Example #1
0
def psispeffk(log_lik, name):
    loo, loos, kw = psisloo(log_lik)
    print("\n")
    print("psis-loo:", loo)
    err_05 = 0
    err_07 = 0
    err_1 = 0
    err_inf = 0
    for i in range(0, len(kw)):
        if kw[i] <= 0.5:
            err_05 += 1
        elif kw[i] <= 0.7:
            err_07 += 1
        elif kw[i] <= 1.0:
            err_1 += 1
        else:
            err_inf += 1
    _sum = 0
    for i in range(0, 30):
        _sum += np.log(np.mean(np.exp(log_lik[:, i])))

    PSIS_COMPARISONS[name] = "psis-loo: " + str(
        loo
    ) + "\nK-VALUES:\n" + "\n" + " " + "(-inf;0.5] &" + " " + str(
        err_05
    ) + " " + "&" + " " + str(
        100 * err_05 / len(kw)
    ) + "\n" + " " + "(0.5;0.7] &" + " " + str(err_07) + " " + "&" + " " + str(
        100 * err_07 / len(kw)
    ) + "\n" + " " + "(0.7;1.0] &" + " " + str(err_1) + " " + "&" + " " + str(
        100 * err_1 / len(kw)) + "\n" + " " + "(1.0;inf) &" + " " + str(
            err_inf) + " " + "&" + " " + str(
                100 * err_inf / len(kw)
            ) + "\n" + " " + "\n" + "\n" + " " + "p_eff:" + str(_sum - loo)
    return 0
 def psis(self, test_data, NSAMPLES=1):
     log_lik = np.zeros((NSAMPLES, test_data.shape[0]))
     for n in range(NSAMPLES):
         t = np.random.gamma(
             self.gamma_t,
             1. / self.rho_t)  # gamma_t is shape and rho_t is rate
         b = np.random.gamma(
             self.gamma_b,
             1.0 / self.rho_b)  # gamma_b is shape and rho_b is rate
         lambdas = np.inner(t, b).T
         log_lik[n, :] = stats.poisson(
             lambdas[test_data[:, 0],
                     test_data[:, 1]]).logpmf(test_data[:, 2]).reshape(-1)
     loo, loos, ks = psis.psisloo(log_lik)
     return loo
Example #3
0
def print_loo_and_ks(samples):
    """
    Print PSIS loo and summary of k values.
    :param samples: with key 'log_lik'
    :return:
    """
    from psis import psisloo

    loglik = samples['log_lik']
    loo, loos, ks = psisloo(loglik)
    print("Loo: %.2f" % loo)

    ks_sum = [[(ks <= 0.5).sum(),
               sum([1 for k in ks if 0.5 < k <= 0.7]), (ks > 0.7).sum()]]

    ks_df = pd.DataFrame(ks_sum, columns=["k<=0.5", "0.5<k<=0.7", "0.7<k"])
    print(ks_df)
Example #4
0
def compute_loodiff(log_liks, use_mean=False):
    loos = []
    measure = []
    
    for model in log_liks:
        loosum_model, loos_model, ks = psis.psisloo(model)
        loos.append(loos_model)
        if use_mean:
            measure.append(loosum_model / loos_model.size)
        else:
            measure.append(loosum_model)
            
    if use_mean:
        return (measure[0] - measure[1], 
                (loos[0] - loos[1]).std() / np.sqrt(loos[0].size))
    else:
        return (measure[0] - measure[1], 
                np.sqrt( (loos[0] - loos[1]).var() * loos[0].size ))
Example #5
0
    def get_external_validity(self):
        '''
        Model performance metrics

        psisloo reweights samples of pointwise posterior likelihoods to approximate data likelihood under leave one out cross validation
            ref: https://arxiv.org/pdf/1507.04544.pdf
        lmbd measures the extent to which parameters are pooled across individuals
            ref: http://www.stat.columbia.edu/~gelman/research/published/rsquared.pdf
        '''
        assert self.data is not None, 'train the model first'

        eps_smps = []
        llk_smps = []
        for pars in self.get_posterior():
            llk_smps.append(
                self.get_distr(self.data, pars).log_prob(self.data['Y']))
            eps_smps.append(pars['ind'])

        loo, loos, ks = psisloo(torch.stack(llk_smps).t().numpy())
        eps_smps = torch.stack(eps_smps)
        lmbd = 1 - (eps_smps.mean(0).var(0) / eps_smps.var(1).mean(0))
        return lmbd.squeeze(), loo, (ks < .7).mean()
Example #6
0
def loo(data, groups):
    """
    Parameters
    ----------
    dtaa: OrderedDict of samples(extract) from different models
    groups: Groups to compare
    
    """
    print("PSIS leave-one-out cross validation.")
    print("Estimates are unreliable if k > 0.7")

    for model, samples in data.items():
        print('\n{:8s}'.format(model))

        print('{:2s}  {:9s}'.format('-', ' ELPD'))
        for i, group in enumerate(groups):
            elpd = psisloo(samples[i]['log_lik'])[0]
            print('{:2s}  {: 5.3f}'.format(group, elpd), end="  ")
            unreliable = np.where(
                psisloo(samples[i]['log_lik'])[2] > 0.7)[0].size
            if unreliable > 0:
                print(f'Note: there are {unreliable} unreliable points.')

    print(
        "\n--------------------------\nModel Comparisons: Estimate of ELPD difference"
    )
    pairs = itertools.combinations(data.items(), 2)
    for pair in pairs:
        model0, samples0 = pair[0]
        model1, samples1 = pair[1]
        print('\n{:7s} - {:7s}'.format(model0, model1))
        print('{:2s}  {:8s}  {:5s}'.format('', 'estimate', 'SE'))
        for i, group in enumerate(groups):
            elpd_diff = psisloo(samples0[i]['log_lik'])[0] - psisloo(
                samples1[i]['log_lik'])[0]
            elpd_diff_pointwise = psisloo(samples0[i]['log_lik'])[1] - psisloo(
                samples1[i]['log_lik'])[1]
            elpd_diff_se = np.sqrt(
                len(elpd_diff_pointwise) * np.var(elpd_diff_pointwise))
            print('{:2s}  {: 5.3f}  {:5.3f}'.format(group, elpd_diff,
                                                    elpd_diff_se))
def loo_values(log_lik):
    LOO_PSIS = psisloo(log_lik)
    loo, loos, ks = LOO_PSIS[0], LOO_PSIS[1], LOO_PSIS[2]
    ks_thr = 1.0
    ks_large_percent = ((ks > ks_thr).sum() / ks.size) * 100
    return loo, ks, ks_large_percent