def plotSpectralResolution(inFilePath, minWavelength=None, maxWavelength=None, decades=None, *, title=None, outDirPath=None, outFileName=None, outFilePath=None, figSize=(8, 5), interactive=None): # load the wavelength grid inFilePath = ut.absPath(inFilePath) if inFilePath.suffix.lower() == ".stab": table = stab.readStoredTable(inFilePath) if "lambda" not in table: raise ValueError("No wavelength axis in stored table: {}".format(inFilePath)) grid = table["lambda"] elif inFilePath.suffix.lower() == ".dat": if "wavelength" not in sm.getColumnDescriptions(inFilePath)[0].lower(): raise ValueError("First text column is not labeled 'wavelength': {}".format(inFilePath)) grid = sm.loadColumns(inFilePath, "1")[0] elif inFilePath.suffix.lower() == ".fits": axes = sm.getFitsAxes(inFilePath) if len(axes) != 3: raise ValueError("FITS file does not have embedded wavelength axis") grid = axes[2] else: raise ValueError("Filename does not have the .stab, .dat, or .fits extension: {}".format(inFilePath)) # calculate the spectral resolution R = grid[:-1] / (grid[1:] - grid[:-1]) Rmax = R.max() # choose wavelength units from grid wunit = grid.unit # setup the plot plt.figure(figsize=figSize) plt.xlabel(sm.latexForWavelengthWithUnit(wunit), fontsize='large') plt.ylabel(r"$R=\frac{\lambda}{\Delta\lambda}$", fontsize='large') plt.xscale('log') plt.yscale('log') plt.grid(which='major', axis='both', ls=":") plt.xlim(_adjustWavelengthRange(plt.xlim(), wunit, minWavelength, maxWavelength)) if decades is not None: plt.ylim(Rmax* 10 ** (-decades), Rmax * 10 ** 0.2) # plot the spectral resolution if title is None or len(title)==0: title = inFilePath.stem label = "{}\n{} pts from {:g} to {:g} {}".format(title, len(grid), grid[0].to_value(wunit), grid[-1].to_value(wunit), sm.latexForUnit(wunit)) plt.plot(grid[:-1].to_value(wunit), R, label=label) plt.legend() # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath(inFilePath.stem+".pdf", (".pdf",".png"), outDirPath=outDirPath, outFileName=outFileName, outFilePath=outFilePath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotDefaultDustTemperatureCuts(simulation, *, outDirPath=None, outFileName=None, outFilePath=None, figSize=None, interactive=None): # find the relevant probe probes = [ probe for probe in simulation.probes() if probe.type() == "DefaultDustTemperatureCutsProbe" ] if len(probes) != 1: return probe = probes[0] # load the temperature cuts and the range of the x and y axes # (there can be one to three cuts depending on symmetries) paths = probe.outFilePaths("dust_T_*.fits") numcuts = len(paths) if not numcuts in (1, 2, 3): return cuts = [path.stem.split("_")[-1] for path in paths] frames = [sm.loadFits(path) for path in paths] grids = [sm.getFitsAxes(path) for path in paths] # determine the maximum temperature value to display Tmax = max([frame.max() for frame in frames]) # setup the figure depending on the number of cuts if figSize is None: figSize = (8 * numcuts, 6) fig, axes = plt.subplots(ncols=numcuts, nrows=1, figsize=figSize) if numcuts == 1: axes = [axes] # plot the cuts and set axis details for each for ax, cut, frame, (xgrid, ygrid) in zip(axes, cuts, frames, grids): extent = (xgrid[0].value, xgrid[-1].value, ygrid[0].value, ygrid[-1].value) im = ax.imshow(frame.value.T, vmin=0, vmax=Tmax.value, cmap='gnuplot', extent=extent, aspect='auto', interpolation='bicubic', origin='lower') ax.set_xlim(xgrid[0].value, xgrid[-1].value) ax.set_ylim(ygrid[0].value, ygrid[-1].value) ax.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit), fontsize='large') ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large') ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large') # add a color bar fig.colorbar(im, ax=axes).ax.set_ylabel("T" + sm.latexForUnit(frame.unit), fontsize='large') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath(simulation.outFilePath( "{}_dust_T.pdf".format(probe.name())), (".pdf", ".png"), outDirPath=outDirPath, outFileName=outFileName, outFilePath=outFilePath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotDefaultMediaDensityCuts(simulation, decades=5, *, outDirPath=None, figSize=(18, 6), interactive=None): # find the relevant probe probes = [ probe for probe in simulation.probes() if probe.type() == "DefaultMediaDensityCutsProbe" ] if len(probes) != 1: return probe = probes[0] for medium in ("dust", "elec", "gas"): for cut in ("xy", "xz", "yz"): # load the theoretical and gridded cuts for the requested medium and cut plane tPaths = probe.outFilePaths("{}_t_{}.fits".format(medium, cut)) gPaths = probe.outFilePaths("{}_g_{}.fits".format(medium, cut)) if len(tPaths) == 1 and len(gPaths) == 1: tFrame = sm.loadFits(tPaths[0]) gFrame = sm.loadFits(gPaths[0]) # determine the range of the x and y axes xgrid, ygrid = sm.getFitsAxes(tPaths[0]) # determine the range of density values to display and clip the data arrays vmax = max(tFrame.max(), gFrame.max()) vmin = vmax / 10**decades tFrame[tFrame < vmin] = vmin gFrame[gFrame < vmin] = vmin # setup the figure fig, (ax1, ax2) = plt.subplots(ncols=2, nrows=1, figsize=figSize) # plot the cuts and a color bar (logarithmic normalizer crashes if all values are zero) if vmax > 0: normalizer = matplotlib.colors.LogNorm( vmin.value, vmax.value) else: normalizer = matplotlib.colors.Normalize( vmin.value, vmax.value) extent = (xgrid[0].value, xgrid[-1].value, ygrid[0].value, ygrid[-1].value) im = ax1.imshow(tFrame.value.T, norm=normalizer, cmap='gnuplot', extent=extent, aspect='auto', interpolation='bicubic', origin='lower') fig.colorbar(im, ax=(ax1, ax2)).ax.set_ylabel( "density" + sm.latexForUnit(tFrame.unit), fontsize='large') ax2.imshow(gFrame.value.T, norm=normalizer, cmap='gnuplot', extent=extent, aspect='auto', interpolation='bicubic', origin='lower') # set axis details ax1.set_xlim(xgrid[0].value, xgrid[-1].value) ax1.set_ylim(ygrid[0].value, ygrid[-1].value) ax2.set_xlim(xgrid[0].value, xgrid[-1].value) ax2.set_ylim(ygrid[0].value, ygrid[-1].value) ax1.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit), fontsize='large') ax1.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large') ax2.set_xlabel(cut[0] + sm.latexForUnit(xgrid.unit), fontsize='large') ax2.set_ylabel(cut[-1] + sm.latexForUnit(ygrid.unit), fontsize='large') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): defSavePath = simulation.outFilePath("{}_{}_{}.pdf".format( probe.name(), medium, cut)) saveFilePath = ut.savePath(defSavePath, (".pdf", ".png"), outDirPath=outDirPath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotSeds(simulation, minWavelength=None, maxWavelength=None, decades=None, *, outDirPath=None, outFileName=None, outFilePath=None, figSize=(8, 6), interactive=None): # private function to get the maximum flux within the wavelength range passed to the plotSeds function def maxFluxInRange(flux, wave): wmin = minWavelength if minWavelength is not None else wave[0] wmax = maxWavelength if maxWavelength is not None else wave[-1] mask = (wave>=wmin) & (wave<=wmax) if np.count_nonzero(mask) > 0: return flux[mask].max() else: return flux.max() # get the (instrument, output file path) tuples instr_paths = sm.instrumentOutFilePaths(simulation, "sed.dat") if len(instr_paths) < 1: return # setup the figure plt.figure(figsize=figSize) # if there is a single output file, and it has components, plot the components if len(instr_paths) == 1 and any(["transparent" in col for col in sm.getColumnDescriptions(instr_paths[0][1])]): instrument, filepath = instr_paths[0] # load the columns (we assume that all components have the same units) wave, tot, tra, dirpri, scapri, dirsec, scasec = sm.loadColumns(filepath, (0, 1, 2, 3, 4, 5, 6)) waveUnit = wave.unit fluxUnit = tot.unit fluxMax = max(maxFluxInRange(tot, wave), maxFluxInRange(tra, wave)) # plot the various components label = "{} {} ".format(instrument.prefix(), instrument.name()) plt.plot(wave.value, tot.value, color='k', ls='solid', label=label + "total") plt.plot(wave.value, tra.value, color='b', ls='dotted', label=label + "transparent") plt.plot(wave.value, (dirpri + scapri).value, color='b', ls='solid', label=label + "primary") plt.plot(wave.value, (dirsec + scasec).value, color='r', ls='solid', label=label + "secondary") # otherwise loop over all SEDs else: colors = ('r', 'g', 'b', 'c', 'm', 'y') colorindex = 0 first = True for instrument, filepath in instr_paths: # load the total flux; first time remember units; thereafter convert units wave, flux = sm.loadColumns(filepath, (0, 1)) if first: waveUnit = wave.unit fluxUnit = flux.unit fluxMax = maxFluxInRange(flux, wave) first = False else: wave <<= waveUnit flux = sm.convertToFlavor(wave, flux, fluxUnit) fluxMax = max(fluxMax, maxFluxInRange(flux, wave)) # plot plt.plot(wave.value, flux.value, color=colors[colorindex], label="{} {} total".format(instrument.prefix(), instrument.name())) # advance color index colorindex = (colorindex + 1) % len(colors) # set axis details and add a legend plt.xscale('log') plt.yscale('log') plt.xlim(_adjustWavelengthRange(plt.xlim(), waveUnit, minWavelength, maxWavelength)) if decades is not None: plt.ylim(fluxMax.value * 10 ** (-decades), fluxMax.value * 10 ** 0.2) plt.xlabel(sm.latexForWavelengthWithUnit(waveUnit), fontsize='large') plt.ylabel(sm.latexForSpectralFluxWithUnit(fluxUnit), fontsize='large') plt.legend(loc='best') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): # use the first instrument output path; if there are multiple instruments, remove the instrument name defSaveFilePath = instr_paths[0][1] if len(instr_paths) > 1: defSaveFilePath = defSaveFilePath.with_name(instr_paths[0][0].prefix() + "_sed.pdf") saveFilePath = ut.savePath(defSaveFilePath, (".pdf",".png"), outDirPath=outDirPath, outFileName=outFileName, outFilePath=outFilePath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotSources(simulation, minWavelength=None, maxWavelength=None, decades=None, *, outDirPath=None, outFileName=None, outFilePath=None, figSize=(8, 6), interactive=None): # find the required probes probes = simulation.probes() lumiProbes = [ probe for probe in probes if probe.type() == "LuminosityProbe" ] packProbes = [ probe for probe in probes if probe.type() == "LaunchedPacketsProbe" ] if len(lumiProbes) != 1 or len(packProbes) != 1: return lumiProbe = lumiProbes[0] packProbe = packProbes[0] # load the luminosities lumiFilePath = lumiProbe.outFilePaths("luminosities.dat")[0] descriptions = sm.getColumnDescriptions(lumiFilePath) columns = list(range(len(descriptions))) del columns[1] # remove the "specific luminosity column" lumiWave, lumiTot, *lumiFracs = sm.loadColumns(lumiFilePath, columns) # load the number of launched packets packFilePath = packProbe.outFilePaths("launchedpackets.dat")[0] descriptions = sm.getColumnDescriptions(packFilePath) columns = list(range(len(descriptions))) packWave, packTot, *packSplits = sm.loadColumns(packFilePath, columns) packWave <<= lumiWave.unit # setup the figure plt.figure(figsize=figSize) label = "{} ".format(simulation.prefix()) # plot the total lumiMax = lumiTot.max() packMax = packTot.max() plt.plot(lumiWave.value, lumiTot/lumiMax, color='k', ls='solid', label=label + "total") plt.plot(packWave.value, packTot/packMax, color='k', ls='dashed') # loop over all sources colors = ('r', 'g', 'b', 'c', 'm', 'y') colorindex = 0 sourceindex = 1 for lumiFrac, packSplit in zip(lumiFracs, packSplits): plt.plot(lumiWave.value, lumiFrac*lumiTot/lumiMax, color=colors[colorindex], ls='solid', label=label + str(sourceindex)) plt.plot(packWave.value, packSplit/packMax, color=colors[colorindex], ls='dashed') # advance color and source index colorindex = (colorindex + 1) % len(colors) sourceindex += 1 # set axis details and add a legend plt.xscale('log') plt.yscale('log') plt.xlim(_adjustWavelengthRange(plt.xlim(), lumiWave.unit, minWavelength, maxWavelength)) if decades is not None: plt.ylim(10 ** (-decades), 10 ** 0.2) plt.xlabel(sm.latexForWavelengthWithUnit(lumiWave.unit), fontsize='large') plt.ylabel(r"Normalized $L$ and $N_\mathrm{pp}$", fontsize='large') plt.legend(loc='best') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath(simulation.outFilePath("sources.pdf"), (".pdf",".png"), outDirPath=outDirPath, outFileName=outFileName, outFilePath=outFilePath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotPolarization(simulation, *, plotLinMap=True, plotDegMap=False, plotDegAvg=False, plotCirMap=False, wavelength=None, binSize=(7, 7), degreeScale=None, decades=5, outDirPath=None, figSize=(8, 6), interactive=None): # loop over all applicable instruments for instrument, filepath in sm.instrumentOutFilePaths( simulation, "stokesQ.fits"): # form the simulation/instrument name insname = "{}_{}".format(instrument.prefix(), instrument.name()) # get the file paths for the frames/data cubes filepathI = instrument.outFilePaths("total.fits")[0] filepathQ = instrument.outFilePaths("stokesQ.fits")[0] filepathU = instrument.outFilePaths("stokesU.fits")[0] filepathV = instrument.outFilePaths("stokesV.fits")[0] # load datacubes with shape (nx, ny, nlambda) Is = sm.loadFits(filepathI) Qs = sm.loadFits(filepathQ) Us = sm.loadFits(filepathU) Vs = sm.loadFits(filepathV) # load the axes grids (assuming all files have the same axes) xgrid, ygrid, wavegrid = sm.getFitsAxes(filepathI) xmin = xgrid[0].value xmax = xgrid[-1].value ymin = ygrid[0].value ymax = ygrid[-1].value extent = (xmin, xmax, ymin, ymax) # determine binning configuration binX = binSize[0] orLenX = Is.shape[0] dropX = orLenX % binX startX = dropX // 2 binY = binSize[1] orLenY = Is.shape[1] dropY = orLenY % binY startY = dropY // 2 # construct arrays with central bin positions in pixel coordinates posX = np.arange(startX - 0.5 + binX / 2.0, orLenX - dropX + startX - 0.5, binX) posY = np.arange(startY - 0.5 + binY / 2.0, orLenY - dropY + startY - 0.5, binY) # determine the appropriate wavelength index or indices if wavelength is None: indices = [0] elif wavelength == 'all': indices = range(Is.shape[2]) else: if not isinstance(wavelength, (list, tuple)): wavelength = [wavelength] indices = instrument.wavelengthIndices(wavelength) # loop over all requested wavelength indices for index in indices: wave = wavegrid[index] wavename = "{:09.4f}".format(wave.to_value(sm.unit("micron"))) wavelatex = r"$\lambda={:.4g}$".format( wave.value) + sm.latexForUnit(wave) # extract the corresponding frame, and transpose to (y,x) style for compatibility with legacy code I = Is[:, :, index].T.value Q = Qs[:, :, index].T.value U = Us[:, :, index].T.value V = Vs[:, :, index].T.value # perform the actual binning binnedI = np.zeros((len(posY), len(posX))) binnedQ = np.zeros((len(posY), len(posX))) binnedU = np.zeros((len(posY), len(posX))) binnedV = np.zeros((len(posY), len(posX))) for x in range(len(posX)): for y in range(len(posY)): binnedI[y, x] = np.sum( I[startY + binY * y:startY + binY * (y + 1), startX + binX * x:startX + binX * (x + 1)]) binnedQ[y, x] = np.sum( Q[startY + binY * y:startY + binY * (y + 1), startX + binX * x:startX + binX * (x + 1)]) binnedU[y, x] = np.sum( U[startY + binY * y:startY + binY * (y + 1), startX + binX * x:startX + binX * (x + 1)]) binnedV[y, x] = np.sum( V[startY + binY * y:startY + binY * (y + 1), startX + binX * x:startX + binX * (x + 1)]) # ----------------------------------------------------------------- # plot a linear polarization map if plotLinMap: fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize) # configure the axes ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large') ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large') # determine intensity range for the background image, ignoring pixels with outrageously high flux Ib = I.copy() highmask = Ib > 1e6 * np.nanmedian(np.unique(Ib)) vmax = np.nanmax(Ib[~highmask]) Ib[highmask] = vmax vmin = vmax / 10**decades # plot the background image and the corresponding color bar normalizer = matplotlib.colors.LogNorm(vmin, vmax) cmap = plt.get_cmap('PuRd') cmap.set_under('w') backPlot = ax.imshow(Ib, norm=normalizer, cmap=cmap, extent=extent, aspect='equal', interpolation='bicubic', origin='lower') cbarlabel = sm.latexForSpectralFlux(Is) + sm.latexForUnit( Is) + " @ " + wavelatex plt.colorbar(backPlot, ax=ax).set_label(cbarlabel, fontsize='large') # compute the linear polarization degree degreeLD = np.sqrt(binnedQ**2 + binnedU**2) degreeLD[degreeLD > 0] /= binnedI[degreeLD > 0] # determine a characteristic 'high' degree of polarization in the frame # (this has to be done before degreeLD contains 'np.NaN') charDegree = np.percentile(degreeLD, 99.0) if not 0 < charDegree < 1: charDegree = np.nanmax((np.nanmax(degreeLD), 0.0001)) # remove pixels with minuscule polarization degreeLD[degreeLD < charDegree / 50] = np.NaN # determine the scaling so that the longest arrows do not to overlap with neighboring arrows if degreeScale is None: degreeScale = _roundUp(charDegree) lengthScale = 2.2 * degreeScale * max( float(len(posX)) / figSize[0], float(len(posY)) / figSize[1]) key = "{:.3g}%".format(100 * degreeScale) # compute the polarization angle angle = 0.5 * np.arctan2( binnedU, binnedQ ) # angle from North through East while looking at the sky # create the polarization vector arrays xPolarization = -degreeLD * np.sin( angle ) #For angle = 0: North & x=0, For angle = 90deg: West & x=-1 yPolarization = degreeLD * np.cos( angle ) #For angle = 0: North & y=1, For angle = 90deg: West & y=0 # plot the vector field (scale positions to data coordinates) X, Y = np.meshgrid(xmin + posX * (xmax - xmin) / orLenX, ymin + posY * (ymax - ymin) / orLenY) quiverPlot = ax.quiver(X, Y, xPolarization, yPolarization, pivot='middle', units='inches', angles='xy', scale=lengthScale, scale_units='inches', headwidth=0, headlength=1, headaxislength=1, minlength=0.8, width=0.02) ax.quiverkey(quiverPlot, 0.85, 0.02, degreeScale, key, coordinates='axes', labelpos='E') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath( filepath, ".pdf", outDirPath=outDirPath, outFileName="{}_{}_pollinmap.pdf".format( insname, wavename)) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath)) # ----------------------------------------------------------------- # plot a linear polarization degree map if plotDegMap: fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize) # configure the axes ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large') ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large') # calculate polarization degree for each pixel, in percent # set degree to zero for pixels with very low intensity cutmask = I < (np.nanmax( I[I < 1e6 * np.nanmedian(np.unique(I))]) / 10**decades) degreeHD = np.sqrt(Q**2 + U**2) degreeHD[~cutmask] /= I[~cutmask] degreeHD[cutmask] = 0 degreeHD *= 100 # plot the image and the corresponding color bar vmax = degreeScale if degreeScale is not None else np.percentile( degreeHD, 99) normalizer = matplotlib.colors.Normalize(vmin=0, vmax=vmax) backPlot = ax.imshow(degreeHD, norm=normalizer, cmap='plasma', extent=extent, aspect='equal', interpolation='bicubic', origin='lower') plt.colorbar(backPlot, ax=ax).set_label( "Linear polarization degree (%)" + " @ " + wavelatex, fontsize='large') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath( filepath, ".pdf", outDirPath=outDirPath, outFileName="{}_{}_poldegmap.pdf".format( insname, wavename)) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath)) # ----------------------------------------------------------------- # plot the y-axis averaged linear polarization degree if plotDegAvg: # construct the plot fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize) degreeHD = np.sqrt( np.average(Q, axis=0)**2 + np.average(U, axis=0)**2) degreeHD /= np.average(I, axis=0) ax.plot(xgrid.value, degreeHD * 100) ax.set_xlim(xmin, xmax) ax.set_ylim(0, degreeScale) ax.set_title("{} {}".format(insname, wavelatex), fontsize='large') ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large') ax.set_ylabel('Average linear polarization degree (%)', fontsize='large') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath( filepathI, ".pdf", outDirPath=outDirPath, outFileName="{}_{}_poldegavg.pdf".format( insname, wavename)) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath)) # ----------------------------------------------------------------- # plot a circular polarization map if plotCirMap: fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize) # configure the axes ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xlabel("x" + sm.latexForUnit(xgrid), fontsize='large') ax.set_ylabel("y" + sm.latexForUnit(ygrid), fontsize='large') # determine intensity range for the background image, ignoring pixels with outrageously high flux Ib = I.copy() highmask = Ib > 1e6 * np.nanmedian(np.unique(Ib)) vmax = np.nanmax(Ib[~highmask]) Ib[highmask] = vmax vmin = vmax / 10**decades # plot the background image and the corresponding color bar normalizer = matplotlib.colors.LogNorm(vmin, vmax) cmap = plt.get_cmap('PuRd') cmap.set_under('w') backPlot = ax.imshow(Ib, norm=normalizer, cmap=cmap, extent=extent, aspect='equal', interpolation='bicubic', origin='lower') cbarlabel = sm.latexForSpectralFlux(Is) + sm.latexForUnit( Is) + " @ " + wavelatex plt.colorbar(backPlot, ax=ax).set_label(cbarlabel, fontsize='large') # compute the circular polarization degree degreeLD = binnedV.copy() degreeLD[binnedI > 0] /= binnedI[binnedI > 0] # determine the scaling and add legend if degreeScale is None: degreeScale = _roundUp(np.percentile(np.abs(degreeLD), 99)) lengthScale = 0.7 / max(len(posX), len(posY)) _circArrow(ax, 0.84 - lengthScale / 2, 0.01 + lengthScale / 2, lengthScale) key = r'$+{} \%$'.format(100 * degreeScale) ax.text(0.85, 0.01 + lengthScale / 2, key, transform=ax.transAxes, ha='left', va='center') # actual plotting for x in range(len(posX)): for y in range(len(posY)): if np.isfinite(degreeLD[y, x]) and abs( degreeLD[y, x]) > degreeScale / 50: _circArrow( ax, posX[x] / orLenX, posY[y] / orLenY, degreeLD[y, x] / degreeScale * lengthScale) # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath( filepath, ".pdf", outDirPath=outDirPath, outFileName="{}_{}_polcirmap.pdf".format( insname, wavename)) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotBuiltinBands(minWavelength=1e-6 * u.micron, maxWavelength=1e6 * u.micron, nameSegments=None, *, outDirPath=None, outFileName=None, outFilePath=None, figSize=(20, 6), interactive=None): # load all bands that satisfy the specified criteria bands = [bnd.BroadBand(name) for name in bnd.builtinBandNames()] bands = [ band for band in bands if minWavelength <= band.pivotWavelength() <= maxWavelength ] if nameSegments is not None: if isinstance(nameSegments, str): nameSegments = [nameSegments] bands = [ band for band in bands if any([ s.lower() in band.name().lower().split("_") for s in nameSegments ]) ] # sort the remaining bands on pivot wavelength bands = sorted(bands, key=bnd.BroadBand.pivotWavelength) logging.info("Plotting {} built-in bands...".format(len(bands))) # setup the figure plt.figure(figsize=figSize) colors = ('r', 'g', 'b', 'c', 'm', 'y') # loop over bands labelpos = 0.25 colorindex = 0 for band in bands: wavelengths, transmissions = band.transmissionCurve() wavelengths <<= u.micron # convert to micron transmissions /= transmissions.max() # normalize to a maximum of 1 plt.plot(wavelengths.value, transmissions.value, color=colors[colorindex]) labelpos += 0.05 if labelpos > 0.69: labelpos = 0.25 plt.text(band.pivotWavelength().to_value(wavelengths.unit), labelpos, band.name(), horizontalalignment='center', fontsize='x-small', color=colors[colorindex], backgroundcolor='w') colorindex = (colorindex + 1) % len(colors) # set axis details plt.xscale('log') plt.grid(True, axis='y') # add axis labels and a legend plt.xlabel(r"$\lambda$" + sm.latexForUnit(wavelengths), fontsize='large') plt.ylabel("Transmission", fontsize='large') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath("FigBuiltinBands.pdf", (".pdf", ".png"), outDirPath=outDirPath, outFileName=outFileName, outFilePath=outFilePath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotStoredTableCurve(tableFilePath, horAxis=0, verAxis=0, *, axis0=None, axis1=None, axis2=None, axis3=None, axis4=None, outDirPath=None, outFileName=None, outFilePath=None, figSize=(8, 6), interactive=None): # load the complete stored table table = stab.readStoredTable(tableFilePath) # get info on horizontal axis horName = table['axisNames'][horAxis] horUnit = table['axisUnits'][horAxis] horScale = table['axisScales'][horAxis] horGrid = table[horName] # get info on vertical axis verName = table['quantityNames'][verAxis] verUnit = table['quantityUnits'][verAxis] verScale = table['quantityScales'][verAxis] # get the appropriate slice from the values hypercube index = [] for axisName, axisScale, axisValue in zip( table['axisNames'], table['axisScales'], (axis0, axis1, axis2, axis3, axis4)): if axisName == horName: index.append(Ellipsis) else: axisGrid = table[axisName] if axisValue is None: if axisScale == 'log': axisValue = np.sqrt(axisGrid[0] * axisGrid[-1]) else: axisValue = (axisGrid[0] + axisGrid[-1]) / 2 index.append((np.abs(axisGrid - axisValue)).argmin()) verValues = table[verName][tuple(index)] # create the plot plt.figure(figsize=figSize) if horScale == 'log': plt.xscale('log') if verScale == 'log': plt.yscale('log') plt.plot(horGrid, verValues) plt.xlabel(horName + sm.latexForUnit(horUnit)) plt.ylabel(verName + sm.latexForUnit(verUnit)) # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath("FigStoredTable.pdf", (".pdf", ".png"), outDirPath=outDirPath, outFileName=outFileName, outFilePath=outFilePath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))
def plotMagneticFieldCuts(simulation, *, binSize=(32, 32), outDirPath=None, figSize=(6, 6), interactive=None): # find the relevant probes probes = [ probe for probe in simulation.probes() \ if probe.type() in ("DefaultMagneticFieldCutsProbe", "PlanarMagneticFieldCutsProbe") ] # iterate over them for probe in probes: for cut in ("xy", "xz", "yz"): # load magnetic field for the this probe and cut paths = probe.outFilePaths("{}.fits".format(cut)) if len(paths) == 1: # load data cube with shape (nx, ny, 3) Bs = sm.loadFits(paths[0]) # load the axes grids xgrid, ygrid, dummygrid = sm.getFitsAxes(paths[0]) xmin = xgrid[0].value xmax = xgrid[-1].value ymin = ygrid[0].value ymax = ygrid[-1].value extent = (xmin, xmax, ymin, ymax) # determine binning configuration binX = binSize[0] orLenX = Bs.shape[0] dropX = orLenX % binX startX = dropX // 2 binY = binSize[1] orLenY = Bs.shape[1] dropY = orLenY % binY startY = dropY // 2 # construct arrays with central bin positions in pixel coordinates posX = np.arange(startX - 0.5 + binX / 2.0, orLenX - dropX + startX - 0.5, binX) posY = np.arange(startY - 0.5 + binY / 2.0, orLenY - dropY + startY - 0.5, binY) # perform the actual binning, while splitting in vector components Bx = np.zeros((len(posX), len(posY))) By = np.zeros((len(posX), len(posY))) Bz = np.zeros((len(posX), len(posY))) for x in range(len(posX)): for y in range(len(posY)): Bx[x, y] = np.mean( Bs[startX + binX * x:startX + binX * (x + 1), startY + binY * y:startY + binY * (y + 1), 0].value) By[x, y] = np.mean( Bs[startX + binX * x:startX + binX * (x + 1), startY + binY * y:startY + binY * (y + 1), 1].value) Bz[x, y] = np.mean( Bs[startX + binX * x:startX + binX * (x + 1), startY + binY * y:startY + binY * (y + 1), 2].value) # start the figure fig, ax = plt.subplots(ncols=1, nrows=1, figsize=figSize) # configure the axes ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xlabel(cut[0] + sm.latexForUnit(xgrid), fontsize='large') ax.set_ylabel(cut[-1] + sm.latexForUnit(ygrid), fontsize='large') ax.set_aspect('equal') # determine a characteristic 'large' field strength in the cut plane Bmax = np.percentile(np.sqrt(Bx**2 + By**2), 99.0) if Bmax == 0: Bmax = 1 # guard against all zeros # determine the scaling so that the longest arrows do not to overlap with neighboring arrows lengthScale = 2 * Bmax * max( float(len(posX)) / figSize[0], float(len(posY)) / figSize[1]) key = "{:.3g}{}".format(Bmax, sm.latexForUnit(Bs)) # determine the color scheme for the component orthogonal to cut plane Bzmax = np.abs(Bz).max() if Bzmax == 0: Bzmax = 1 # guard against all zeros normalizer = matplotlib.colors.Normalize(-Bzmax, Bzmax) # plot the vector field (scale positions to data coordinates) X, Y = np.meshgrid(xmin + posX * (xmax - xmin) / orLenX, ymin + posY * (ymax - ymin) / orLenY, indexing='ij') quiverPlot = ax.quiver(X, Y, Bx, By, Bz, cmap='jet', norm=normalizer, pivot='middle', units='inches', angles='xy', scale=lengthScale, scale_units='inches', width=0.015, headwidth=2.5, headlength=2, headaxislength=2, minlength=0.8) ax.quiverkey(quiverPlot, 0.8, -0.08, Bmax, key, coordinates='axes', labelpos='E') # if not in interactive mode, save the figure; otherwise leave it open if not ut.interactive(interactive): saveFilePath = ut.savePath(simulation.outFilePath( "{}_B_{}.pdf".format(probe.name(), cut)), (".pdf", ".png"), outDirPath=outDirPath) plt.savefig(saveFilePath, bbox_inches='tight', pad_inches=0.25) plt.close() logging.info("Created {}".format(saveFilePath))