = Kx.copy()

    # Temporary iteration counts
    x_prev = x.copy()

    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("HQS iteration")
    inner_iter_timing = TimingsEntry("HQS inner iteration")
    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(x)
        objval = sum([func.value for func in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    # Rho scedule
    rho = rho_0
    i = 0
    while rho < rho_max and i < max_iters:
        iter_timing.tic()
        if convlog is not None:
            convlog.tic()

        # Update rho for quadratics
        for idx, op in enumerate(quad_ops):
            op.scalar = quad_weights[idx] / np.sqrt(rho)
        x_update = get_least_squares_inverse(op_list, CompGraph(stacked_ops),
                                             try_diagonalize, verbose)

        for ii in range(max_inner_iters):
            inner_iter_timing.tic()
            # Update Kx.
            K.forward(x, Kx)

            # Prox update to get w.
            offset = 0
            w_prev = w.copy()
            for fn in psi_fns:
                slc = slice(offset, offset + fn.lin_op.size, None)
                # Apply and time prox.
                prox_log[fn].tic()
                w[slc] = fn.prox(rho, np.reshape(Kx[slc], fn.lin_op.shape),
                                 ii).flatten()
                prox_log[fn].toc()
                offset += fn.lin_op.size

            # Update x.
            x_prev[:] = x
            tmp = np.hstack([w] +
                            [cterm / np.sqrt(rho) for cterm in const_terms])
            x = x_update.solve(tmp,
                               x_init=x,
                               lin_solver=lin_solver,
                               options=lin_solver_options)

            # Very basic convergence check.
            r_x = np.linalg.norm(x_prev - x)
            eps_x = eps_rel * np.prod(K.input_size)

            r_w = np.linalg.norm(w_prev - w)
            eps_w = eps_rel * np.prod(K.output_size)

            # Convergence log
            if convlog is not None:
                convlog.toc()
                K.update_vars(x)
                objval = sum([fn.value for fn in prox_fns])
                convlog.record_objective(objval)

            # Show progess
            if verbose > 0:
                # Evaluate objective only if required (expensive !)
                objstr = ''
                if verbose == 2:
                    K.update_vars(x)
                    objstr = ", obj_val = %02.03e" % sum(
                        [fn.value for fn in prox_fns])

                # Evaluate metric potentially
                metstr = '' if metric is None else ", {}".format(
                    metric.message(x))
                print("iter [%02d (rho=%2.1e) || %02d]:"
                      "||w - w_prev||_2 = %02.02e (eps=%02.03e)"
                      "||x - x_prev||_2 = %02.02e (eps=%02.03e)%s%s" %
                      (i, rho, ii, r_x, eps_x, r_w, eps_w, objstr, metstr))

            inner_iter_timing.toc()
            if r_x < eps_x and r_w < eps_w:
                break

        # Update rho
        rho = np.minimum(rho * rho_scale, rho_max)
        i += 1
        iter_timing.toc()

    # Print out timings info.
    if verbose > 0:
        print(iter_timing)
        print(inner_iter_timing)
        print("prox funcs:")
        print(prox_log)
        print("K forward ops:")
        print(K.forward_log)
        print("K adjoint ops:")
        print(K.adjoint_log)

    # Assign values to variables.
    K.update_vars(x)

    # Return optimal value.
    return sum([fn.value for fn in prox_fns])
Example #9
0
def solve(psi_fns, omega_fns, rho=1.0,
          max_iters=1000, eps_abs=1e-3, eps_rel=1e-3, x0=None,
          lin_solver="cg", lin_solver_options=None,
          try_diagonalize=True, try_fast_norm=False,
          scaled=True, conv_check=100,
          metric=None, convlog=None, verbose=0):
    prox_fns = psi_fns + omega_fns
    stacked_ops = vstack([fn.lin_op for fn in psi_fns])
    K = CompGraph(stacked_ops)
    # Rescale so (rho/2)||x - b||^2_2
    rescaling = np.sqrt(2. / rho)
    quad_ops = []
    const_terms = []
    for fn in omega_fns:
        fn = fn.absorb_params()
        quad_ops.append(scale(rescaling * fn.beta, fn.lin_op))
        const_terms.append(fn.b.flatten() * rescaling)
    # Check for fast inverse.
    op_list = [func.lin_op for func in psi_fns] + quad_ops
    stacked_ops = vstack(op_list)

    # Get optimize inverse (tries spatial and frequency diagonalization)
    v_update = get_least_squares_inverse(op_list, None, try_diagonalize, verbose)

    # Initialize everything to zero.
    v = np.zeros(K.input_size)
    z = np.zeros(K.output_size)
    u = np.zeros(K.output_size)

    # Initialize
    if x0 is not None:
        v[:] = np.reshape(x0, K.input_size)
        K.forward(v, z)

    # Buffers.
    Kv = np.zeros(K.output_size)
    KTu = np.zeros(K.input_size)
    s = np.zeros(K.input_size)

    # Log for prox ops.
    prox_log = TimingsLog(prox_fns)
    # Time iterations.
    iter_timing = TimingsEntry("ADMM iteration")
    # Convergence log for initial iterate
    if convlog is not None:
        K.update_vars(v)
        objval = sum([func.value for func in prox_fns])
        convlog.record_objective(objval)
        convlog.record_timing(0.0)

    for i in range(max_iters):
        iter_timing.tic()
        if convlog is not None:
            convlog.tic()

        z_prev = z.copy()

        # Update v.
        tmp = np.hstack([z - u] + const_terms)
        v = v_update.solve(tmp, x_init=v, lin_solver=lin_solver, options=lin_solver_options)

        # Update z.
        K.forward(v, Kv)
        Kv_u = Kv + u
        offset = 0
        for fn in psi_fns:
            slc = slice(offset, offset + fn.lin_op.size, None)
            Kv_u_slc = np.reshape(Kv_u[slc], fn.lin_op.shape)
            # Apply and time prox.
            prox_log[fn].tic()
            z[slc] = fn.prox(rho, Kv_u_slc, i).flatten()
            prox_log[fn].toc()
            offset += fn.lin_op.size
        # Update u.
        u += Kv - z

        # Check convergence.
        if i % conv_check == 0:
            r = Kv - z
            K.adjoint(u, KTu)
            K.adjoint(rho * (z - z_prev), s)
            eps_pri = np.sqrt(K.output_size) * eps_abs + eps_rel * \
                max([np.linalg.norm(Kv), np.linalg.norm(z)])
            eps_dual = np.sqrt(K.input_size) * eps_abs + eps_rel * np.linalg.norm(KTu) * rho

        # Convergence log
        if convlog is not None:
            convlog.toc()
            K.update_vars(v)
            objval = sum([fn.value for fn in prox_fns])
            convlog.record_objective(objval)

        # Show progess
        if verbose > 0 and i % conv_check == 0:
            # Evaluate objective only if required (expensive !)
            objstr = ''
            if verbose == 2:
                K.update_vars(v)
                objstr = ", obj_val = %02.03e" % sum([fn.value for fn in prox_fns])

            # Evaluate metric potentially
            metstr = '' if metric is None else ", {}".format(metric.message(v))
            print("iter %d: ||r||_2 = %.3f, eps_pri = %.3f, ||s||_2 = %.3f, eps_dual = %.3f%s%s" % (
                i, np.linalg.norm(r), eps_pri, np.linalg.norm(s), eps_dual, objstr, metstr))

        iter_timing.toc()
        # Exit if converged.
        if np.linalg.norm(r) <= eps_pri and np.linalg.norm(s) <= eps_dual:
            break

    # Print out timings info.
    if verbose > 0:
        print(iter_timing)
        print("prox funcs:")
        print(prox_log)
        print("K forward ops:")
        print(K.forward_log)
        print("K adjoint ops:")
        print(K.adjoint_log)

    # Assign values to variables.
    K.update_vars(v)
    # Return optimal value.
    return sum([fn.value for fn in prox_fns])