# coding: utf-8 # Bar plot demo # ========= # This example shows you how to make a bar plot using the `psyplot.project.ProjectPlotter.barplot` method. # In[ ]: import psyplot.project as psy # get_ipython().magic(u'matplotlib inline') # get_ipython().magic(u'config InlineBackend.close_figures = False') # In[ ]: axes = iter(psy.multiple_subplots(2, 2, n=3)) for var in ['t2m', 'u', 'v']: psy.plot.barplot( 'demo.nc', # netCDF file storing the data name=var, # one plot for each variable y=[0, 1], # two bars in total z=0, x=0, # choose latitude and longitude as dimensions ylabel="{desc}", # use the longname and units on the y-axis ax=next(axes), color='coolwarm', legend=False, xticklabels='%B %Y' ) bars = psy.gcp(True) bars.show() # In[ ]:
maps.update(color='absolute', cmap='viridis', vcmap='RdBu_r', vcbar='r', clabel='{desc}', vclabel='Wind Speed [%(units)s]') # Summary # ------- # To sum it all up: # # * The *mapplot* method visualizes scalar fields # * The *mapvector* method visualizes vector fiels # * The *mapcombined* method visualizes scalar and vector fields # In[ ]: # create the subplots axes = psy.multiple_subplots(2, 2, n=4, for_maps=True) # disable the automatic showing of the figures psy.rcParams['auto_show'] = False # create plots for the scalar fields maps = psy.plot.mapplot('demo.nc', name='t2m', clabel='{desc}', ax=axes[0], title='scalar field') # create plots for scalar and vector fields combined = psy.plot.mapcombined( 'demo.nc', name=[['t2m', ['u', 'v']]], clabel='{desc}', arrowsize=100, cmap='RdBu_r', ax=axes[1], title='scalar and vector field') # create two plots for vector field mapvectors = psy.plot.mapvector('demo.nc', name=[['u', 'v'], ['u', 'v']], ax=axes[2:]) # where one of them shall be a stream plot mapvectors[0].update(arrowsize=100, title='quiver plot') mapvectors[1].update(plot='stream', title='stream plot')