def scf_set_reference_local(name): """ Figures out the correct SCF reference to set locally """ optstash = p4util.OptionsState( ['SCF', 'DFT_FUNCTIONAL'], ['SCF', 'SCF_TYPE'], ['SCF', 'REFERENCE']) # Alter default algorithm if not core.has_option_changed('SCF', 'SCF_TYPE'): core.set_local_option('SCF', 'SCF_TYPE', 'DF') if name == 'hf': if core.get_option('SCF','REFERENCE') == 'RKS': core.set_local_option('SCF','REFERENCE','RHF') elif core.get_option('SCF','REFERENCE') == 'UKS': core.set_local_option('SCF','REFERENCE','UHF') elif name == 'scf': if core.get_option('SCF','REFERENCE') == 'RKS': if (len(core.get_option('SCF', 'DFT_FUNCTIONAL')) > 0) or core.get_option('SCF', 'DFT_CUSTOM_FUNCTIONAL') is not None: pass else: core.set_local_option('SCF','REFERENCE','RHF') elif core.get_option('SCF','REFERENCE') == 'UKS': if (len(core.get_option('SCF', 'DFT_FUNCTIONAL')) > 0) or core.get_option('SCF', 'DFT_CUSTOM_FUNCTIONAL') is not None: pass else: core.set_local_option('SCF','REFERENCE','UHF') return optstash
def scf_set_reference_local(name, is_dft=False): """ Figures out the correct SCF reference to set locally """ optstash = p4util.OptionsState( ['SCF_TYPE'], ['SCF', 'REFERENCE']) # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') # Alter reference name if needed user_ref = core.get_option('SCF', 'REFERENCE') sup = build_superfunctional_from_dictionary(functionals[name], 1, 1, True)[0] if sup.needs_xc() or is_dft: if (user_ref == 'RHF'): core.set_local_option('SCF', 'REFERENCE', 'RKS') elif (user_ref == 'UHF'): core.set_local_option('SCF', 'REFERENCE', 'UKS') elif (user_ref == 'ROHF'): raise ValidationError('ROHF reference for DFT is not available.') elif (user_ref == 'CUHF'): raise ValidationError('CUHF reference for DFT is not available.') # else we are doing HF and nothing needs to be overloaded return optstash
def set_module_options(module, options_dict): """ Sets Psi4 module options from a module specification and input dictionary. """ for k, v, in options_dict.items(): core.set_local_option(module.upper(), k.upper(), v)
def restore(self): core.set_global_option(self.option, self.value_global) if not self.haschanged_global: core.revoke_global_option_changed(self.option) if self.module: core.set_local_option(self.module, self.option, self.value_local) if not self.haschanged_local: core.revoke_local_option_changed(self.module, self.option)
def df_mp2_sapt_dispersion(dimer_wfn, wfn_A, wfn_B, primary_basis, aux_basis, cache, do_print=True): if do_print: core.print_out("\n ==> E20 Dispersion (MP2) <== \n\n") optstash = p4util.OptionsState(['SAPT', 'SAPT0_E10'], ['SAPT', 'SAPT0_E20IND'], ['SAPT', 'SAPT0_E20DISP'], ['SAPT', 'SAPT_QUIET']) core.set_local_option("SAPT", "SAPT0_E10", False) core.set_local_option("SAPT", "SAPT0_E20IND", False) core.set_local_option("SAPT", "SAPT0_E20DISP", True) core.set_local_option("SAPT", "SAPT_QUIET", True) if core.get_option('SCF', 'REFERENCE') == 'RHF': core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerA', 'dimer') core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerB', 'dimer') core.IO.set_default_namespace('dimer') dimer_wfn.set_basisset("DF_BASIS_SAPT", aux_basis) dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis) e_sapt = core.sapt(dimer_wfn, wfn_A, wfn_B) optstash.restore() svars = dimer_wfn.variables() core.print_out("\n") core.print_out(print_sapt_var("Disp20 (MP2)", svars["E DISP20"], short=True) + "\n") core.print_out(print_sapt_var("Exch-Disp20,u", svars["E EXCH-DISP20"], short=True) + "\n") ret = {} ret["Exch-Disp20,u"] = svars["E EXCH-DISP20"] ret["Disp20,u"] = svars["E DISP20"] return ret
def dft_set_reference_local(name): """ Figures out the correct DFT reference to set locally """ optstash = p4util.OptionsState( ['SCF', 'DFT_FUNCTIONAL'], ['SCF', 'REFERENCE'], ['SCF', 'SCF_TYPE'], ['DF_BASIS_MP2'], ['DFMP2', 'MP2_OS_SCALE'], ['DFMP2', 'MP2_SS_SCALE']) # Alter default algorithm if not core.has_option_changed('SCF', 'SCF_TYPE'): core.set_local_option('SCF', 'SCF_TYPE', 'DF') core.set_local_option('SCF', 'DFT_FUNCTIONAL', name) user_ref = core.get_option('SCF', 'REFERENCE') if (user_ref == 'RHF'): core.set_local_option('SCF', 'REFERENCE', 'RKS') elif (user_ref == 'UHF'): core.set_local_option('SCF', 'REFERENCE', 'UKS') elif (user_ref == 'ROHF'): raise ValidationError('ROHF reference for DFT is not available.') elif (user_ref == 'CUHF'): raise ValidationError('CUHF reference for DFT is not available.') return optstash
def set_cholesky_from(mtd_type): type_val = core.get_global_option(mtd_type) if type_val == 'CD': core.set_local_option('GPU_DFCC', 'DF_BASIS_CC', 'CHOLESKY') # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): optstash.add_option(['SCF_TYPE']) core.set_global_option('SCF_TYPE', 'CD') core.print_out(""" SCF Algorithm Type (re)set to CD.\n""") elif type_val in ['DF', 'DISK_DF']: if core.get_option('GPU_DFCC', 'DF_BASIS_CC') == 'CHOLESKY': core.set_local_option('GPU_DFCC', 'DF_BASIS_CC', '') proc_util.check_disk_df(name.upper(), optstash) else: raise ValidationError("""Invalid type '%s' for DFCC""" % type_val)
def set_options(options_dict, verbose=1): """Sets Psi4 options from an input dictionary. Parameters ---------- options_dict : dict Dictionary where keys are "option_name" for global options or "module_name__option_name" (double underscore separation) for option local to "module_name". Values are the option value. All are case insensitive. verbose : int, optional Control print volume. Returns ------- None """ optionre = re.compile(r'\A(?P<module>\w+__)?(?P<option>\w+)\Z', re.IGNORECASE) rejected = {} for k, v, in options_dict.items(): mobj = optionre.match(k) module = mobj.group('module').upper()[:-2] if mobj.group('module') else None option = mobj.group('option').upper() if module: if (module, option, v) not in [('SCF', 'GUESS', 'READ')]: # TODO guess/read exception is for distributed driver. should be handled differently. try: core.set_local_option(module, option, v) except RuntimeError as err: rejected[k] = (v, err) if verbose > 1: print('Setting: core.set_local_option', module, option, v) else: try: core.set_global_option(option, v) except RuntimeError as err: rejected[k] = (v, err) if verbose > 1: print('Setting: core.set_global_option', option, v) if rejected: raise ValidationError(f'Error setting options: {rejected}')
def pcm_helper(block): """ Passes multiline string *block* to PCMSolver parser. Parameters ---------- block: multiline string with PCM input in PCMSolver syntax. """ suffix = str(os.getpid()) + '.' + str(uuid.uuid4())[:8] pcmsolver_fname = 'pcmsolver.' + suffix + '.inp' with open(pcmsolver_fname, 'w') as handle: handle.write(block) import pcmsolver parsed_pcm = pcmsolver.parse_pcm_input(pcmsolver_fname) os.remove(pcmsolver_fname) pcmsolver_parsed_fname = '@pcmsolver.' + suffix with open(pcmsolver_parsed_fname, 'w') as tmp: tmp.write(parsed_pcm) core.set_local_option('PCM', 'PCMSOLVER_PARSED_FNAME', '{}'.format(pcmsolver_parsed_fname))
def process_option(spaces, module, key, value, line): """Function to process a line with set or in a set block into global/local domain and keyword/value. """ module = module.upper() key = key.upper() isbasis = True if 'BASIS' in key else False value = quotify(value.strip(), isbasis=isbasis) if module == "GLOBALS" or module == "GLOBAL" or module == "" or module.isspace(): # If it's really a global, we need slightly different syntax if runalso: core.set_global_option(key, dequotify(value)) return "%score.set_global_option(\"%s\", %s)\n" % (spaces, key, value) else: # It's a local option, so we need the module name in there too if runalso: core.set_local_option(module, key, dequotify(value)) return "%score.set_local_option(\"%s\", \"%s\", %s)\n" % (spaces, module, key, value)
def scf_set_reference_local(name, is_dft=False): """ Figures out the correct SCF reference to set locally """ optstash = p4util.OptionsState( ['SCF', 'SCF_TYPE'], ['SCF', 'REFERENCE']) # Alter default algorithm if not core.has_option_changed('SCF', 'SCF_TYPE'): core.set_local_option('SCF', 'SCF_TYPE', 'DF') # Alter reference name if needed user_ref = core.get_option('SCF', 'REFERENCE') if (name not in dft_funcs.superfunctional_noxc_names) or (is_dft): if (user_ref == 'RHF'): core.set_local_option('SCF', 'REFERENCE', 'RKS') elif (user_ref == 'UHF'): core.set_local_option('SCF', 'REFERENCE', 'UKS') elif (user_ref == 'ROHF'): raise ValidationError('ROHF reference for DFT is not available.') elif (user_ref == 'CUHF'): raise ValidationError('CUHF reference for DFT is not available.') # else we are doing HF and nothing needs to be overloaded return optstash
def scf_set_reference_local(name, is_dft=False): """ Figures out the correct SCF reference to set locally """ optstash = p4util.OptionsState(['SCF', 'SCF_TYPE'], ['SCF', 'REFERENCE']) # Alter default algorithm if not core.has_option_changed('SCF', 'SCF_TYPE'): core.set_local_option('SCF', 'SCF_TYPE', 'DF') # Alter reference name if needed user_ref = core.get_option('SCF', 'REFERENCE') sup = build_superfunctional_from_dictionary(functionals[name], 1, 1, True)[0] if sup.needs_xc() or is_dft: if (user_ref == 'RHF'): core.set_local_option('SCF', 'REFERENCE', 'RKS') elif (user_ref == 'UHF'): core.set_local_option('SCF', 'REFERENCE', 'UKS') elif (user_ref == 'ROHF'): raise ValidationError('ROHF reference for DFT is not available.') elif (user_ref == 'CUHF'): raise ValidationError('CUHF reference for DFT is not available.') # else we are doing HF and nothing needs to be overloaded return optstash
def _init_addghost_C(self, oldcalc, calc): # print('Adding ghost %s->%s' % (oldcalc, calc)) old_filename = self._fmt_mo_fn(oldcalc) data = np.load(old_filename) Ca_occ = core.Matrix.np_read(data, "Ca_occ") Cb_occ = core.Matrix.np_read(data, "Cb_occ") m1_nso = self.wfn_cache[('m1', 'm', oldcalc.Z)].nso() m2_nso = self.wfn_cache[('m2', 'm', oldcalc.Z)].nso() m1_nalpha = self.wfn_cache[('m1', 'm', oldcalc.Z)].nalpha() m2_nalpha = self.wfn_cache[('m2', 'm', oldcalc.Z)].nalpha() m1_nbeta = self.wfn_cache[('m1', 'm', oldcalc.Z)].nbeta() m2_nbeta = self.wfn_cache[('m2', 'm', oldcalc.Z)].nbeta() if calc.V == 'm1': Ca_occ_d = core.Matrix('Ca_occ', (m1_nso + m2_nso), m1_nalpha) Ca_occ_d.np[:m1_nso, :] = Ca_occ.np[:, :] Cb_occ_d = core.Matrix('Cb_occ', (m1_nso + m2_nso), m1_nbeta) Cb_occ_d.np[:m1_nso, :] = Cb_occ.np[:, :] elif calc.V == 'm2': Ca_occ_d = core.Matrix('Ca_occ', (m1_nso + m2_nso), m2_nalpha) Ca_occ_d.np[-m2_nso:, :] = Ca_occ.np[:, :] Cb_occ_d = core.Matrix('Cb_occ', (m1_nso + m2_nso), m2_nbeta) Cb_occ_d.np[-m2_nso:, :] = Cb_occ.np[:, :] data_dict = dict(data) data_dict.update(Ca_occ_d.np_write(prefix='Ca_occ')) data_dict.update(Cb_occ_d.np_write(prefix='Cb_occ')) psi_scratch = core.IOManager.shared_object().get_default_path() write_filename = os.path.join( psi_scratch, os.path.split( os.path.abspath(core.get_writer_file_prefix( self.fmt_ns(calc))))[1] + ".180.npz") np.savez(write_filename, **data_dict) extras.register_numpy_file(write_filename) core.set_local_option('SCF', 'GUESS', 'READ')
def process_option(spaces, module, key, value, line): """Function to process a line with set or in a set block into global/local domain and keyword/value. """ module = module.upper() key = key.upper() isbasis = True if 'BASIS' in key else False value = quotify(value.strip(), isbasis=isbasis) if module == "GLOBALS" or module == "GLOBAL" or module == "" or module.isspace( ): # If it's really a global, we need slightly different syntax if runalso: core.set_global_option(key, dequotify(value)) return "%score.set_global_option(\"%s\", %s)\n" % (spaces, key, value) else: # It's a local option, so we need the module name in there too if runalso: core.set_local_option(module, key, dequotify(value)) return "%score.set_local_option(\"%s\", \"%s\", %s)\n" % ( spaces, module, key, value)
def df_mp2_sapt_dispersion(dimer_wfn, wfn_A, wfn_B, primary_basis, aux_basis, cache, do_print=True): if do_print: core.print_out("\n ==> E20 Dispersion (MP2) <== \n\n") optstash = p4util.OptionsState(['SAPT', 'SAPT0_E10'], ['SAPT', 'SAPT0_E20IND'], ['SAPT', 'SAPT0_E20DISP'], ['SAPT', 'SAPT_QUIET']) core.set_local_option("SAPT", "SAPT0_E10", False) core.set_local_option("SAPT", "SAPT0_E20IND", False) core.set_local_option("SAPT", "SAPT0_E20DISP", True) core.set_local_option("SAPT", "SAPT_QUIET", True) if core.get_option('SCF', 'REFERENCE') == 'RHF': core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERA, 'monomerA', 'dimer') core.IO.change_file_namespace(psif.PSIF_SAPT_MONOMERB, 'monomerB', 'dimer') core.IO.set_default_namespace('dimer') dimer_wfn.set_basisset("DF_BASIS_SAPT", aux_basis) dimer_wfn.set_basisset("DF_BASIS_ELST", aux_basis) e_sapt = core.sapt(dimer_wfn, wfn_A, wfn_B) optstash.restore() svars = dimer_wfn.variables() core.print_out("\n") core.print_out( print_sapt_var("Disp20 (MP2)", svars["E DISP20"], short=True) + "\n") core.print_out( print_sapt_var("Exch-Disp20,u", svars["E EXCH-DISP20"], short=True) + "\n") ret = {} ret["Exch-Disp20,u"] = svars["E EXCH-DISP20"] ret["Disp20,u"] = svars["E DISP20"] return ret
def _reset_pe_options(pofm: Dict): """Acts on ``Process::environment.options`` to clear it, then set it to state encoded in **pofm**. Parameters ---------- pofm Result of :py:func:`psi4.driver.p4util.prepare_options_for_modules(changedOnly=True, commandsInsteadDict=False, stateInsteadMediated=True)` Returns ------- None """ core.clean_options() for go, dgo in pofm['GLOBALS'].items(): if dgo['has_changed']: core.set_global_option(go, dgo['value']) for module in _modules: for lo, dlo in pofm[module].items(): if dlo['has_changed']: core.set_local_option(module, lo, dlo['value'])
def reset_pe_options(pofm): """Acts on Process::environment.options to clear it, the set it to state encoded in `pofm`. Parameters ---------- pofm : dict Result of psi4.driver.p4util.prepare_options_for_modules(changedOnly=True, commandsInsteadDict=False) Returns ------- None """ core.clean_options() for go, dgo in pofm['GLOBALS'].items(): if dgo['has_changed']: core.set_global_option(go, dgo['value']) for module in _modules: for lo, dlo in pofm[module].items(): if dlo['has_changed']: core.set_local_option(module, lo, dlo['value'])
def run_sapt_dft(name, **kwargs): optstash = p4util.OptionsState(['SCF_TYPE'], ['SCF', 'REFERENCE'], ['SCF', 'DFT_GRAC_SHIFT'], ['SCF', 'SAVE_JK']) core.tstart() # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') core.prepare_options_for_module("SAPT") # Get the molecule of interest ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: sapt_dimer = kwargs.pop('molecule', core.get_active_molecule()) else: core.print_out( 'Warning! SAPT argument "ref_wfn" is only able to use molecule information.' ) sapt_dimer = ref_wfn.molecule() sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule( sapt_dimer, "dimer") # Grab overall settings mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A") mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B") do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF") sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL") # Print out the title and some information core.print_out("\n") core.print_out( " ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT) Procedure".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith".center(58) + "\n") core.print_out( " ---------------------------------------------------------\n") core.print_out("\n") core.print_out( " !!! WARNING: SAPT(DFT) capability is in beta. Please use with caution. !!!\n\n" ) core.print_out(" ==> Algorithm <==\n\n") core.print_out(" SAPT DFT Functional %12s\n" % str(sapt_dft_functional)) core.print_out(" Monomer A GRAC Shift %12.6f\n" % mon_a_shift) core.print_out(" Monomer B GRAC Shift %12.6f\n" % mon_b_shift) core.print_out(" Delta HF %12s\n" % ("True" if do_delta_hf else "False")) core.print_out(" JK Algorithm %12s\n" % core.get_global_option("SCF_TYPE")) core.print_out("\n") core.print_out(" Required computations:\n") if (do_delta_hf): core.print_out(" HF (Dimer)\n") core.print_out(" HF (Monomer A)\n") core.print_out(" HF (Monomer B)\n") core.print_out(" DFT (Monomer A)\n") core.print_out(" DFT (Monomer B)\n") core.print_out("\n") if (sapt_dft_functional != "HF") and ((mon_a_shift == 0.0) or (mon_b_shift == 0.0)): raise ValidationError( 'SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".') if (core.get_option('SCF', 'REFERENCE') != 'RHF'): raise ValidationError( 'SAPT(DFT) currently only supports restricted references.') core.IO.set_default_namespace('dimer') data = {} if (core.get_global_option('SCF_TYPE') == 'DF'): # core.set_global_option('DF_INTS_IO', 'LOAD') core.set_global_option('DF_INTS_IO', 'SAVE') # # Compute dimer wavefunction hf_wfn_dimer = None if do_delta_hf: if (core.get_global_option('SCF_TYPE') == 'DF'): core.set_global_option('DF_INTS_IO', 'SAVE') core.timer_on("SAPT(DFT): Dimer SCF") hf_data = {} hf_wfn_dimer = scf_helper("SCF", molecule=sapt_dimer, banner="SAPT(DFT): delta HF Dimer", **kwargs) hf_data["HF DIMER"] = core.variable("CURRENT ENERGY") core.timer_off("SAPT(DFT): Dimer SCF") core.timer_on("SAPT(DFT): Monomer A SCF") if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') hf_wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): delta HF Monomer A", **kwargs) hf_data["HF MONOMER A"] = core.variable("CURRENT ENERGY") core.timer_off("SAPT(DFT): Monomer A SCF") core.timer_on("SAPT(DFT): Monomer B SCF") core.set_global_option("SAVE_JK", True) if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') hf_wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): delta HF Monomer B", **kwargs) hf_data["HF MONOMER B"] = core.variable("CURRENT ENERGY") core.set_global_option("SAVE_JK", False) core.timer_off("SAPT(DFT): Monomer B SCF") # Grab JK object and set to A (so we do not save many JK objects) sapt_jk = hf_wfn_B.jk() hf_wfn_A.set_jk(sapt_jk) core.set_global_option("SAVE_JK", False) # Move it back to monomer A if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerB', 'dimer') core.print_out("\n") core.print_out( " ---------------------------------------------------------\n" ) core.print_out(" " + "SAPT(DFT): delta HF Segment".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n") core.print_out( " ---------------------------------------------------------\n" ) core.print_out("\n") # Build cache hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B, sapt_jk, True) # Electrostatics core.timer_on("SAPT(DFT):SAPT:elst") elst = sapt_jk_terms.electrostatics(hf_cache, True) hf_data.update(elst) core.timer_off("SAPT(DFT):SAPT:elst") # Exchange core.timer_on("SAPT(DFT):SAPT:exch") exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True) hf_data.update(exch) core.timer_off("SAPT(DFT):SAPT:exch") # Induction core.timer_on("SAPT(DFT):SAPT:ind") ind = sapt_jk_terms.induction( hf_cache, sapt_jk, True, maxiter=core.get_option("SAPT", "MAXITER"), conv=core.get_option("SAPT", "D_CONVERGENCE"), Sinf=core.get_option("SAPT", "DO_IND_EXCH_SINF")) hf_data.update(ind) core.timer_off("SAPT(DFT):SAPT:ind") dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data[ "HF MONOMER B"] core.print_out("\n") core.print_out( print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value)) data["Delta HF Correction"] = core.variable("SAPT(DFT) Delta HF") sapt_jk.finalize() del hf_wfn_A, hf_wfn_B, sapt_jk if hf_wfn_dimer is None: dimer_wfn = core.Wavefunction.build(sapt_dimer, core.get_global_option("BASIS")) else: dimer_wfn = hf_wfn_dimer # Set the primary functional core.set_local_option('SCF', 'REFERENCE', 'RKS') # Compute Monomer A wavefunction core.timer_on("SAPT(DFT): Monomer A DFT") if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') if mon_a_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift) core.IO.set_default_namespace('monomerA') wfn_A = scf_helper(sapt_dft_functional, post_scf=False, molecule=monomerA, banner="SAPT(DFT): DFT Monomer A", **kwargs) data["DFT MONOMERA"] = core.variable("CURRENT ENERGY") core.set_global_option("DFT_GRAC_SHIFT", 0.0) core.timer_off("SAPT(DFT): Monomer A DFT") # Compute Monomer B wavefunction core.timer_on("SAPT(DFT): Monomer B DFT") if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') if mon_b_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift) core.set_global_option("SAVE_JK", True) core.IO.set_default_namespace('monomerB') wfn_B = scf_helper(sapt_dft_functional, post_scf=False, molecule=monomerB, banner="SAPT(DFT): DFT Monomer B", **kwargs) data["DFT MONOMERB"] = core.variable("CURRENT ENERGY") # Save JK object sapt_jk = wfn_B.jk() wfn_A.set_jk(sapt_jk) core.set_global_option("SAVE_JK", False) core.set_global_option("DFT_GRAC_SHIFT", 0.0) core.timer_off("SAPT(DFT): Monomer B DFT") # Write out header scf_alg = core.get_global_option("SCF_TYPE") sapt_dft_header(sapt_dft_functional, mon_a_shift, mon_b_shift, bool(do_delta_hf), scf_alg) # Call SAPT(DFT) sapt_jk = wfn_B.jk() sapt_dft(dimer_wfn, wfn_A, wfn_B, sapt_jk=sapt_jk, data=data, print_header=False) # Copy data back into globals for k, v in data.items(): core.set_variable(k, v) core.tstop() return dimer_wfn
def run_sapt_dft(name, **kwargs): optstash = p4util.OptionsState(['SCF', 'SCF_TYPE'], ['SCF', 'REFERENCE'], ['SCF', 'DFT_FUNCTIONAL'], ['SCF', 'DFT_GRAC_SHIFT'], ['SCF', 'SAVE_JK']) core.tstart() # Alter default algorithm if not core.has_option_changed('SCF', 'SCF_TYPE'): core.set_local_option('SCF', 'SCF_TYPE', 'DF') core.prepare_options_for_module("SAPT") # Get the molecule of interest ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: sapt_dimer = kwargs.pop('molecule', core.get_active_molecule()) else: core.print_out( 'Warning! SAPT argument "ref_wfn" is only able to use molecule information.' ) sapt_dimer = ref_wfn.molecule() # Shifting to C1 so we need to copy the active molecule if sapt_dimer.schoenflies_symbol() != 'c1': core.print_out( ' SAPT does not make use of molecular symmetry, further calculations in C1 point group.\n' ) # Make sure the geometry doesnt shift or rotate sapt_dimer = sapt_dimer.clone() sapt_dimer.reset_point_group('c1') sapt_dimer.fix_orientation(True) sapt_dimer.fix_com(True) sapt_dimer.update_geometry() # Grab overall settings mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A") mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B") do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF") sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL") # Print out the title and some information core.print_out("\n") core.print_out( " ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT) Procedure".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith".center(58) + "\n") core.print_out( " ---------------------------------------------------------\n") core.print_out("\n") core.print_out(" ==> Algorithm <==\n\n") core.print_out(" SAPT DFT Functional %12s\n" % str(sapt_dft_functional)) core.print_out(" Monomer A GRAC Shift %12.6f\n" % mon_a_shift) core.print_out(" Monomer B GRAC Shift %12.6f\n" % mon_b_shift) core.print_out(" Delta HF %12s\n" % ("True" if do_delta_hf else "False")) core.print_out(" JK Algorithm %12s\n" % core.get_option("SCF", "SCF_TYPE")) core.print_out("\n") core.print_out(" Required computations:\n") if (do_delta_hf): core.print_out(" HF (Dimer)\n") core.print_out(" HF (Monomer A)\n") core.print_out(" HF (Monomer B)\n") core.print_out(" DFT (Monomer A)\n") core.print_out(" DFT (Monomer B)\n") core.print_out("\n") if (mon_a_shift == 0.0) or (mon_b_shift == 0.0): raise ValidationError( 'SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".') if (core.get_option('SCF', 'REFERENCE') != 'RHF'): raise ValidationError( 'SAPT(DFT) currently only supports restricted references.') nfrag = sapt_dimer.nfragments() if nfrag != 2: raise ValidationError( 'SAPT requires active molecule to have 2 fragments, not %s.' % (nfrag)) monomerA = sapt_dimer.extract_subsets(1, 2) monomerA.set_name('monomerA') monomerB = sapt_dimer.extract_subsets(2, 1) monomerB.set_name('monomerB') core.IO.set_default_namespace('dimer') data = {} core.set_global_option("SAVE_JK", True) if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): # core.set_global_option('DF_INTS_IO', 'LOAD') core.set_global_option('DF_INTS_IO', 'SAVE') # # Compute dimer wavefunction hf_cache = {} hf_wfn_dimer = None if do_delta_hf: if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.set_global_option('DF_INTS_IO', 'SAVE') hf_data = {} hf_wfn_dimer = scf_helper("SCF", molecule=sapt_dimer, banner="SAPT(DFT): delta HF Dimer", **kwargs) hf_data["HF DIMER"] = core.get_variable("CURRENT ENERGY") if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') hf_wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): delta HF Monomer A", **kwargs) hf_data["HF MONOMER A"] = core.get_variable("CURRENT ENERGY") if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') hf_wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): delta HF Monomer B", **kwargs) hf_data["HF MONOMER B"] = core.get_variable("CURRENT ENERGY") # Move it back to monomer A if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerB', 'dimer') core.print_out("\n") core.print_out( " ---------------------------------------------------------\n" ) core.print_out(" " + "SAPT(DFT): delta HF Segement".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n") core.print_out( " ---------------------------------------------------------\n" ) core.print_out("\n") # Build cache and JK sapt_jk = hf_wfn_B.jk() hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B, sapt_jk, True) # Electostatics elst = sapt_jk_terms.electrostatics(hf_cache, True) hf_data.update(elst) # Exchange exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True) hf_data.update(exch) # Induction ind = sapt_jk_terms.induction( hf_cache, sapt_jk, True, maxiter=core.get_option("SAPT", "MAXITER"), conv=core.get_option("SAPT", "D_CONVERGENCE")) hf_data.update(ind) dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data[ "HF MONOMER B"] core.print_out("\n") core.print_out( print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value)) data["Delta HF Correction"] = core.get_variable("SAPT(DFT) Delta HF") if hf_wfn_dimer is None: dimer_wfn = core.Wavefunction.build(sapt_dimer, core.get_global_option("BASIS")) else: dimer_wfn = hf_wfn_dimer # Set the primary functional core.set_global_option("DFT_FUNCTIONAL", core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL")) core.set_local_option('SCF', 'REFERENCE', 'RKS') # Compute Monomer A wavefunction if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') if mon_a_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift) # Save the JK object core.IO.set_default_namespace('monomerA') wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): DFT Monomer A", **kwargs) data["DFT MONOMERA"] = core.get_variable("CURRENT ENERGY") core.set_global_option("DFT_GRAC_SHIFT", 0.0) # Compute Monomer B wavefunction if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') if mon_b_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift) core.IO.set_default_namespace('monomerB') wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): DFT Monomer B", **kwargs) data["DFT MONOMERB"] = core.get_variable("CURRENT ENERGY") core.set_global_option("DFT_GRAC_SHIFT", 0.0) # Print out the title and some information core.print_out("\n") core.print_out( " ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT): Intermolecular Interaction Segment".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n") core.print_out( " ---------------------------------------------------------\n") core.print_out("\n") core.print_out(" ==> Algorithm <==\n\n") core.print_out(" SAPT DFT Functional %12s\n" % str(sapt_dft_functional)) core.print_out(" Monomer A GRAC Shift %12.6f\n" % mon_a_shift) core.print_out(" Monomer B GRAC Shift %12.6f\n" % mon_b_shift) core.print_out(" Delta HF %12s\n" % ("True" if do_delta_hf else "False")) core.print_out(" JK Algorithm %12s\n" % core.get_option("SCF", "SCF_TYPE")) # Build cache and JK sapt_jk = wfn_B.jk() cache = sapt_jk_terms.build_sapt_jk_cache(wfn_A, wfn_B, sapt_jk, True) # Electostatics elst = sapt_jk_terms.electrostatics(cache, True) data.update(elst) # Exchange exch = sapt_jk_terms.exchange(cache, sapt_jk, True) data.update(exch) # Induction ind = sapt_jk_terms.induction(cache, sapt_jk, True, maxiter=core.get_option("SAPT", "MAXITER"), conv=core.get_option("SAPT", "D_CONVERGENCE")) data.update(ind) # Dispersion primary_basis = wfn_A.basisset() core.print_out("\n") aux_basis = core.BasisSet.build(sapt_dimer, "DF_BASIS_MP2", core.get_option("DFMP2", "DF_BASIS_MP2"), "RIFIT", core.get_global_option('BASIS')) fdds_disp = sapt_mp2_terms.df_fdds_dispersion(primary_basis, aux_basis, cache) data.update(fdds_disp) if core.get_option("SAPT", "SAPT_DFT_MP2_DISP_ALG") == "FISAPT": mp2_disp = sapt_mp2_terms.df_mp2_fisapt_dispersion(wfn_A, primary_basis, aux_basis, cache, do_print=True) else: mp2_disp = sapt_mp2_terms.df_mp2_sapt_dispersion(dimer_wfn, wfn_A, wfn_B, primary_basis, aux_basis, cache, do_print=True) data.update(mp2_disp) # Print out final data core.print_out("\n") core.print_out(print_sapt_dft_summary(data, "SAPT(DFT)")) core.tstop() return dimer_wfn
def run_sapt_dft(name, **kwargs): optstash = p4util.OptionsState(['SCF_TYPE'], ['SCF', 'REFERENCE'], ['SCF', 'DFT_GRAC_SHIFT'], ['SCF', 'SAVE_JK']) core.tstart() # Alter default algorithm if not core.has_global_option_changed('SCF_TYPE'): core.set_global_option('SCF_TYPE', 'DF') core.prepare_options_for_module("SAPT") # Get the molecule of interest ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: sapt_dimer = kwargs.pop('molecule', core.get_active_molecule()) else: core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.') sapt_dimer = ref_wfn.molecule() sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, "dimer") # Grab overall settings mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A") mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B") do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF") sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL") # Print out the title and some information core.print_out("\n") core.print_out(" ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT) Procedure".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith".center(58) + "\n") core.print_out(" ---------------------------------------------------------\n") core.print_out("\n") core.print_out(" !!! WARNING: SAPT(DFT) capability is in beta. Please use with caution. !!!\n\n") core.print_out(" ==> Algorithm <==\n\n") core.print_out(" SAPT DFT Functional %12s\n" % str(sapt_dft_functional)) core.print_out(" Monomer A GRAC Shift %12.6f\n" % mon_a_shift) core.print_out(" Monomer B GRAC Shift %12.6f\n" % mon_b_shift) core.print_out(" Delta HF %12s\n" % ("True" if do_delta_hf else "False")) core.print_out(" JK Algorithm %12s\n" % core.get_global_option("SCF_TYPE")) core.print_out("\n") core.print_out(" Required computations:\n") if (do_delta_hf): core.print_out(" HF (Dimer)\n") core.print_out(" HF (Monomer A)\n") core.print_out(" HF (Monomer B)\n") core.print_out(" DFT (Monomer A)\n") core.print_out(" DFT (Monomer B)\n") core.print_out("\n") if (sapt_dft_functional != "HF") and ((mon_a_shift == 0.0) or (mon_b_shift == 0.0)): raise ValidationError('SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".') if (core.get_option('SCF', 'REFERENCE') != 'RHF'): raise ValidationError('SAPT(DFT) currently only supports restricted references.') core.IO.set_default_namespace('dimer') data = {} if (core.get_global_option('SCF_TYPE') == 'DF'): # core.set_global_option('DF_INTS_IO', 'LOAD') core.set_global_option('DF_INTS_IO', 'SAVE') # # Compute dimer wavefunction hf_wfn_dimer = None if do_delta_hf: if (core.get_global_option('SCF_TYPE') == 'DF'): core.set_global_option('DF_INTS_IO', 'SAVE') hf_data = {} hf_wfn_dimer = scf_helper("SCF", molecule=sapt_dimer, banner="SAPT(DFT): delta HF Dimer", **kwargs) hf_data["HF DIMER"] = core.get_variable("CURRENT ENERGY") if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') hf_wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): delta HF Monomer A", **kwargs) hf_data["HF MONOMER A"] = core.get_variable("CURRENT ENERGY") core.set_global_option("SAVE_JK", True) if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') hf_wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): delta HF Monomer B", **kwargs) hf_data["HF MONOMER B"] = core.get_variable("CURRENT ENERGY") core.set_global_option("SAVE_JK", False) # Grab JK object and set to A (so we do not save many JK objects) sapt_jk = hf_wfn_B.jk() hf_wfn_A.set_jk(sapt_jk) core.set_global_option("SAVE_JK", False) # Move it back to monomer A if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerB', 'dimer') core.print_out("\n") core.print_out(" ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT): delta HF Segement".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n") core.print_out(" ---------------------------------------------------------\n") core.print_out("\n") # Build cache hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B, sapt_jk, True) # Electostatics elst = sapt_jk_terms.electrostatics(hf_cache, True) hf_data.update(elst) # Exchange exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True) hf_data.update(exch) # Induction ind = sapt_jk_terms.induction( hf_cache, sapt_jk, True, maxiter=core.get_option("SAPT", "MAXITER"), conv=core.get_option("SAPT", "D_CONVERGENCE"), Sinf=core.get_option("SAPT", "DO_IND_EXCH_SINF")) hf_data.update(ind) dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data["HF MONOMER B"] core.print_out("\n") core.print_out(print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value)) data["Delta HF Correction"] = core.get_variable("SAPT(DFT) Delta HF") sapt_jk.finalize() del hf_wfn_A, hf_wfn_B, sapt_jk if hf_wfn_dimer is None: dimer_wfn = core.Wavefunction.build(sapt_dimer, core.get_global_option("BASIS")) else: dimer_wfn = hf_wfn_dimer # Set the primary functional core.set_local_option('SCF', 'REFERENCE', 'RKS') # Compute Monomer A wavefunction if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') if mon_a_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift) # Save the JK object core.IO.set_default_namespace('monomerA') wfn_A = scf_helper( sapt_dft_functional, post_scf=False, molecule=monomerA, banner="SAPT(DFT): DFT Monomer A", **kwargs) data["DFT MONOMERA"] = core.get_variable("CURRENT ENERGY") core.set_global_option("DFT_GRAC_SHIFT", 0.0) # Compute Monomer B wavefunction if (core.get_global_option('SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') if mon_b_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift) core.set_global_option("SAVE_JK", True) core.IO.set_default_namespace('monomerB') wfn_B = scf_helper( sapt_dft_functional, post_scf=False, molecule=monomerB, banner="SAPT(DFT): DFT Monomer B", **kwargs) data["DFT MONOMERB"] = core.get_variable("CURRENT ENERGY") # Save JK object sapt_jk = wfn_B.jk() wfn_A.set_jk(sapt_jk) core.set_global_option("SAVE_JK", False) core.set_global_option("DFT_GRAC_SHIFT", 0.0) # Write out header scf_alg = core.get_global_option("SCF_TYPE") sapt_dft_header(sapt_dft_functional, mon_a_shift, mon_b_shift, bool(do_delta_hf), scf_alg) # Call SAPT(DFT) sapt_jk = wfn_B.jk() sapt_dft(dimer_wfn, wfn_A, wfn_B, sapt_jk=sapt_jk, data=data, print_header=False) # Copy data back into globals for k, v in data.items(): core.set_variable(k, v) core.tstop() return dimer_wfn
def ip_fitting(name, omega_l=0.05, omega_r=2.5, omega_convergence=1.0e-3, maxiter=20, **kwargs): """Optimize DFT omega parameter for molecular system. Parameters ---------- name : string or function DFT functional string name or function defining functional whose omega is to be optimized. omega_l : float, optional Minimum omega to be considered during fitting. omega_r : float, optional Maximum omega to be considered during fitting. molecule : :ref:`molecule <op_py_molecule>`, optional Target molecule (neutral) for which omega is to be tuned, if not last defined. omega_convergence : float, optional Threshold below which to consider omega converged. (formerly omega_tolerance) maxiter : int, optional Maximum number of iterations towards omega convergence. Returns ------- float Optimal omega parameter. """ optstash = p4util.OptionsState(['SCF', 'REFERENCE'], ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ['SCF', 'DFT_OMEGA'], ['DOCC'], ['SOCC']) kwargs = p4util.kwargs_lower(kwargs) # By default, do not read previous 180 orbitals file read = False read180 = '' if 'read' in kwargs: read = True read180 = kwargs['read'] if core.get_option('SCF', 'REFERENCE') != 'UKS': core.print_out( """ Requested procedure `ip_fitting` runs further calculations with UKS reference.\n""" ) core.set_local_option('SCF', 'REFERENCE', 'UKS') # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError( """IP Fitting requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out( """ Requested procedure `ip_fitting` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() # How many electrons are there? N = 0 for A in range(molecule.natom()): N += molecule.Z(A) N -= charge0 N = int(N) Nb = int((N - mult0 + 1) / 2) Na = int(N - Nb) # Work in the ot namespace for this procedure core.IO.set_default_namespace("ot") # Burn in to determine orbital eigenvalues if read: core.set_local_option("SCF", "GUESS", "READ") copy_file_to_scratch(read180, 'psi', 'ot', 180) core.set_local_option("SCF", "DF_INTS_IO", "SAVE") E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Burn-in', **kwargs) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") if not wfn.functional().is_x_lrc(): raise ValidationError( """Not sensible to optimize omega for non-long-range-correction functional.""" ) # Determine H**O, to determine mult1 eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Na == Nb: H**O = -Nb elif Nb == 0: H**O = Na else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] if E_a >= E_b: H**O = Na else: H**O = -Nb Na1 = Na Nb1 = Nb if H**O > 0: Na1 -= 1 else: Nb1 -= 1 charge1 = charge0 + 1 mult1 = Na1 - Nb1 + 1 omegas = [] E0s = [] E1s = [] kIPs = [] IPs = [] types = [] # Right endpoint core.set_local_option('SCF', 'DFT_OMEGA', omega_r) # Neutral if read: core.set_local_option("SCF", "GUESS", "READ") p4util.copy_file_to_scratch(read180, 'psi', 'ot', 180) molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) E0r, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Neutral, Right Endpoint', **kwargs) eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Nb == 0: E_HOMO = eps_a.np[int(Na - 1)] else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] E_HOMO = max(E_a, E_b) E_HOMOr = E_HOMO core.IO.change_file_namespace(180, "ot", "neutral") # Cation if read: core.set_local_option("SCF", "GUESS", "READ") p4util.copy_file_to_scratch(read180, 'psi', 'ot', 180) molecule.set_molecular_charge(charge1) molecule.set_multiplicity(mult1) E1r = driver.energy('scf', dft_functional=name, molecule=molecule, banner='IP Fitting SCF: Cation, Right Endpoint', **kwargs) core.IO.change_file_namespace(180, "ot", "cation") IPr = E1r - E0r kIPr = -E_HOMOr delta_r = IPr - kIPr if IPr > kIPr: raise ValidationError( """\n***IP Fitting Error: Right Omega limit should have kIP > IP: {} !> {}""" .format(kIPr, IPr)) omegas.append(omega_r) types.append('Right Limit') E0s.append(E0r) E1s.append(E1r) IPs.append(IPr) kIPs.append(kIPr) # Use previous orbitals from here out core.set_local_option("SCF", "GUESS", "READ") # Left endpoint core.set_local_option('SCF', 'DFT_OMEGA', omega_l) # Neutral core.IO.change_file_namespace(180, "neutral", "ot") molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) core.set_global_option("DOCC", [Nb]) core.set_global_option("SOCC", [Na - Nb]) E0l, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Neutral, Left Endpoint', **kwargs) eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Nb == 0: E_HOMO = eps_a.np[int(Na - 1)] else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] E_HOMO = max(E_a, E_b) E_HOMOl = E_HOMO core.IO.change_file_namespace(180, "ot", "neutral") # Cation core.IO.change_file_namespace(180, "cation", "ot") molecule.set_molecular_charge(charge1) molecule.set_multiplicity(mult1) core.set_global_option("DOCC", [Nb1]) core.set_global_option("SOCC", [Na1 - Nb1]) E1l = driver.energy('scf', dft_functional=name, molecule=molecule, banner='IP Fitting SCF: Cation, Left Endpoint', **kwargs) core.IO.change_file_namespace(180, "ot", "cation") IPl = E1l - E0l kIPl = -E_HOMOl delta_l = IPl - kIPl if IPl < kIPl: raise ValidationError( """\n***IP Fitting Error: Left Omega limit should have kIP < IP: {} !< {}""" .format(kIPl, IPl)) omegas.append(omega_l) types.append('Left Limit') E0s.append(E0l) E1s.append(E1l) IPs.append(IPl) kIPs.append(kIPl) converged = False repeat_l = 0 repeat_r = 0 for step in range(maxiter): # Regula Falsi (modified) if repeat_l > 1: delta_l /= 2.0 if repeat_r > 1: delta_r /= 2.0 omega = -(omega_r - omega_l) / (delta_r - delta_l) * delta_l + omega_l core.set_local_option('SCF', 'DFT_OMEGA', omega) # Neutral core.IO.change_file_namespace(180, "neutral", "ot") molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) core.set_global_option("DOCC", [Nb]) core.set_global_option("SOCC", [Na - Nb]) E0, wfn = driver.energy( 'scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Neutral, Omega = {:11.3E}'.format(omega), **kwargs) eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Nb == 0: E_HOMO = eps_a.np[int(Na - 1)] else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] E_HOMO = max(E_a, E_b) core.IO.change_file_namespace(180, "ot", "neutral") # Cation core.IO.change_file_namespace(180, "cation", "ot") molecule.set_molecular_charge(charge1) molecule.set_multiplicity(mult1) core.set_global_option("DOCC", [Nb1]) core.set_global_option("SOCC", [Na1 - Nb1]) E1 = driver.energy( 'scf', dft_functional=name, molecule=molecule, banner='IP Fitting SCF: Cation, Omega = {:11.3E}'.format(omega), **kwargs) core.IO.change_file_namespace(180, "ot", "cation") IP = E1 - E0 kIP = -E_HOMO delta = IP - kIP if kIP > IP: omega_r = omega E0r = E0 E1r = E1 IPr = IP kIPr = kIP delta_r = delta repeat_r = 0 repeat_l += 1 else: omega_l = omega E0l = E0 E1l = E1 IPl = IP kIPl = kIP delta_l = delta repeat_l = 0 repeat_r += 1 omegas.append(omega) types.append('Regula-Falsi') E0s.append(E0) E1s.append(E1) IPs.append(IP) kIPs.append(kIP) # Termination if abs(omega_l - omega_r) < omega_convergence: converged = True break core.IO.set_default_namespace("") core.print_out("""\n ==> IP Fitting Results <==\n\n""") core.print_out(""" => Occupation Determination <= \n\n""") core.print_out(""" %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O')) core.print_out(""" Neutral: %6d %6d %6d %6d %6d %6d\n""" % (N, Na, Nb, charge0, mult0, H**O)) core.print_out(""" Cation: %6d %6d %6d %6d %6d\n\n""" % (N - 1, Na1, Nb1, charge1, mult1)) core.print_out(""" => Regula Falsi Iterations <=\n\n""") core.print_out(""" %3s %11s %14s %14s %14s %s\n""" % ('N', 'Omega', 'IP', 'kIP', 'Delta', 'Type')) for k in range(len(omegas)): core.print_out( """ %3d %11.3E %14.6E %14.6E %14.6E %s\n""" % (k + 1, omegas[k], IPs[k], kIPs[k], IPs[k] - kIPs[k], types[k])) optstash.restore() if converged: core.print_out("""\n IP Fitting Converged\n""") core.print_out(""" Final omega = %14.6E\n""" % ((omega_l + omega_r) / 2)) core.print_out( """\n "M,I. does the dying. Fleet just does the flying."\n""") core.print_out(""" -Starship Troopers\n""") else: raise ConvergenceError("""IP Fitting """, step + 1) return ((omega_l + omega_r) / 2)
def frac_traverse(name, **kwargs): """Scan electron occupancy from +1 electron to -1. Parameters ---------- name : string or function DFT functional string name or function defining functional whose omega is to be optimized. molecule : :ref:`molecule <op_py_molecule>`, optional Target molecule (neutral) for which omega is to be tuned, if not last defined. cation_mult : int, optional Multiplicity of cation, if not neutral multiplicity + 1. anion_mult : int, optional Multiplicity of anion, if not neutral multiplicity + 1. frac_start : int, optional Iteration at which to start frac procedure when not reading previous guess. Defaults to 25. HOMO_occs : list, optional Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`. LUMO_occs : list, optional Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`. H**O : int, optional Index of H**O. LUMO : int, optional Index of LUMO. frac_diis : bool, optional Do use DIIS for non-1.0-occupied points? neutral_guess : bool, optional Do use neutral orbitals as guess for the anion? hf_guess: bool, optional Do use UHF guess before UKS? continuous_guess : bool, optional Do carry along guess rather than reguessing at each occupation? filename : str, optional Result filename, if not name of molecule. Returns ------- dict Dictionary associating SCF energies with occupations. """ optstash = p4util.OptionsState( ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ['SCF', 'REFERENCE'], ["SCF", "FRAC_START"], ["SCF", "FRAC_RENORMALIZE"], #["SCF", "FRAC_LOAD"], ["SCF", "FRAC_OCC"], ["SCF", "FRAC_VAL"], ["SCF", "FRAC_DIIS"]) kwargs = p4util.kwargs_lower(kwargs) # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError( """frac_traverse requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out( """ Requested procedure `frac_traverse` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() chargep = charge0 + 1 chargem = charge0 - 1 multp = kwargs.get('cation_mult', mult0 + 1) multm = kwargs.get('anion_mult', mult0 + 1) # By default, we start the frac procedure on the 25th iteration # when not reading a previous guess frac_start = kwargs.get('frac_start', 25) # By default, we occupy by tenths of electrons HOMO_occs = kwargs.get( 'HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) LUMO_occs = kwargs.get( 'LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) # By default, H**O and LUMO are both in alpha Z = 0 for A in range(molecule.natom()): Z += molecule.Z(A) Z -= charge0 H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2)) LUMO = kwargs.get('LUMO', H**O + 1) # By default, DIIS in FRAC (1.0 occupation is always DIIS'd) frac_diis = kwargs.get('frac_diis', True) # By default, use the neutral orbitals as a guess for the anion neutral_guess = kwargs.get('neutral_guess', True) # By default, burn-in with UHF first, if UKS hf_guess = False if core.get_local_option('SCF', 'REFERENCE') == 'UKS': hf_guess = kwargs.get('hf_guess', True) # By default, re-guess at each N continuous_guess = kwargs.get('continuous_guess', False) # By default, drop the files to the molecule's name root = kwargs.get('filename', molecule.name()) traverse_filename = root + '.traverse.dat' # => Traverse <= # occs = [] energies = [] potentials = [] convs = [] # => Run the neutral for its orbitals, if requested <= # core.set_local_option("SCF", "DF_INTS_IO", "SAVE") old_guess = core.get_local_option("SCF", "GUESS") if (neutral_guess): if (hf_guess): core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the anion first <= # molecule.set_molecular_charge(chargem) molecule.set_multiplicity(multm) # => Burn the anion in with hf, if requested <= # if hf_guess: core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "SAVE") core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) # NYI core.set_local_option("SCF", "FRAC_LOAD", False) for occ in LUMO_occs: core.set_local_option("SCF", "FRAC_OCC", [LUMO]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(LUMO) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(LUMO) - 1)) occs.append(occ) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) #core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the neutral next <= # molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) # Burn the neutral in with hf, if requested <= # if not continuous_guess: core.set_local_option("SCF", "GUESS", old_guess) if hf_guess: core.set_local_option("SCF", "FRAC_START", 0) core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") # NYI core.set_local_option("SCF", "FRAC_LOAD", False) core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) for occ in HOMO_occs: core.set_local_option("SCF", "FRAC_OCC", [H**O]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(H**O) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(H**O) - 1)) occs.append(occ - 1.0) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) # NYI core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Print the results out <= # E = {} core.print_out( """\n ==> Fractional Occupation Traverse Results <==\n\n""") core.print_out(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): core.print_out(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) E[occs[k]] = energies[k] core.print_out(""" You trying to be a hero Watkins? Just trying to kill some bugs sir! -Starship Troopers""") # Drop the files out with open(traverse_filename, 'w') as fh: fh.write(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): fh.write(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) optstash.restore() return E
def frac_nuke(name, **kwargs): """Pull all the electrons out, one at a time""" optstash = p4util.OptionsState( ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ["SCF", "FRAC_START"], ["SCF", "FRAC_RENORMALIZE"], # NYI ["SCF", "FRAC_LOAD"], ["SCF", "FRAC_OCC"], ["SCF", "FRAC_VAL"], ["SCF", "FRAC_DIIS"]) kwargs = p4util.kwargs_lower(kwargs) # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError( """frac_nuke requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out( """ Requested procedure `frac_nuke` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() # By default, we start the frac procedure on the 25th iteration # when not reading a previous guess frac_start = kwargs.get('frac_start', 25) # By default, we occupy by tenths of electrons foccs = kwargs.get('foccs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) # By default, H**O and LUMO are both in alpha N = 0 for A in range(molecule.natom()): N += molecule.Z(A) N -= charge0 N = int(N) Nb = int((N - mult0 + 1) / 2) Na = int(N - Nb) charge = charge0 mult = mult0 # By default, nuke all the electrons Nmin = 0 if 'nmax' in kwargs: Nmin = N - int(kwargs['nmax']) # By default, DIIS in FRAC (1.0 occupation is always DIIS'd) frac_diis = kwargs.get('frac_diis', True) # By default, drop the files to the molecule's name root = kwargs.get('filename', molecule.name()) traverse_filename = root + '.traverse.dat' stats_filename = root + '.stats.dat' # => Traverse <= # core.set_local_option("SCF", "DF_INTS_IO", "SAVE") Ns = [] energies = [] potentials = [] convs = [] stats = [] # Run one SCF to burn things in E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) # Determine H**O eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() eps_a.print_out() if Na == Nb: H**O = -Nb elif Nb == 0: H**O = Na else: E_a = eps_a.get(int(Na - 1)) E_b = eps_b.get(int(Nb - 1)) if E_a >= E_b: H**O = Na else: H**O = -Nb stats.append(""" %6d %6d %6d %6d %6d %6d\n""" % (N, Na, Nb, charge, mult, H**O)) if H**O > 0: Na -= 1 else: Nb -= 1 charge += 1 mult = Na - Nb + 1 core.set_local_option("SCF", "DF_INTS_IO", "LOAD") core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) # Nuke 'em Rico! for Nintegral in range(N, Nmin, -1): # Nuke the current H**O for occ in foccs: core.set_local_option("SCF", "FRAC_OCC", [H**O]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if H**O > 0: eps = wfn.epsilon_a() potentials.append(eps.np[H**O - 1]) else: eps = wfn.epsilon_b() potentials.append(eps.np[-H**O - 1]) Ns.append(Nintegral + occ - 1.0) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) # NYI core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "GUESS", "READ") # Set the next charge/mult molecule.set_molecular_charge(charge) molecule.set_multiplicity(mult) # Determine H**O print('DGAS: What ref should this point to?') #ref = core.legacy_wavefunction() eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Na == Nb: H**O = -Nb elif Nb == 0: H**O = Na else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] if E_a >= E_b: H**O = Na else: H**O = -Nb stats.append(""" %6d %6d %6d %6d %6d %6d\n""" % (Nintegral - 1, Na, Nb, charge, mult, H**O)) if H**O > 0: Na -= 1 else: Nb -= 1 charge += 1 mult = Na - Nb + 1 core.set_local_option("SCF", "DF_INTS_IO", "NONE") # => Print the results out <= # E = {} core.print_out("""\n ==> Fractional Occupation Nuke Results <==\n\n""") core.print_out(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(Ns)): core.print_out(""" %11.3E %24.16E %24.16E %11d\n""" % (Ns[k], energies[k], potentials[k], convs[k])) E[Ns[k]] = energies[k] core.print_out('\n') core.print_out(""" %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O')) for line in stats: core.print_out(line) core.print_out( '\n "You shoot a nuke down a bug hole, you got a lot of dead bugs"\n' ) core.print_out(' -Starship Troopers\n') # Drop the files out with open(traverse_filename, 'w') as fh: fh.write(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(Ns)): fh.write(""" %11.3E %24.16E %24.16E %11d\n""" % (Ns[k], energies[k], potentials[k], convs[k])) with open(stats_filename, 'w') as fh: fh.write(""" %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O')) for line in stats: fh.write(line) optstash.restore() return E
def write_zmat(name, dertype, molecule): """Returns string with contents of Cfour ZMAT file as gathered from active molecule, current keyword settings, and cfour {...} block. """ # Handle memory mem = int(0.000001 * core.get_memory()) if mem == 524: memcmd, memkw = '', {} else: memcmd, memkw = qcdb.cfour.muster_memory(mem) # Handle molecule and basis set if molecule.name() == 'blank_molecule_psi4_yo': molcmd, molkw = '', {} bascmd, baskw = '', {} core.set_local_option('CFOUR', 'TRANSLATE_PSI4', False) else: molecule.update_geometry() #print(molecule.create_psi4_string_from_molecule()) qcdbmolecule = qcdb.Molecule( molecule.create_psi4_string_from_molecule()) qcdbmolecule.tagline = molecule.name() molcmd, molkw = qcdbmolecule.format_molecule_for_cfour() if core.get_global_option('BASIS') in ["", "(AUTO)"]: bascmd, baskw = '', {} else: user_pg = molecule.schoenflies_symbol() molecule.reset_point_group( 'c1') # need basis printed for *every* atom qbs = core.BasisSet.build(molecule, "BASIS", core.get_global_option('BASIS')) if qbs.has_ECP(): raise ValidationError("""ECPs not hooked up for Cfour""") with open('GENBAS', 'w') as cfour_basfile: cfour_basfile.write(qbs.genbas()) core.print_out( ' GENBAS loaded from Psi4 LibMints for basis %s\n' % (core.get_global_option('BASIS'))) molecule.reset_point_group(user_pg) molecule.update_geometry() bascmd, baskw = qcdbmolecule.format_basis_for_cfour( qbs.has_puream()) # Handle psi4 keywords implying cfour keyword values if core.get_option('CFOUR', 'TRANSLATE_PSI4'): psicmd, psikw = qcdb.cfour.muster_psi4options( p4util.prepare_options_for_modules(changedOnly=True)) else: psicmd, psikw = '', {} # Handle calc type and quantum chemical method mdccmd, mdckw = qcdb.cfour.muster_modelchem(name, dertype) # Handle calc type and quantum chemical method mdccmd, mdckw = qcdb.cfour.muster_modelchem(name, dertype) # Handle driver vs input/default keyword reconciliation userkw = p4util.prepare_options_for_modules() userkw = qcdb.options.reconcile_options(userkw, memkw) userkw = qcdb.options.reconcile_options(userkw, molkw) userkw = qcdb.options.reconcile_options(userkw, baskw) userkw = qcdb.options.reconcile_options(userkw, psikw) userkw = qcdb.options.reconcile_options(userkw, mdckw) # Handle conversion of psi4 keyword structure into cfour format optcmd = qcdb.options.prepare_options_for_cfour(userkw) # Handle text to be passed untouched to cfour litcmd = core.get_global_option('LITERAL_CFOUR') # Assemble ZMAT pieces zmat = memcmd + molcmd + optcmd + mdccmd + psicmd + bascmd + litcmd if len(re.findall(r'^\*(ACES2|CFOUR|CRAPS)\(', zmat, re.MULTILINE)) != 1: core.print_out('\n Faulty ZMAT constructed:\n%s' % (zmat)) raise ValidationError(""" Multiple *CFOUR(...) blocks in input. This usually arises because molecule or options are specified both the psi4 way through molecule {...} and set ... and the cfour way through cfour {...}.""") return zmat
def run_gaussian_2(name, **kwargs): # throw an exception for open-shells if (core.get_option('SCF', 'REFERENCE') != 'RHF'): raise ValidationError("""g2 computations require "reference rhf".""") # stash user options: optstash = p4util.OptionsState(['FNOCC', 'COMPUTE_TRIPLES'], ['FNOCC', 'COMPUTE_MP4_TRIPLES'], ['BASIS'], ['FREEZE_CORE'], ['MP2_TYPE'], ['SCF_TYPE']) # override default scf_type core.set_global_option('SCF_TYPE', 'PK') # optimize geometry at scf level core.clean() core.set_global_option('BASIS', "6-31G(D)") driver.optimize('scf') core.clean() # scf frequencies for zpe # NOTE This line should not be needed, but without it there's a seg fault scf_e, ref = driver.frequency('scf', return_wfn=True) # thermodynamic properties du = core.variable('THERMAL ENERGY CORRECTION') dh = core.variable('ENTHALPY CORRECTION') dg = core.variable('GIBBS FREE ENERGY CORRECTION') freqs = ref.frequencies() nfreq = freqs.dim(0) freqsum = 0.0 for i in range(0, nfreq): freqsum += freqs.get(i) zpe = freqsum / constants.hartree2wavenumbers * 0.8929 * 0.5 core.clean() # optimize geometry at mp2 (no frozen core) level # note: freeze_core isn't an option in MP2 core.set_global_option('FREEZE_CORE', "FALSE") core.set_global_option('MP2_TYPE', 'CONV') driver.optimize('mp2') core.clean() # qcisd(t) core.set_local_option('FNOCC', 'COMPUTE_MP4_TRIPLES', "TRUE") core.set_global_option('FREEZE_CORE', "TRUE") core.set_global_option('BASIS', "6-311G(D_P)") ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs) # HLC: high-level correction based on number of valence electrons nirrep = ref.nirrep() frzcpi = ref.frzcpi() nfzc = 0 for i in range(0, nirrep): nfzc += frzcpi[i] nalpha = ref.nalpha() - nfzc nbeta = ref.nbeta() - nfzc # hlc of gaussian-2 hlc = -0.00481 * nalpha - 0.00019 * nbeta # hlc of gaussian-1 hlc1 = -0.00614 * nalpha eqci_6311gdp = core.variable("QCISD(T) TOTAL ENERGY") emp4_6311gd = core.variable("MP4 TOTAL ENERGY") emp2_6311gd = core.variable("MP2 TOTAL ENERGY") core.clean() # correction for diffuse functions core.set_global_option('BASIS', "6-311+G(D_P)") driver.energy('mp4') emp4_6311pg_dp = core.variable("MP4 TOTAL ENERGY") emp2_6311pg_dp = core.variable("MP2 TOTAL ENERGY") core.clean() # correction for polarization functions core.set_global_option('BASIS', "6-311G(2DF_P)") driver.energy('mp4') emp4_6311g2dfp = core.variable("MP4 TOTAL ENERGY") emp2_6311g2dfp = core.variable("MP2 TOTAL ENERGY") core.clean() # big basis mp2 core.set_global_option('BASIS', "6-311+G(3DF_2P)") #run_fnocc('_mp2',**kwargs) driver.energy('mp2') emp2_big = core.variable("MP2 TOTAL ENERGY") core.clean() eqci = eqci_6311gdp e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp e_plus = emp4_6311pg_dp - emp4_6311gd e_2df = emp4_6311g2dfp - emp4_6311gd eg2 = eqci + e_delta_g2 + e_plus + e_2df eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe core.print_out('\n') core.print_out(' ==> G1/G2 Energy Components <==\n') core.print_out('\n') core.print_out(' QCISD(T): %20.12lf\n' % eqci) core.print_out(' E(Delta): %20.12lf\n' % e_delta_g2) core.print_out(' E(2DF): %20.12lf\n' % e_2df) core.print_out(' E(+): %20.12lf\n' % e_plus) core.print_out(' E(G1 HLC): %20.12lf\n' % hlc1) core.print_out(' E(G2 HLC): %20.12lf\n' % hlc) core.print_out(' E(ZPE): %20.12lf\n' % zpe) core.print_out('\n') core.print_out(' ==> 0 Kelvin Results <==\n') core.print_out('\n') eg2_0k = eg2 + zpe + hlc core.print_out(' G1: %20.12lf\n' % (eqci + e_plus + e_2df + hlc1 + zpe)) core.print_out(' G2(MP2): %20.12lf\n' % eg2_mp2_0k) core.print_out(' G2: %20.12lf\n' % eg2_0k) core.set_variable("G1 TOTAL ENERGY", eqci + e_plus + e_2df + hlc1 + zpe) core.set_variable("G2 TOTAL ENERGY", eg2_0k) core.set_variable("G2(MP2) TOTAL ENERGY", eg2_mp2_0k) core.print_out('\n') T = core.get_global_option('T') core.print_out(' ==> %3.0lf Kelvin Results <==\n' % T) core.print_out('\n') internal_energy = eg2_mp2_0k + du - zpe / 0.8929 enthalpy = eg2_mp2_0k + dh - zpe / 0.8929 gibbs = eg2_mp2_0k + dg - zpe / 0.8929 core.print_out(' G2(MP2) energy: %20.12lf\n' % internal_energy) core.print_out(' G2(MP2) enthalpy: %20.12lf\n' % enthalpy) core.print_out(' G2(MP2) free energy: %20.12lf\n' % gibbs) core.print_out('\n') core.set_variable("G2(MP2) INTERNAL ENERGY", internal_energy) core.set_variable("G2(MP2) ENTHALPY", enthalpy) core.set_variable("G2(MP2) FREE ENERGY", gibbs) internal_energy = eg2_0k + du - zpe / 0.8929 enthalpy = eg2_0k + dh - zpe / 0.8929 gibbs = eg2_0k + dg - zpe / 0.8929 core.print_out(' G2 energy: %20.12lf\n' % internal_energy) core.print_out(' G2 enthalpy: %20.12lf\n' % enthalpy) core.print_out(' G2 free energy: %20.12lf\n' % gibbs) core.set_variable("CURRENT ENERGY", eg2_0k) core.set_variable("G2 INTERNAL ENERGY", internal_energy) core.set_variable("G2 ENTHALPY", enthalpy) core.set_variable("G2 FREE ENERGY", gibbs) core.clean() optstash.restore() # return 0K g2 results return eg2_0k
def frac_traverse(name, **kwargs): """Scan electron occupancy from +1 electron to -1. Parameters ---------- name : string or function DFT functional string name or function defining functional whose omega is to be optimized. molecule : :ref:`molecule <op_py_molecule>`, optional Target molecule (neutral) for which omega is to be tuned, if not last defined. cation_mult : int, optional Multiplicity of cation, if not neutral multiplicity + 1. anion_mult : int, optional Multiplicity of anion, if not neutral multiplicity + 1. frac_start : int, optional Iteration at which to start frac procedure when not reading previous guess. Defaults to 25. HOMO_occs : list, optional Occupations to step through for cation, by default `[1 - 0.1 * x for x in range(11)]`. LUMO_occs : list, optional Occupations to step through for anion, by default `[1 - 0.1 * x for x in range(11)]`. H**O : int, optional Index of H**O. LUMO : int, optional Index of LUMO. frac_diis : bool, optional Do use DIIS for non-1.0-occupied points? neutral_guess : bool, optional Do use neutral orbitals as guess for the anion? hf_guess: bool, optional Do use UHF guess before UKS? continuous_guess : bool, optional Do carry along guess rather than reguessing at each occupation? filename : str, optional Result filename, if not name of molecule. Returns ------- dict Dictionary associating SCF energies with occupations. """ optstash = p4util.OptionsState( ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ['SCF', 'REFERENCE'], ["SCF", "FRAC_START"], ["SCF", "FRAC_RENORMALIZE"], #["SCF", "FRAC_LOAD"], ["SCF", "FRAC_OCC"], ["SCF", "FRAC_VAL"], ["SCF", "FRAC_DIIS"]) kwargs = p4util.kwargs_lower(kwargs) # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError("""frac_traverse requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out(""" Requested procedure `frac_traverse` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() chargep = charge0 + 1 chargem = charge0 - 1 multp = kwargs.get('cation_mult', mult0 + 1) multm = kwargs.get('anion_mult', mult0 + 1) # By default, we start the frac procedure on the 25th iteration # when not reading a previous guess frac_start = kwargs.get('frac_start', 25) # By default, we occupy by tenths of electrons HOMO_occs = kwargs.get('HOMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) LUMO_occs = kwargs.get('LUMO_occs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) # By default, H**O and LUMO are both in alpha Z = 0 for A in range(molecule.natom()): Z += molecule.Z(A) Z -= charge0 H**O = kwargs.get('H**O', (Z / 2 + 1 if (Z % 2) else Z / 2)) LUMO = kwargs.get('LUMO', H**O + 1) # By default, DIIS in FRAC (1.0 occupation is always DIIS'd) frac_diis = kwargs.get('frac_diis', True) # By default, use the neutral orbitals as a guess for the anion neutral_guess = kwargs.get('neutral_guess', True) # By default, burn-in with UHF first, if UKS hf_guess = False if core.get_local_option('SCF', 'REFERENCE') == 'UKS': hf_guess = kwargs.get('hf_guess', True) # By default, re-guess at each N continuous_guess = kwargs.get('continuous_guess', False) # By default, drop the files to the molecule's name root = kwargs.get('filename', molecule.name()) traverse_filename = root + '.traverse.dat' # => Traverse <= # occs = [] energies = [] potentials = [] convs = [] # => Run the neutral for its orbitals, if requested <= # core.set_local_option("SCF", "DF_INTS_IO", "SAVE") old_guess = core.get_local_option("SCF", "GUESS") if (neutral_guess): if (hf_guess): core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the anion first <= # molecule.set_molecular_charge(chargem) molecule.set_multiplicity(multm) # => Burn the anion in with hf, if requested <= # if hf_guess: core.set_local_option("SCF", "REFERENCE","UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "DF_INTS_IO", "SAVE") core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) # NYI core.set_local_option("SCF", "FRAC_LOAD", False) for occ in LUMO_occs: core.set_local_option("SCF", "FRAC_OCC", [LUMO]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(LUMO) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(LUMO) - 1)) occs.append(occ) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) #core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Run the neutral next <= # molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) # Burn the neutral in with hf, if requested <= # if not continuous_guess: core.set_local_option("SCF", "GUESS", old_guess) if hf_guess: core.set_local_option("SCF", "FRAC_START", 0) core.set_local_option("SCF", "REFERENCE", "UHF") driver.energy('scf', dft_functional=name, molecule=molecule, **kwargs) core.set_local_option("SCF", "REFERENCE", "UKS") core.set_local_option("SCF", "GUESS", "READ") # NYI core.set_local_option("SCF", "FRAC_LOAD", False) core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) for occ in HOMO_occs: core.set_local_option("SCF", "FRAC_OCC", [H**O]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if LUMO > 0: eps = wfn.epsilon_a() potentials.append(eps.get(int(H**O) - 1)) else: eps = wfn.epsilon_b() potentials.append(eps.get(-int(H**O) - 1)) occs.append(occ - 1.0) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) # NYI core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "GUESS", "READ") core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") # => Print the results out <= # E = {} core.print_out("""\n ==> Fractional Occupation Traverse Results <==\n\n""") core.print_out(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): core.print_out(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) E[occs[k]] = energies[k] core.print_out(""" You trying to be a hero Watkins? Just trying to kill some bugs sir! -Starship Troopers""") # Drop the files out with open(traverse_filename, 'w') as fh: fh.write(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(occs)): fh.write(""" %11.3E %24.16E %24.16E %11d\n""" % (occs[k], energies[k], potentials[k], convs[k])) optstash.restore() return E
def _set_convergence_criterion(ptype, method_name, scf_Ec, pscf_Ec, scf_Dc, pscf_Dc, gen_Ec, verbose=1): r""" This function will set local SCF and global energy convergence criterion to the defaults listed at: http://www.psicode.org/psi4manual/master/scf.html#convergence-and- algorithm-defaults. SCF will be converged more tightly if a post-SCF method is select (pscf_Ec, and pscf_Dc) else the looser (scf_Ec, and scf_Dc convergence criterion will be used). ptype - Procedure type (energy, gradient, etc). Nearly always test on procedures['energy'] since that's guaranteed to exist for a method. method_name - Name of the method scf_Ec - E convergence criterion for scf target method pscf_Ec - E convergence criterion for scf of post-scf target method scf_Dc - D convergence criterion for scf target method pscf_Dc - D convergence criterion for scf of post-scf target method gen_Ec - E convergence criterion for post-scf target method """ optstash = p4util.OptionsState( ['SCF', 'E_CONVERGENCE'], ['SCF', 'D_CONVERGENCE'], ['E_CONVERGENCE']) # Kind of want to move this out of here _method_exists(ptype, method_name) if verbose >= 2: print(' Setting convergence', end=' ') # Set method-dependent scf convergence criteria, check against energy routines if not core.has_option_changed('SCF', 'E_CONVERGENCE'): if procedures['energy'][method_name] == proc.run_scf: core.set_local_option('SCF', 'E_CONVERGENCE', scf_Ec) if verbose >= 2: print(scf_Ec, end=' ') else: core.set_local_option('SCF', 'E_CONVERGENCE', pscf_Ec) if verbose >= 2: print(pscf_Ec, end=' ') else: if verbose >= 2: print('CUSTOM', core.get_option('SCF', 'E_CONVERGENCE'), end=' ') if not core.has_option_changed('SCF', 'D_CONVERGENCE'): if procedures['energy'][method_name] == proc.run_scf: core.set_local_option('SCF', 'D_CONVERGENCE', scf_Dc) if verbose >= 2: print(scf_Dc, end=' ') else: core.set_local_option('SCF', 'D_CONVERGENCE', pscf_Dc) if verbose >= 2: print(pscf_Dc, end=' ') else: if verbose >= 2: print('CUSTOM', core.get_option('SCF', 'D_CONVERGENCE'), end=' ') # Set post-scf convergence criteria (global will cover all correlated modules) if not core.has_global_option_changed('E_CONVERGENCE'): if procedures['energy'][method_name] != proc.run_scf: core.set_global_option('E_CONVERGENCE', gen_Ec) if verbose >= 2: print(gen_Ec, end=' ') else: if procedures['energy'][method_name] != proc.run_scf: if verbose >= 2: print('CUSTOM', core.get_global_option('E_CONVERGENCE'), end=' ') if verbose >= 2: print('') return optstash
def _set_convergence_criterion(ptype, method_name, scf_Ec, pscf_Ec, scf_Dc, pscf_Dc, gen_Ec, verbose=1): r""" This function will set local SCF and global energy convergence criterion to the defaults listed at: http://www.psicode.org/psi4manual/master/scf.html#convergence-and- algorithm-defaults. SCF will be converged more tightly if a post-SCF method is select (pscf_Ec, and pscf_Dc) else the looser (scf_Ec, and scf_Dc convergence criterion will be used). ptype - Procedure type (energy, gradient, etc). Nearly always test on procedures['energy'] since that's guaranteed to exist for a method. method_name - Name of the method scf_Ec - E convergence criterion for scf target method pscf_Ec - E convergence criterion for scf of post-scf target method scf_Dc - D convergence criterion for scf target method pscf_Dc - D convergence criterion for scf of post-scf target method gen_Ec - E convergence criterion for post-scf target method """ optstash = p4util.OptionsState(['SCF', 'E_CONVERGENCE'], ['SCF', 'D_CONVERGENCE'], ['E_CONVERGENCE']) # Kind of want to move this out of here _method_exists(ptype, method_name) if verbose >= 2: print(' Setting convergence', end=' ') # Set method-dependent scf convergence criteria, check against energy routines if not core.has_option_changed('SCF', 'E_CONVERGENCE'): if procedures['energy'][method_name] == proc.run_scf: core.set_local_option('SCF', 'E_CONVERGENCE', scf_Ec) if verbose >= 2: print(scf_Ec, end=' ') else: core.set_local_option('SCF', 'E_CONVERGENCE', pscf_Ec) if verbose >= 2: print(pscf_Ec, end=' ') else: if verbose >= 2: print('CUSTOM', core.get_option('SCF', 'E_CONVERGENCE'), end=' ') if not core.has_option_changed('SCF', 'D_CONVERGENCE'): if procedures['energy'][method_name] == proc.run_scf: core.set_local_option('SCF', 'D_CONVERGENCE', scf_Dc) if verbose >= 2: print(scf_Dc, end=' ') else: core.set_local_option('SCF', 'D_CONVERGENCE', pscf_Dc) if verbose >= 2: print(pscf_Dc, end=' ') else: if verbose >= 2: print('CUSTOM', core.get_option('SCF', 'D_CONVERGENCE'), end=' ') # Set post-scf convergence criteria (global will cover all correlated modules) if not core.has_global_option_changed('E_CONVERGENCE'): if procedures['energy'][method_name] != proc.run_scf: core.set_global_option('E_CONVERGENCE', gen_Ec) if verbose >= 2: print(gen_Ec, end=' ') else: if procedures['energy'][method_name] != proc.run_scf: if verbose >= 2: print('CUSTOM', core.get_global_option('E_CONVERGENCE'), end=' ') if verbose >= 2: print('') return optstash
def run_gaussian_2(name, **kwargs): # throw an exception for open-shells if (core.get_option('SCF','REFERENCE') != 'RHF' ): raise ValidationError("""g2 computations require "reference rhf".""") # stash user options: optstash = p4util.OptionsState( ['FNOCC','COMPUTE_TRIPLES'], ['FNOCC','COMPUTE_MP4_TRIPLES'], ['FREEZE_CORE'], ['MP2_TYPE'], ['SCF','SCF_TYPE']) # override default scf_type core.set_local_option('SCF','SCF_TYPE','PK') # optimize geometry at scf level core.clean() core.set_global_option('BASIS',"6-31G(D)") driver.optimize('scf') core.clean() # scf frequencies for zpe # NOTE This line should not be needed, but without it there's a seg fault scf_e, ref = driver.frequency('scf', return_wfn=True) # thermodynamic properties du = core.get_variable('INTERNAL ENERGY CORRECTION') dh = core.get_variable('ENTHALPY CORRECTION') dg = core.get_variable('GIBBS FREE ENERGY CORRECTION') freqs = ref.frequencies() nfreq = freqs.dim(0) freqsum = 0.0 for i in range(0, nfreq): freqsum += freqs.get(i) zpe = freqsum / p4const.psi_hartree2wavenumbers * 0.8929 * 0.5 core.clean() # optimize geometry at mp2 (no frozen core) level # note: freeze_core isn't an option in MP2 core.set_global_option('FREEZE_CORE',"FALSE") core.set_global_option('MP2_TYPE', 'CONV') driver.optimize('mp2') core.clean() # qcisd(t) core.set_local_option('FNOCC','COMPUTE_MP4_TRIPLES',"TRUE") core.set_global_option('FREEZE_CORE',"TRUE") core.set_global_option('BASIS',"6-311G(D_P)") ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs) # HLC: high-level correction based on number of valence electrons nirrep = ref.nirrep() frzcpi = ref.frzcpi() nfzc = 0 for i in range (0,nirrep): nfzc += frzcpi[i] nalpha = ref.nalpha() - nfzc nbeta = ref.nbeta() - nfzc # hlc of gaussian-2 hlc = -0.00481 * nalpha -0.00019 * nbeta # hlc of gaussian-1 hlc1 = -0.00614 * nalpha eqci_6311gdp = core.get_variable("QCISD(T) TOTAL ENERGY") emp4_6311gd = core.get_variable("MP4 TOTAL ENERGY") emp2_6311gd = core.get_variable("MP2 TOTAL ENERGY") core.clean() # correction for diffuse functions core.set_global_option('BASIS',"6-311+G(D_P)") driver.energy('mp4') emp4_6311pg_dp = core.get_variable("MP4 TOTAL ENERGY") emp2_6311pg_dp = core.get_variable("MP2 TOTAL ENERGY") core.clean() # correction for polarization functions core.set_global_option('BASIS',"6-311G(2DF_P)") driver.energy('mp4') emp4_6311g2dfp = core.get_variable("MP4 TOTAL ENERGY") emp2_6311g2dfp = core.get_variable("MP2 TOTAL ENERGY") core.clean() # big basis mp2 core.set_global_option('BASIS',"6-311+G(3DF_2P)") #run_fnocc('_mp2',**kwargs) driver.energy('mp2') emp2_big = core.get_variable("MP2 TOTAL ENERGY") core.clean() eqci = eqci_6311gdp e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp e_plus = emp4_6311pg_dp - emp4_6311gd e_2df = emp4_6311g2dfp - emp4_6311gd eg2 = eqci + e_delta_g2 + e_plus + e_2df eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe core.print_out('\n') core.print_out(' ==> G1/G2 Energy Components <==\n') core.print_out('\n') core.print_out(' QCISD(T): %20.12lf\n' % eqci) core.print_out(' E(Delta): %20.12lf\n' % e_delta_g2) core.print_out(' E(2DF): %20.12lf\n' % e_2df) core.print_out(' E(+): %20.12lf\n' % e_plus) core.print_out(' E(G1 HLC): %20.12lf\n' % hlc1) core.print_out(' E(G2 HLC): %20.12lf\n' % hlc) core.print_out(' E(ZPE): %20.12lf\n' % zpe) core.print_out('\n') core.print_out(' ==> 0 Kelvin Results <==\n') core.print_out('\n') eg2_0k = eg2 + zpe + hlc core.print_out(' G1: %20.12lf\n' % (eqci + e_plus + e_2df + hlc1 + zpe)) core.print_out(' G2(MP2): %20.12lf\n' % eg2_mp2_0k) core.print_out(' G2: %20.12lf\n' % eg2_0k) core.set_variable("G1 TOTAL ENERGY",eqci + e_plus + e_2df + hlc1 + zpe) core.set_variable("G2 TOTAL ENERGY",eg2_0k) core.set_variable("G2(MP2) TOTAL ENERGY",eg2_mp2_0k) core.print_out('\n') T = core.get_global_option('T') core.print_out(' ==> %3.0lf Kelvin Results <==\n'% T) core.print_out('\n') internal_energy = eg2_mp2_0k + du - zpe / 0.8929 enthalpy = eg2_mp2_0k + dh - zpe / 0.8929 gibbs = eg2_mp2_0k + dg - zpe / 0.8929 core.print_out(' G2(MP2) energy: %20.12lf\n' % internal_energy ) core.print_out(' G2(MP2) enthalpy: %20.12lf\n' % enthalpy) core.print_out(' G2(MP2) free energy: %20.12lf\n' % gibbs) core.print_out('\n') core.set_variable("G2(MP2) INTERNAL ENERGY",internal_energy) core.set_variable("G2(MP2) ENTHALPY",enthalpy) core.set_variable("G2(MP2) FREE ENERGY",gibbs) internal_energy = eg2_0k + du - zpe / 0.8929 enthalpy = eg2_0k + dh - zpe / 0.8929 gibbs = eg2_0k + dg - zpe / 0.8929 core.print_out(' G2 energy: %20.12lf\n' % internal_energy ) core.print_out(' G2 enthalpy: %20.12lf\n' % enthalpy) core.print_out(' G2 free energy: %20.12lf\n' % gibbs) core.set_variable("CURRENT ENERGY",eg2_0k) core.set_variable("G2 INTERNAL ENERGY",internal_energy) core.set_variable("G2 ENTHALPY",enthalpy) core.set_variable("G2 FREE ENERGY",gibbs) core.clean() optstash.restore() # return 0K g2 results return eg2_0k
def run_sapt_dft(name, **kwargs): optstash = p4util.OptionsState(['SCF', 'SCF_TYPE'], ['SCF', 'REFERENCE'], ['SCF', 'DFT_FUNCTIONAL'], ['SCF', 'DFT_GRAC_SHIFT'], ['SCF', 'SAVE_JK']) core.tstart() # Alter default algorithm if not core.has_option_changed('SCF', 'SCF_TYPE'): core.set_local_option('SCF', 'SCF_TYPE', 'DF') core.prepare_options_for_module("SAPT") # Get the molecule of interest ref_wfn = kwargs.get('ref_wfn', None) if ref_wfn is None: sapt_dimer = kwargs.pop('molecule', core.get_active_molecule()) else: core.print_out('Warning! SAPT argument "ref_wfn" is only able to use molecule information.') sapt_dimer = ref_wfn.molecule() sapt_dimer, monomerA, monomerB = proc_util.prepare_sapt_molecule(sapt_dimer, "dimer") # Grab overall settings mon_a_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_A") mon_b_shift = core.get_option("SAPT", "SAPT_DFT_GRAC_SHIFT_B") do_delta_hf = core.get_option("SAPT", "SAPT_DFT_DO_DHF") sapt_dft_functional = core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL") # Print out the title and some information core.print_out("\n") core.print_out(" ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT) Procedure".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith".center(58) + "\n") core.print_out(" ---------------------------------------------------------\n") core.print_out("\n") core.print_out(" ==> Algorithm <==\n\n") core.print_out(" SAPT DFT Functional %12s\n" % str(sapt_dft_functional)) core.print_out(" Monomer A GRAC Shift %12.6f\n" % mon_a_shift) core.print_out(" Monomer B GRAC Shift %12.6f\n" % mon_b_shift) core.print_out(" Delta HF %12s\n" % ("True" if do_delta_hf else "False")) core.print_out(" JK Algorithm %12s\n" % core.get_option("SCF", "SCF_TYPE")) core.print_out("\n") core.print_out(" Required computations:\n") if (do_delta_hf): core.print_out(" HF (Dimer)\n") core.print_out(" HF (Monomer A)\n") core.print_out(" HF (Monomer B)\n") core.print_out(" DFT (Monomer A)\n") core.print_out(" DFT (Monomer B)\n") core.print_out("\n") if (sapt_dft_functional != "HF") and ((mon_a_shift == 0.0) or (mon_b_shift == 0.0)): raise ValidationError('SAPT(DFT): must set both "SAPT_DFT_GRAC_SHIFT_A" and "B".') if (core.get_option('SCF', 'REFERENCE') != 'RHF'): raise ValidationError('SAPT(DFT) currently only supports restricted references.') core.IO.set_default_namespace('dimer') data = {} core.set_global_option("SAVE_JK", True) if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): # core.set_global_option('DF_INTS_IO', 'LOAD') core.set_global_option('DF_INTS_IO', 'SAVE') # # Compute dimer wavefunction hf_cache = {} hf_wfn_dimer = None if do_delta_hf: if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.set_global_option('DF_INTS_IO', 'SAVE') hf_data = {} hf_wfn_dimer = scf_helper( "SCF", molecule=sapt_dimer, banner="SAPT(DFT): delta HF Dimer", **kwargs) hf_data["HF DIMER"] = core.get_variable("CURRENT ENERGY") if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') hf_wfn_A = scf_helper( "SCF", molecule=monomerA, banner="SAPT(DFT): delta HF Monomer A", **kwargs) hf_data["HF MONOMER A"] = core.get_variable("CURRENT ENERGY") if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') hf_wfn_B = scf_helper( "SCF", molecule=monomerB, banner="SAPT(DFT): delta HF Monomer B", **kwargs) hf_data["HF MONOMER B"] = core.get_variable("CURRENT ENERGY") # Move it back to monomer A if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerB', 'dimer') core.print_out("\n") core.print_out(" ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT): delta HF Segement".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n") core.print_out(" ---------------------------------------------------------\n") core.print_out("\n") # Build cache and JK sapt_jk = hf_wfn_B.jk() hf_cache = sapt_jk_terms.build_sapt_jk_cache(hf_wfn_A, hf_wfn_B, sapt_jk, True) # Electostatics elst = sapt_jk_terms.electrostatics(hf_cache, True) hf_data.update(elst) # Exchange exch = sapt_jk_terms.exchange(hf_cache, sapt_jk, True) hf_data.update(exch) # Induction ind = sapt_jk_terms.induction( hf_cache, sapt_jk, True, maxiter=core.get_option("SAPT", "MAXITER"), conv=core.get_option("SAPT", "D_CONVERGENCE")) hf_data.update(ind) dhf_value = hf_data["HF DIMER"] - hf_data["HF MONOMER A"] - hf_data["HF MONOMER B"] core.print_out("\n") core.print_out(print_sapt_hf_summary(hf_data, "SAPT(HF)", delta_hf=dhf_value)) data["Delta HF Correction"] = core.get_variable("SAPT(DFT) Delta HF") if hf_wfn_dimer is None: dimer_wfn = core.Wavefunction.build(sapt_dimer, core.get_global_option("BASIS")) else: dimer_wfn = hf_wfn_dimer # Set the primary functional core.set_global_option("DFT_FUNCTIONAL", core.get_option("SAPT", "SAPT_DFT_FUNCTIONAL")) core.set_local_option('SCF', 'REFERENCE', 'RKS') # Compute Monomer A wavefunction if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'dimer', 'monomerA') if mon_a_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_a_shift) # Save the JK object core.IO.set_default_namespace('monomerA') wfn_A = scf_helper("SCF", molecule=monomerA, banner="SAPT(DFT): DFT Monomer A", **kwargs) data["DFT MONOMERA"] = core.get_variable("CURRENT ENERGY") core.set_global_option("DFT_GRAC_SHIFT", 0.0) # Compute Monomer B wavefunction if (core.get_option('SCF', 'SCF_TYPE') == 'DF'): core.IO.change_file_namespace(97, 'monomerA', 'monomerB') if mon_b_shift: core.set_global_option("DFT_GRAC_SHIFT", mon_b_shift) core.IO.set_default_namespace('monomerB') wfn_B = scf_helper("SCF", molecule=monomerB, banner="SAPT(DFT): DFT Monomer B", **kwargs) data["DFT MONOMERB"] = core.get_variable("CURRENT ENERGY") core.set_global_option("DFT_GRAC_SHIFT", 0.0) # Print out the title and some information core.print_out("\n") core.print_out(" ---------------------------------------------------------\n") core.print_out(" " + "SAPT(DFT): Intermolecular Interaction Segment".center(58) + "\n") core.print_out("\n") core.print_out(" " + "by Daniel G. A. Smith and Rob Parrish".center(58) + "\n") core.print_out(" ---------------------------------------------------------\n") core.print_out("\n") core.print_out(" ==> Algorithm <==\n\n") core.print_out(" SAPT DFT Functional %12s\n" % str(sapt_dft_functional)) core.print_out(" Monomer A GRAC Shift %12.6f\n" % mon_a_shift) core.print_out(" Monomer B GRAC Shift %12.6f\n" % mon_b_shift) core.print_out(" Delta HF %12s\n" % ("True" if do_delta_hf else "False")) core.print_out(" JK Algorithm %12s\n" % core.get_option("SCF", "SCF_TYPE")) # Build cache and JK sapt_jk = wfn_B.jk() cache = sapt_jk_terms.build_sapt_jk_cache(wfn_A, wfn_B, sapt_jk, True) # Electostatics elst = sapt_jk_terms.electrostatics(cache, True) data.update(elst) # Exchange exch = sapt_jk_terms.exchange(cache, sapt_jk, True) data.update(exch) # Induction ind = sapt_jk_terms.induction( cache, sapt_jk, True, maxiter=core.get_option("SAPT", "MAXITER"), conv=core.get_option("SAPT", "D_CONVERGENCE")) data.update(ind) # Dispersion primary_basis = wfn_A.basisset() core.print_out("\n") aux_basis = core.BasisSet.build(sapt_dimer, "DF_BASIS_MP2", core.get_option("DFMP2", "DF_BASIS_MP2"), "RIFIT", core.get_global_option('BASIS')) fdds_disp = sapt_mp2_terms.df_fdds_dispersion(primary_basis, aux_basis, cache) data.update(fdds_disp) if core.get_option("SAPT", "SAPT_DFT_MP2_DISP_ALG") == "FISAPT": mp2_disp = sapt_mp2_terms.df_mp2_fisapt_dispersion(wfn_A, primary_basis, aux_basis, cache, do_print=True) else: mp2_disp = sapt_mp2_terms.df_mp2_sapt_dispersion( dimer_wfn, wfn_A, wfn_B, primary_basis, aux_basis, cache, do_print=True) data.update(mp2_disp) # Print out final data core.print_out("\n") core.print_out(print_sapt_dft_summary(data, "SAPT(DFT)")) # Copy data back into globals for k, v in data.items(): core.set_variable(k, v) core.tstop() return dimer_wfn
def frac_nuke(name, **kwargs): """Pull all the electrons out, one at a time""" optstash = p4util.OptionsState( ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ["SCF", "FRAC_START"], ["SCF", "FRAC_RENORMALIZE"], # NYI ["SCF", "FRAC_LOAD"], ["SCF", "FRAC_OCC"], ["SCF", "FRAC_VAL"], ["SCF", "FRAC_DIIS"]) kwargs = p4util.kwargs_lower(kwargs) # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError("""frac_nuke requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out(""" Requested procedure `frac_nuke` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() # By default, we start the frac procedure on the 25th iteration # when not reading a previous guess frac_start = kwargs.get('frac_start', 25) # By default, we occupy by tenths of electrons foccs = kwargs.get('foccs', [1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) # By default, H**O and LUMO are both in alpha N = 0 for A in range(molecule.natom()): N += molecule.Z(A) N -= charge0 N = int(N) Nb = int((N - mult0 + 1) / 2) Na = int(N - Nb) charge = charge0 mult = mult0 # By default, nuke all the electrons Nmin = 0 if 'nmax' in kwargs: Nmin = N - int(kwargs['nmax']) # By default, DIIS in FRAC (1.0 occupation is always DIIS'd) frac_diis = kwargs.get('frac_diis', True) # By default, drop the files to the molecule's name root = kwargs.get('filename', molecule.name()) traverse_filename = root + '.traverse.dat' stats_filename = root + '.stats.dat' # => Traverse <= # core.set_local_option("SCF", "DF_INTS_IO", "SAVE") Ns = [] energies = [] potentials = [] convs = [] stats = [] # Run one SCF to burn things in E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) # Determine H**O eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() eps_a.print_out() if Na == Nb: H**O = -Nb elif Nb == 0: H**O = Na else: E_a = eps_a.get(int(Na - 1)) E_b = eps_b.get(int(Nb - 1)) if E_a >= E_b: H**O = Na else: H**O = -Nb stats.append(""" %6d %6d %6d %6d %6d %6d\n""" % (N, Na, Nb, charge, mult, H**O)) if H**O > 0: Na -= 1 else: Nb -= 1 charge += 1 mult = Na - Nb + 1 core.set_local_option("SCF", "DF_INTS_IO", "LOAD") core.set_local_option("SCF", "FRAC_START", frac_start) core.set_local_option("SCF", "FRAC_RENORMALIZE", True) # Nuke 'em Rico! for Nintegral in range(N, Nmin, -1): # Nuke the current H**O for occ in foccs: core.set_local_option("SCF", "FRAC_OCC", [H**O]) core.set_local_option("SCF", "FRAC_VAL", [occ]) E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, **kwargs) C = 1 if E == 0.0: E = core.variable('SCF ITERATION ENERGY') C = 0 if H**O > 0: eps = wfn.epsilon_a() potentials.append(eps.np[H**O - 1]) else: eps = wfn.epsilon_b() potentials.append(eps.np[-H**O - 1]) Ns.append(Nintegral + occ - 1.0) energies.append(E) convs.append(C) core.set_local_option("SCF", "FRAC_START", 2) # NYI core.set_local_option("SCF", "FRAC_LOAD", True) core.set_local_option("SCF", "FRAC_DIIS", frac_diis) core.set_local_option("SCF", "GUESS", "READ") # Set the next charge/mult molecule.set_molecular_charge(charge) molecule.set_multiplicity(mult) # Determine H**O print('DGAS: What ref should this point to?') #ref = core.legacy_wavefunction() eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Na == Nb: H**O = -Nb elif Nb == 0: H**O = Na else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] if E_a >= E_b: H**O = Na else: H**O = -Nb stats.append(""" %6d %6d %6d %6d %6d %6d\n""" % (Nintegral-1, Na, Nb, charge, mult, H**O)) if H**O > 0: Na -= 1 else: Nb -= 1 charge += 1 mult = Na - Nb + 1 core.set_local_option("SCF", "DF_INTS_IO", "NONE") # => Print the results out <= # E = {} core.print_out("""\n ==> Fractional Occupation Nuke Results <==\n\n""") core.print_out(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(Ns)): core.print_out(""" %11.3E %24.16E %24.16E %11d\n""" % (Ns[k], energies[k], potentials[k], convs[k])) E[Ns[k]] = energies[k] core.print_out('\n') core.print_out(""" %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O')) for line in stats: core.print_out(line) core.print_out('\n "You shoot a nuke down a bug hole, you got a lot of dead bugs"\n') core.print_out(' -Starship Troopers\n') # Drop the files out with open(traverse_filename, 'w') as fh: fh.write(""" %-11s %-24s %-24s %11s\n""" % ('N', 'Energy', 'H**O Energy', 'Converged')) for k in range(len(Ns)): fh.write(""" %11.3E %24.16E %24.16E %11d\n""" % (Ns[k], energies[k], potentials[k], convs[k])) with open(stats_filename, 'w') as fh: fh.write(""" %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O')) for line in stats: fh.write(line) optstash.restore() return E
def ip_fitting(name, omega_l=0.05, omega_r=2.5, omega_convergence=1.0e-3, maxiter=20, **kwargs): """Optimize DFT omega parameter for molecular system. Parameters ---------- name : string or function DFT functional string name or function defining functional whose omega is to be optimized. omega_l : float, optional Minimum omega to be considered during fitting. omega_r : float, optional Maximum omega to be considered during fitting. molecule : :ref:`molecule <op_py_molecule>`, optional Target molecule (neutral) for which omega is to be tuned, if not last defined. omega_convergence : float, optional Threshold below which to consider omega converged. (formerly omega_tolerance) maxiter : int, optional Maximum number of iterations towards omega convergence. Returns ------- float Optimal omega parameter. """ optstash = p4util.OptionsState( ['SCF', 'REFERENCE'], ['SCF', 'GUESS'], ['SCF', 'DF_INTS_IO'], ['SCF', 'DFT_OMEGA'], ['DOCC'], ['SOCC']) kwargs = p4util.kwargs_lower(kwargs) # By default, do not read previous 180 orbitals file read = False read180 = '' if 'read' in kwargs: read = True read180 = kwargs['read'] if core.get_option('SCF', 'REFERENCE') != 'UKS': core.print_out(""" Requested procedure `ip_fitting` runs further calculations with UKS reference.\n""") core.set_local_option('SCF', 'REFERENCE', 'UKS') # Make sure the molecule the user provided is the active one, and neutral molecule = kwargs.pop('molecule', core.get_active_molecule()) molecule.update_geometry() if molecule.molecular_charge() != 0: raise ValidationError("""IP Fitting requires neutral molecule to start.""") if molecule.schoenflies_symbol() != 'c1': core.print_out(""" Requested procedure `ip_fitting` does not make use of molecular symmetry: """ """further calculations in C1 point group.\n""") molecule = molecule.clone() molecule.reset_point_group('c1') molecule.update_geometry() charge0 = molecule.molecular_charge() mult0 = molecule.multiplicity() # How many electrons are there? N = 0 for A in range(molecule.natom()): N += molecule.Z(A) N -= charge0 N = int(N) Nb = int((N - mult0 + 1) / 2) Na = int(N - Nb) # Work in the ot namespace for this procedure core.IO.set_default_namespace("ot") # Burn in to determine orbital eigenvalues if read: core.set_local_option("SCF", "GUESS", "READ") copy_file_to_scratch(read180, 'psi', 'ot', 180) core.set_local_option("SCF", "DF_INTS_IO", "SAVE") E, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Burn-in', **kwargs) core.set_local_option("SCF", "DF_INTS_IO", "LOAD") if not wfn.functional().is_x_lrc(): raise ValidationError("""Not sensible to optimize omega for non-long-range-correction functional.""") # Determine H**O, to determine mult1 eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Na == Nb: H**O = -Nb elif Nb == 0: H**O = Na else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] if E_a >= E_b: H**O = Na else: H**O = -Nb Na1 = Na Nb1 = Nb if H**O > 0: Na1 -= 1 else: Nb1 -= 1 charge1 = charge0 + 1 mult1 = Na1 - Nb1 + 1 omegas = [] E0s = [] E1s = [] kIPs = [] IPs = [] types = [] # Right endpoint core.set_local_option('SCF', 'DFT_OMEGA', omega_r) # Neutral if read: core.set_local_option("SCF", "GUESS", "READ") p4util.copy_file_to_scratch(read180, 'psi', 'ot', 180) molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) E0r, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Neutral, Right Endpoint', **kwargs) eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Nb == 0: E_HOMO = eps_a.np[int(Na - 1)] else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] E_HOMO = max(E_a, E_b) E_HOMOr = E_HOMO core.IO.change_file_namespace(180, "ot", "neutral") # Cation if read: core.set_local_option("SCF", "GUESS", "READ") p4util.copy_file_to_scratch(read180, 'psi', 'ot', 180) molecule.set_molecular_charge(charge1) molecule.set_multiplicity(mult1) E1r = driver.energy('scf', dft_functional=name, molecule=molecule, banner='IP Fitting SCF: Cation, Right Endpoint', **kwargs) core.IO.change_file_namespace(180, "ot", "cation") IPr = E1r - E0r kIPr = -E_HOMOr delta_r = IPr - kIPr if IPr > kIPr: raise ValidationError("""\n***IP Fitting Error: Right Omega limit should have kIP > IP: {} !> {}""".format(kIPr, IPr)) omegas.append(omega_r) types.append('Right Limit') E0s.append(E0r) E1s.append(E1r) IPs.append(IPr) kIPs.append(kIPr) # Use previous orbitals from here out core.set_local_option("SCF", "GUESS", "READ") # Left endpoint core.set_local_option('SCF', 'DFT_OMEGA', omega_l) # Neutral core.IO.change_file_namespace(180, "neutral", "ot") molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) core.set_global_option("DOCC", [Nb]) core.set_global_option("SOCC", [Na - Nb]) E0l, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Neutral, Left Endpoint', **kwargs) eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Nb == 0: E_HOMO = eps_a.np[int(Na - 1)] else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] E_HOMO = max(E_a, E_b) E_HOMOl = E_HOMO core.IO.change_file_namespace(180, "ot", "neutral") # Cation core.IO.change_file_namespace(180, "cation", "ot") molecule.set_molecular_charge(charge1) molecule.set_multiplicity(mult1) core.set_global_option("DOCC", [Nb1]) core.set_global_option("SOCC", [Na1 - Nb1]) E1l = driver.energy('scf', dft_functional=name, molecule=molecule, banner='IP Fitting SCF: Cation, Left Endpoint', **kwargs) core.IO.change_file_namespace(180, "ot", "cation") IPl = E1l - E0l kIPl = -E_HOMOl delta_l = IPl - kIPl if IPl < kIPl: raise ValidationError("""\n***IP Fitting Error: Left Omega limit should have kIP < IP: {} !< {}""".format(kIPl, IPl)) omegas.append(omega_l) types.append('Left Limit') E0s.append(E0l) E1s.append(E1l) IPs.append(IPl) kIPs.append(kIPl) converged = False repeat_l = 0 repeat_r = 0 for step in range(maxiter): # Regula Falsi (modified) if repeat_l > 1: delta_l /= 2.0 if repeat_r > 1: delta_r /= 2.0 omega = - (omega_r - omega_l) / (delta_r - delta_l) * delta_l + omega_l core.set_local_option('SCF', 'DFT_OMEGA', omega) # Neutral core.IO.change_file_namespace(180, "neutral", "ot") molecule.set_molecular_charge(charge0) molecule.set_multiplicity(mult0) core.set_global_option("DOCC", [Nb]) core.set_global_option("SOCC", [Na - Nb]) E0, wfn = driver.energy('scf', dft_functional=name, return_wfn=True, molecule=molecule, banner='IP Fitting SCF: Neutral, Omega = {:11.3E}'.format(omega), **kwargs) eps_a = wfn.epsilon_a() eps_b = wfn.epsilon_b() if Nb == 0: E_HOMO = eps_a.np[int(Na - 1)] else: E_a = eps_a.np[int(Na - 1)] E_b = eps_b.np[int(Nb - 1)] E_HOMO = max(E_a, E_b) core.IO.change_file_namespace(180, "ot", "neutral") # Cation core.IO.change_file_namespace(180, "cation", "ot") molecule.set_molecular_charge(charge1) molecule.set_multiplicity(mult1) core.set_global_option("DOCC", [Nb1]) core.set_global_option("SOCC", [Na1 - Nb1]) E1 = driver.energy('scf', dft_functional=name, molecule=molecule, banner='IP Fitting SCF: Cation, Omega = {:11.3E}'.format(omega), **kwargs) core.IO.change_file_namespace(180, "ot", "cation") IP = E1 - E0 kIP = -E_HOMO delta = IP - kIP if kIP > IP: omega_r = omega E0r = E0 E1r = E1 IPr = IP kIPr = kIP delta_r = delta repeat_r = 0 repeat_l += 1 else: omega_l = omega E0l = E0 E1l = E1 IPl = IP kIPl = kIP delta_l = delta repeat_l = 0 repeat_r += 1 omegas.append(omega) types.append('Regula-Falsi') E0s.append(E0) E1s.append(E1) IPs.append(IP) kIPs.append(kIP) # Termination if abs(omega_l - omega_r) < omega_convergence: converged = True break core.IO.set_default_namespace("") core.print_out("""\n ==> IP Fitting Results <==\n\n""") core.print_out(""" => Occupation Determination <= \n\n""") core.print_out(""" %6s %6s %6s %6s %6s %6s\n""" % ('N', 'Na', 'Nb', 'Charge', 'Mult', 'H**O')) core.print_out(""" Neutral: %6d %6d %6d %6d %6d %6d\n""" % (N, Na, Nb, charge0, mult0, H**O)) core.print_out(""" Cation: %6d %6d %6d %6d %6d\n\n""" % (N - 1, Na1, Nb1, charge1, mult1)) core.print_out(""" => Regula Falsi Iterations <=\n\n""") core.print_out(""" %3s %11s %14s %14s %14s %s\n""" % ('N','Omega','IP','kIP','Delta','Type')) for k in range(len(omegas)): core.print_out(""" %3d %11.3E %14.6E %14.6E %14.6E %s\n""" % (k + 1, omegas[k], IPs[k], kIPs[k], IPs[k] - kIPs[k], types[k])) optstash.restore() if converged: core.print_out("""\n IP Fitting Converged\n""") core.print_out(""" Final omega = %14.6E\n""" % ((omega_l + omega_r) / 2)) core.print_out("""\n "M,I. does the dying. Fleet just does the flying."\n""") core.print_out(""" -Starship Troopers\n""") else: raise ConvergenceError("""IP Fitting """, step + 1) return ((omega_l + omega_r) / 2)