Example #1
0
            gym.make(run.get("defaults", "env")))),
                                     width=im_width,
                                     height=im_height,
                                     grayscale=grayscale)
        if args.monitor:
            e = gym.wrappers.Monitor(e, args.monitor)
        return e

    env = make_env()
    env_pool = [env]
    for i in range(run.getint("defaults", "env_pool_size", fallback=1) - 1):
        env_pool.append(make_env())

    params = env_params.EnvParams.from_env(env)
    params.load_runfile(run)
    env_params.register(params)

    model = Net(params.n_actions,
                input_shape=(1 if grayscale else 3, im_height, im_width))
    if params.cuda_enabled:
        model.cuda()

    loss_fn = nn.MSELoss(size_average=False)
    optimizer = optim.Adam(model.parameters(),
                           lr=run.getfloat("learning", "lr"))

    action_selector = ActionSelectorEpsilonGreedy(epsilon=run.getfloat(
        "defaults", "epsilon"),
                                                  params=params)
    target_net = agent.TargetNet(model)
    dqn_agent = agent.DQNAgent(dqn_model=model,
Example #2
0
 def test_register(self):
     self.assertIsNone(env_params.get())
     params = env_params.EnvParams.from_env(self.env)
     env_params.register(params)
     self.assertEqual(params, env_params.get())