class StochVolModel(Model): name = "Stochastic volatility model" b = local_param() # λ = global_param(prior=Normal(0, 1e-4)) σ = global_param(prior=LogNormalPrior(0, 1), rename="α", transform="log") φ = global_param(prior=BetaPrior(2, 2), rename="ψ", transform="logit") def ln_joint(self, y, ζ): # b, λ, (σ, α), (φ, ψ) = self.unpack(ζ) b, (σ, α), (φ, ψ) = self.unpack(ζ) ar1_sd = torch.pow(1 - torch.pow(φ, 2), -0.5) llikelihood = ( Normal(0, torch.exp(.5 * (σ * b))).log_prob(y).sum() # Normal(0, torch.exp(.5 * (λ + σ * b))).log_prob(y).sum() + Normal(φ * b[:-1], 1).log_prob(b[1:]).sum() + Normal(0., ar1_sd).log_prob(b[0])) lprior = ( self.ψ_prior.log_prob(ψ) + self.α_prior.log_prob(α) # + self.λ_prior.log_prob(λ) ) return llikelihood + lprior def simulate(self, λ=0., σ=0.5, φ=0.95): assert σ > 0 and 0 < φ < 1 b = torch.zeros(self.input_length) φ = torch.tensor(φ) ar1_sd = torch.pow(1 - torch.pow(φ, 2), -0.5) b[0] = Normal(0, ar1_sd).sample() for t in range(1, self.input_length): b[t] = Normal(φ * b[t - 1], 1).sample() y = Normal(loc=0., scale=torch.exp(0.5 * (λ + σ * b))).sample() return y, b def sample_observed(self, ζ, y, fc_steps=0): b, (σ, α), (φ, ψ) = self.unpack(ζ) λ = 0. if fc_steps > 0: b = torch.cat([b, torch.zeros(fc_steps)]) for t in range(self.input_length, self.input_length + fc_steps): b[t] = b[t - 1] * φ + Normal(0, 1).sample() return Normal(loc=0., scale=torch.exp(0.5 * (λ + σ * b))).sample()
class UnivariateGaussian(Model): """Simple univariate Gaussian model. For the optimization, we transform σ -> ln(σ) = η to ensure σ > 0. """ name = "Univariate Gaussian model" μ = global_param(prior=NormalPrior(0., 10.)) σ = global_param(prior=LogNormalPrior(0., 10.), rename="η", transform="log") def simulate(self, N: int, μ: float, σ: float): assert N > 2 and σ > 0 return Normal(μ, σ).sample((N, )).type(self.dtype).to(self.device) def ln_joint(self, y, ζ): μ, (σ, η) = self.unpack(ζ) ll = Normal(μ, σ).log_prob(y).sum() lp = self.μ_prior.log_prob(μ) + self.η_prior.log_prob(η) return ll + lp
class LocalLevelModel(Model): name = "Local level model" z = local_param() γ = global_param(prior=NormalPrior(1, 3)) η = global_param(prior=LogNormalPrior(0, 3), transform="log", rename="ψ") σ = global_param(prior=InvGammaPrior(1, 5), transform="log", rename="ς") ρ = global_param(prior=BetaPrior(2, 2), transform="logit", rename="φ") def ln_joint(self, y, ζ): """Computes the log likelihood plus the log prior at ζ.""" z, γ, (η, ψ), (σ, ς), (ρ, φ) = self.unpack(ζ) ar1_uncond_var = torch.pow((1 - torch.pow(ρ, 2)), -0.5) llikelihood = (Normal(γ + η * z, σ).log_prob(y).sum() + Normal(ρ * z[:-1], 1).log_prob(z[1:]).sum() + Normal(0., ar1_uncond_var).log_prob(z[0])) lprior = (self.γ_prior.log_prob(γ) + self.ψ_prior.log_prob(ψ) + self.ς_prior.log_prob(ς) + self.φ_prior.log_prob(φ)) return llikelihood + lprior def simulate(self, γ: float, η: float, σ: float, ρ: float): z = torch.empty([self.input_length]) z[0] = Normal(0, 1 / (1 - ρ**2)**0.5).sample() for i in range(1, self.input_length): z[i] = ρ * z[i - 1] + Normal(0, 1).sample() y = Normal(γ + η * z, σ).sample() return y.type(self.dtype).to(self.device), z.type(self.dtype).to( self.device) def sample_observed(self, ζ, y, fc_steps=0): z, γ, (η, ψ), (σ, ς), (ρ, φ) = self.unpack(ζ) if fc_steps > 0: z = torch.cat([z, torch.zeros(fc_steps)]) # iteratively project states forward for t in range(self.input_length, self.input_length + fc_steps): z[t] = z[t - 1] * ρ + Normal(0, 1).sample() return Normal(γ + η * z, σ).sample()
class FilteredSVModelDualOpt(FilteredStateSpaceModelFreeProposal): """ A simple stochastic volatility model for estimating with FIVO. .. math:: x_t = exp(a)exp(z_t/2) ε_t ε_t ~ Ν(0,1) z_t = b + c * z_{t-1} + ν_t ν_t ~ Ν(0,1) The proposal density is .. math:: z_t = d + e * z_{t-1} + η_t η_t ~ Ν(0,1) The model parameter ζ covers the parameters used in the SV model, ζ={a, b, c}. The alternative parameter η covers the parameters η={d, e}. """ name = "Particle filtered stochastic volatility model" a = global_param(prior=LogNormalPrior(0, 1), transform="log", rename="α") b = global_param(prior=NormalPrior(0, 1)) c = global_param(prior=BetaPrior(1, 1), transform="logit", rename="ψ") d = global_param(prior=NormalPrior(0, 1)) e = global_param(prior=BetaPrior(1, 1), transform="logit", rename="ρ") def __init__( self, input_length: int, num_particles: int = 50, resample=True, dtype=None, device=None, ): super().__init__(input_length, num_particles, resample, dtype, device) self._md = 3 self._pd = 2 # no σ in proposal yet def simulate(self, a, b, c): """Simulate from p(y, z | θ)""" a, b, c = map(torch.tensor, (a, b, c)) z_true = torch.empty((self.input_length,)) z_true[0] = Normal(b, (1 - c ** 2) ** (-.5)).sample() for t in range(1, self.input_length): z_true[t] = b + c * z_true[t - 1] + Normal(0, 1).sample() y = Normal(0, torch.exp(a) * torch.exp(z_true / 2)).sample() return ( y.type(self.dtype).to(self.device), z_true.type(self.dtype).to(self.device), ) def conditional_log_prob(self, t, y, z, ζ): """Compute log p(x_t, z_t | y_{0:t-1}, z_{0:t-1}, ζ). Args: t: time index (zero-based) y: y_{0:t} vector of points observed up to this point (which may actually be longer, but should only be indexed up to t) z: z_{0:t} vector of unobserved variables to condition on (ditto, array may be longer) ζ: parameter to condition on; should be unpacked with self.unpack """ a, b, c, = self.unpack_natural_model_parameters(ζ) if t == 0: log_pzt = Normal(b, (1 - c ** 2) ** (-.5)).log_prob(z[t]) else: log_pzt = Normal(b + c * z[t - 1], 1).log_prob(z[t]) log_pxt = Normal(0, torch.exp(a) * torch.exp(z[t] / 2)).log_prob(y[t]) return log_pzt + log_pxt def ln_prior(self, ζ: torch.Tensor) -> float: a, b, c = self.unpack_natural_model_parameters(ζ) return ( self.a_prior.log_prob(a) + self.b_prior.log_prob(b) + self.c_prior.log_prob(c) ) def model_parameters(self): return [self.a, self.b, self.c] def proposal_parameters(self): return [self.d, self.e] def unpack_natural_model_parameters(self, ζ: torch.Tensor): α, b, ψ = ζ[0], ζ[1], ζ[2] return self.a_to_α.inv(α), b, self.c_to_ψ.inv(ψ) def unpack_natural_proposal_parameters(self, η: torch.Tensor): d, ρ = η[0], η[1] return d, self.e_to_ρ.inv(ρ) def simulate_log_phatN( self, y: torch.Tensor, ζ: torch.Tensor, η: torch.Tensor, sample: torch.Tensor = None, ): """Apply particle filter to estimate marginal likelihood log p^(y | ζ) This algorithm is subtly different than the one in fivo.py, because it also takes η as a parameter. """ log_phatN = 0. log_N = math.log(self.num_particles) log_w = torch.full( (self.num_particles,), -log_N, dtype=self.dtype, device=self.device ) Z = None proposal = self.proposal_for(y, η) for t in range(self.input_length): zt = proposal.conditional_sample(t, Z, self.num_particles).unsqueeze(0) Z = torch.cat([Z, zt]) if Z is not None else zt log_αt = self.conditional_log_prob( t, y, Z, ζ ) - proposal.conditional_log_prob(t, Z) log_phatt = torch.logsumexp(log_w + log_αt, dim=0) log_phatN += log_phatt log_w += log_αt - log_phatt with torch.no_grad(): ESS = 1. / torch.exp(2 * log_w).sum() if self.resample and ESS < self.num_particles: a = Categorical(torch.exp(log_w)).sample((self.num_particles,)) Z = (Z[:, a]).clone() log_w = torch.full( (self.num_particles,), -log_N, dtype=self.dtype, device=self.device, ) if sample is not None: with torch.no_grad(): # samples should be M * T, where M is the number of samples assert sample.shape[0] >= self.input_length idxs = Categorical(torch.exp(log_w)).sample() sample[: self.input_length] = Z[:, idxs] return log_phatN def proposal_for(self, y: torch.Tensor, η: torch.Tensor) -> PFProposal: """Return the proposal distribution for the given parameters. Args: y: data vector η: proposal parameter vector """ d, e = self.unpack_natural_proposal_parameters(η) return AR1Proposal(μ=d, ρ=e, σ=1.) @property def md(self) -> int: """Dimension of the model.""" return self._md @property def pd(self) -> int: """Dimension of the proposal.""" return self._pd def sample_observed(self, ζ, y, fc_steps=0): a, b, c = self.unpack_natural_model_parameters(ζ[:3]) z = self.sample_unobserved(ζ, y, fc_steps) return Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() def sample_unobserved(self, ζ, y, fc_steps=0): assert y is not None a, b, c = self.unpack_natural_model_parameters(ζ[:3]) # get a sample of states by filtering wrt y z = torch.empty((len(y) + fc_steps,)) self.simulate_log_phatN(y=y, ζ=ζ[:3], η=ζ[3:], sample=z) # now project states forward fc_steps if fc_steps > 0: for t in range(self.input_length, self.input_length + fc_steps): z[t] = b + c * z[t - 1] + Normal(0, 1).sample() return Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() def __repr__(self): return ( f"Stochastic volatility model for dual optimization of model and proposal:\n" f"\tx_t = exp(a * z_t/2) ε_t t=1, …, {self.input_length}\n" f"\tz_t = b + c * z_{{t-1}} + ν_t, t=2, …, {self.input_length}\n" f"\tz_1 = b + 1/√(1 - c^2) ν_1\n" f"\twhere ε_t, ν_t ~ Ν(0,1)\n\n" f"Particle filter with {self.num_particles} particles, AR(1) proposal:\n" f"\tz_t = d + e * z_{{t-1}} + η_t, t=2, …, {self.input_length}\n" f"\tz_1 = d + 1/√(1 - e^2) η_1\n" f"\twhere η_t ~ Ν(0,1)\n" )
class FilteredStochasticVolatilityModelFreeProposal(FilteredStateSpaceModel): """ A simple stochastic volatility model for estimating with FIVO. .. math:: x_t = exp(a)exp(z_t/2) ε_t ε_t ~ Ν(0,1) z_t = b + c * z_{t-1} + ν_t ν_t ~ Ν(0,1) The proposal density is also an AR(1): .. math:: z_t = d + e * z_{t-1} + η_t η_t ~ Ν(0,1) """ name = "Particle filtered stochastic volatility model" a = global_param(prior=LogNormalPrior(0, 1), transform="log", rename="α") b = global_param(prior=NormalPrior(0, 1)) c = global_param(prior=BetaPrior(1, 1), transform="logit", rename="ψ") d = global_param(prior=NormalPrior(0, 1)) e = global_param(prior=BetaPrior(1, 1), transform="logit", rename="ρ") f = global_param(prior=LogNormalPrior(0, 1), transform="log", rename="ι") def simulate(self, a, b, c): """Simulate from p(x, z | θ)""" a, b, c = map(torch.tensor, (a, b, c)) z = torch.empty((self.input_length,)) z[0] = Normal(b, (1 - c ** 2) ** (-.5)).sample() for t in range(1, self.input_length): z[t] = b + c * z[t - 1] + Normal(0, 1).sample() x = Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() return x.type(self.dtype).to(self.device), z.type(self.dtype).to(self.device) def conditional_log_prob(self, t, y, z, ζ): """Compute log p(x_t, z_t | y_{0:t-1}, z_{0:t-1}, ζ). Args: t: time index (zero-based) y: y_{0:t} vector of points observed up to this point (which may actually be longer, but should only be indexed up to t) z: z_{0:t} vector of unobserved variables to condition on (ditto, array may be longer) ζ: parameter to condition on; should be unpacked with self.unpack """ a, b, c, _, _, _ = self.unpack_natural(ζ) if t == 0: log_pzt = Normal(b, (1 - c ** 2) ** (-.5)).log_prob(z[t]) else: log_pzt = Normal(b + c * z[t - 1], 1).log_prob(z[t]) log_pxt = Normal(0, torch.exp(a) * torch.exp(z[t] / 2)).log_prob(y[t]) return log_pzt + log_pxt def sample_observed(self, ζ, y, fc_steps=0): a, _, _, _, _, _ = self.unpack_natural(ζ) z = self.sample_unobserved(ζ, y, fc_steps) return Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() def sample_unobserved(self, ζ, y, fc_steps=0): assert y is not None a, b, c, _, _, _ = self.unpack_natural(ζ) # get a sample of states by filtering wrt y z = torch.empty((len(y) + fc_steps,)) self.simulate_log_phatN(y=y, ζ=ζ, sample=z) # now project states forward fc_steps if fc_steps > 0: for t in range(self.input_length, self.input_length + fc_steps): z[t] = b + c * z[t - 1] + Normal(0, 1).sample() return Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() def proposal_for(self, y: torch.Tensor, ζ: torch.Tensor) -> PFProposal: _, _, _, d, e, f = self.unpack_natural(ζ) return AR1Proposal(μ=d, ρ=e, σ=f) def __repr__(self): return ( f"Stochastic volatility model with parameters {{a, b, c}}:\n" f"\tx_t = exp(a * z_t/2) ε_t t=1,…,{self.input_length}\n" f"\tz_t = b + c * z_{{t-1}} + ν_t, t=2,…,{self.input_length}\n" f"\tz_1 = b + 1/√(1 - c^2) ν_1\n" f"\twhere ε_t, ν_t ~ Ν(0,1)\n\n" f"Filter with {self.num_particles} particles; AR(1) proposal params {{d, e, f}}:\n" f"\tz_t = d + e * z_{{t-1}} + f η_t, t=2,…,{self.input_length}\n" f"\tz_1 = d + f/√(1 - e^2) η_1\n" f"\twhere η_t ~ Ν(0,1)\n" )
class FilteredStochasticVolatilityModelFixedParams(FilteredStateSpaceModel): """ A simple stochastic volatility model for estimating with FIVO. .. math:: x_t = exp(a)exp(z_t/2) ε_t ε_t ~ Ν(0,1) z_t = b + c * z_{t-1} + f ν_t ν_t ~ Ν(0,1) """ name = "Particle filtered stochastic volatility model" d = global_param(prior=NormalPrior(0, 1)) e = global_param(prior=BetaPrior(1, 1), transform="logit", rename="ρ") f = global_param(prior=LogNormalPrior(0, 1), transform="log") def __init__( self, input_length, num_particles, resample, a=0.5, b=1., c=0.95, dtype=None, device=None, ): super().__init__( input_length=input_length, num_particles=num_particles, resample=resample, dtype=dtype, device=device, ) self.a, self.b, self.c = ( torch.tensor(x, dtype=self.dtype, device=self.device) for x in (a, b, c) ) def simulate(self): """Simulate from p(x, z | θ)""" z_true = torch.empty((self.input_length,), dtype=self.dtype, device=self.device) z_true[0] = Normal(self.b, (1 - self.c ** 2) ** (-.5)).sample() for t in range(1, self.input_length): z_true[t] = ( self.b + self.c * z_true[t - 1] + torch.randn(1, dtype=self.dtype, device=self.device) ) x = Normal(0, torch.exp(self.a) * torch.exp(z_true / 2)).sample() return ( x.type(self.dtype).to(self.device), z_true.type(self.dtype).to(self.device), ) def conditional_log_prob(self, t, y, z, ζ): """Compute log p(x_t, z_t | y_{0:t-1}, z_{0:t-1}, ζ). Args: t: time index (zero-based) y: y_{0:t} vector of points observed up to this point (which may actually be longer, but should only be indexed up to t) z: z_{0:t} vector of unobserved variables to condition on (ditto, array may be longer) ζ: parameter to condition on; should be unpacked with self.unpack """ if t == 0: log_pzt = Normal(self.b, (1 - self.c ** 2) ** (-.5)).log_prob(z[t]) else: log_pzt = Normal(self.b + self.c * z[t - 1], 1).log_prob(z[t]) log_pxt = Normal(0, torch.exp(self.a) * torch.exp(z[t] / 2)).log_prob(y[t]) return log_pzt + log_pxt def sample_observed(self, ζ, y, fc_steps=0): z = self.sample_unobserved(ζ, y, fc_steps) return Normal(0, torch.exp(self.a) * torch.exp(z / 2)).sample() def sample_unobserved(self, ζ, y, fc_steps=0): assert y is not None # get a sample of states by filtering wrt y z = torch.empty((len(y) + fc_steps,)) self.simulate_log_phatN(y=y, ζ=ζ, sample=z) # now project states forward fc_steps if fc_steps > 0: for t in range(self.input_length, self.input_length + fc_steps): z[t] = self.b + self.c * z[t - 1] + Normal(0, 1).sample() return Normal(0, torch.exp(self.a) * torch.exp(z / 2)).sample() def proposal_for(self, y: torch.Tensor, ζ: torch.Tensor) -> PFProposal: d, e, f = self.unpack_natural(ζ) return AR1Proposal(μ=d, ρ=torch.tensor(.95, dtype=self.dtype), σ=f) def __repr__(self): return ( f"Stochastic volatility model:\n" f"\tx_t = exp(a * z_t/2) ε_t t=1, …, {self.input_length}\n" f"\tz_t = b + c * z_{{t-1}} + ν_t, t=2, …, {self.input_length}\n" f"\tz_1 = b + 1/√(1 - c^2) ν_1\n" f"\twhere ε_t, ν_t ~ Ν(0,1)\n\n" f"Particle filter with {self.num_particles} particles, AR(1) proposal:\n" f"\tz_t = d + e * z_{{t-1}} + f η_t, t=2, …, {self.input_length}\n" f"\tz_1 = d + f/√(1 - e^2) η_1\n" f"\twhere η_t ~ Ν(0,1)\n" )
class FilteredLocalLevelModel(Model): """Local level (linear gaussian) model that exploits the Kalman filter.""" name = "Filtered local level model" z0 = global_param(prior=NormalPrior(0, 10)) σz0 = global_param(prior=LogNormalPrior(1, 1), transform="log", rename="ςz0") γ = global_param(prior=NormalPrior(1, 3)) η = global_param(prior=LogNormalPrior(0, 1), transform="log", rename="ψ") σ = global_param(prior=InvGammaPrior(1, 5), transform="log", rename="ς") ρ = global_param(prior=BetaPrior(1, 1), transform="logit", rename="φ") def ln_joint(self, y, ζ): """Computes the log likelihood plus the log prior at ζ.""" z0, (σz0, ςz0), γ, (η, ψ), (σ, ς), (ρ, φ) = self.unpack(ζ) # unroll first iteration of loop to set initial conditions # prediction step z_pred = ρ * z0 Σz_pred = ρ**2 * σz0**2 + 1 y_pred = γ + η * z_pred Σy_pred = η**2 * Σz_pred + σ**2 # correction step gain = Σz_pred * η / Σy_pred z_upd = z_pred + gain * (y[0] - y_pred) Σz_upd = Σz_pred - gain**2 * Σy_pred llik = Normal(y_pred, torch.sqrt(Σy_pred)).log_prob(y[0]) for t in range(2, y.shape[0] + 1): i = t - 1 # prediction step z_pred = ρ * z_upd Σz_pred = ρ**2 * Σz_upd + 1 y_pred = γ + η * z_pred Σy_pred = η**2 * Σz_pred + σ**2 # correction step gain = Σz_pred * η / Σy_pred z_upd = z_pred + gain * (y[i] - y_pred) Σz_upd = Σz_pred - gain**2 * Σy_pred llik += Normal(y_pred, torch.sqrt(Σy_pred)).log_prob(y[i]) return llik + self.ln_prior(ζ) def simulate( self, γ: float, η: float, σ: float, ρ: float, z0: float = None, σz0: float = None, ): if z0 is None: z0 = 0 if σz0 is None: σz0 = 1. / (1 - ρ**2)**0.5 z = torch.empty([self.input_length]) z[0] = Normal(z0, σz0).sample() for i in range(1, self.input_length): z[i] = ρ * z[i - 1] + Normal(0, 1).sample() y = Normal(γ + η * z, σ).sample() return y, z def kalman_smoother(self, y, ζ): z0, (σz0, ςz0), γ, (η, ψ), (σ, ς), (ρ, φ) = self.unpack(ζ) z_pred = torch.zeros((self.input_length, )) # z_{t|t-1} z_upd = torch.zeros((self.input_length, )) # z_{t|t} Σz_pred = torch.zeros((self.input_length, )) # Σ_{z_{t|t-1}} Σz_upd = torch.zeros((self.input_length, )) # Σ_{z_{t|t}} y_pred = torch.zeros((self.input_length, )) # y_{t|t-1} Σy_pred = torch.zeros((self.input_length, )) # Σ_{y_{t|t-1}} z_smooth = torch.zeros((self.input_length, )) # z_{t|T} Σz_smooth = torch.zeros((self.input_length, )) # Σ_{z_{t|T}} # prediction step z_pred[0] = ρ * z0 Σz_pred[0] = ρ**2 * σz0**2 + 1 y_pred[0] = η * z_pred[0] Σy_pred[0] = η**2 * Σz_pred[0] + σ**2 # correction step gain = Σz_pred[0] * η / Σy_pred[0] z_upd[0] = z_pred[0] + gain * (y[0] - y_pred[0]) Σz_upd[0] = Σz_pred[0] - gain**2 * Σy_pred[0] for i in range(1, y.shape[0]): # prediction step z_pred[i] = ρ * z_upd[i - 1] Σz_pred[i] = ρ**2 * Σz_upd[i - 1] + 1 y_pred[i] = η * z_pred[i] Σy_pred[i] = η**2 * Σz_pred[i] + σ**2 # correction step gain = Σz_pred[i] * η / Σy_pred[i] z_upd[i] = z_pred[i] + gain * (y[i] - y_pred[i]) Σz_upd[i] = Σz_pred[i] - gain**2 * Σy_pred[i] # smoothing step z_smooth[self.input_length - 1] = z_upd[self.input_length - 1] Σz_smooth[self.input_length - 1] = Σz_upd[self.input_length - 1] for i in range(self.input_length - 2, -1, -1): smooth = Σz_upd[i] * ρ / Σz_pred[i] z_smooth[i] = z_upd[i] + smooth**2 * (Σz_pred[i + 1] - Σz_smooth[i]) Σz_smooth[i] = Σz_upd[i] - smooth**2 * (Σz_pred[i + 1] - Σz_smooth[i + 1]) return { "z_upd": z_upd, "Σz_upd": Σz_upd, "z_smooth": z_smooth, "Σz_smooth": Σz_smooth, "y_pred": y_pred, "Σy_pred": Σy_pred, } def filtered_path(self, y, params): """Filter path, return final obs.""" z0, σz0, γ, η, σ, ρ, = params z = torch.zeros_like(y) z[0] = z0 # unroll first iteration of loop to set initial conditions # prediction step z_pred = ρ * z0 Σz_pred = ρ**2 * σz0**2 + 1 y_pred = γ + η * z_pred Σy_pred = η**2 * Σz_pred + σ**2 # correction step gain = Σz_pred * η / Σy_pred z_upd = z_pred + gain * (y[0] - y_pred) Σz_upd = Σz_pred - gain**2 * Σy_pred z[1] = z_upd for t in range(2, y.shape[0] + 1): i = t - 1 # prediction step z_pred = ρ * z_upd Σz_pred = ρ**2 * Σz_upd + 1 y_pred = γ + η * z_pred Σy_pred = η**2 * Σz_pred + σ**2 # correction step gain = Σz_pred * η / Σy_pred z_upd = z_pred + gain * (y[i] - y_pred) Σz_upd = Σz_pred - gain**2 * Σy_pred z[t - 1] = z_upd return z def forecast_paths(self, y, post, nsteps=10, ndraws=10_000): # loop over posterior draws # conditional on draw, obtain x_T draw # project x_T+1, x_T+2, ..., x_T+h N = len(y) z_ext = torch.zeros([N + nsteps]) y_ext = torch.zeros([N + nsteps]) y_ext[:N] = y fc_paths = torch.zeros([nsteps, ndraws]) is_mcmc_posterior = getattr(post, 'flatnames', None) if is_mcmc_posterior: mcmc_draws = post.extract() flatnames = ['z0', 'sigma_z0', 'gamma', 'eta', 'sigma', 'rho'] param_draws = torch.stack( [torch.tensor(mcmc_draws[n]) for n in flatnames]) for i in range(ndraws): if is_mcmc_posterior: # posterior is matrix of samples params = param_draws[:, i % param_draws.shape[1]] else: params = post.q.sample() z_ext[:N] = self.filtered_path(y, params) # allow latent states z to evolve z0, σz0, γ, η, σ, ρ, = params # print([γ, η, σ, ρ]) for t in range(N, N + nsteps): # draw z[t] | z[t-1] z_ext[t] = z_ext[t - 1] * ρ + torch.normal(torch.zeros(1)) # sample conditionally indepedent ys y_ext[N:] = torch.normal(γ + η * z_ext[N:], σ * torch.ones(nsteps)) fc_paths[:, i] = y_ext[N:] return fc_paths
class SVModel(FilteredStateSpaceModel): """ A simple stochastic volatility model for estimating with FIVO. .. math:: x_t = exp(a)exp(z_t/2) ε_t ε_t ~ Ν(0,1) z_t = b + c * z_{t-1} + ν_t ν_t ~ Ν(0,1) The proposal density is also an AR(1): .. math:: z_t = d + e * z_{t-1} + η_t η_t ~ Ν(0,1) """ class SVModelResult(FilteredStateSpaceModel.FIVOResult): def forecast(self, steps=1, n=100): """Produce forecasts of the specified number of steps ahead. Procedure: sample ζ, filter to get p(z_T | y, θ), project the state chain forward, then compute y. """ z_T_draws = torch.zeros(n) z_proj_draws = torch.zeros((n, steps)) y_proj_draws = torch.zeros((n, steps)) sample = torch.zeros((1, n)) self.model.num_particles = n # dodgy hack to simulate more particles phatns = torch.zeros((n,)) for i in range(n): ζ = self.q.sample() a, b, c = ζ[0], ζ[1], ζ[2] phatns[i] = self.model.simulate_log_phatN(self.y, ζ, sample) # just take a single particle's z_T z_T_draws[i] = sample[0, random.randint(0, n - 1)] z_proj_draws[i, 0] = b + c * z_T_draws[i] + torch.randn(1) for j in range(1, steps): z_proj_draws[i, j] = b + c * z_proj_draws[i, j - 1] + torch.randn(1) y_proj_draws[i, :] = Normal( 0, torch.exp(a) * torch.exp(z_proj_draws[i, :] / 2) ).sample() kde = stats.gaussian_kde(y_proj_draws[:, -1].cpu().numpy()) return kde, y_proj_draws.cpu().numpy() name = "Particle filtered stochastic volatility model" a = global_param(prior=LogNormalPrior(0, 1), transform="log", rename="α") b = global_param(prior=NormalPrior(0, 1)) c = global_param(prior=ModifiedBetaPrior(0.5, 1.5), transform="logit", rename="ψ") d = global_param(prior=NormalPrior(0, 1)) e = global_param(prior=BetaPrior(1, 1), transform="logit", rename="ρ") f = global_param(prior=LogNormalPrior(0, 1), transform="log", rename="ι") result_type = SVModelResult def simulate(self, a, b, c): """Simulate from p(x, z | θ)""" a, b, c = map(torch.tensor, (a, b, c)) z = torch.empty((self.input_length,)) z[0] = Normal(b, (1 - c ** 2) ** (-.5)).sample() for t in range(1, self.input_length): z[t] = b + c * z[t - 1] + Normal(0, 1).sample() x = Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() return x.type(self.dtype).to(self.device), z.type(self.dtype).to(self.device) def conditional_log_prob(self, t, y, z, ζ): """Compute log p(x_t, z_t | y_{0:t-1}, z_{0:t-1}, ζ). Args: t: time index (zero-based) y: y_{0:t} vector of points observed up to this point (which may actually be longer, but should only be indexed up to t) z: z_{0:t} vector of unobserved variables to condition on (ditto, array may be longer) ζ: parameter to condition on; should be unpacked with self.unpack """ a, b, c, _, _, _ = self.unpack_natural(ζ) if t == 0: log_pzt = Normal(b, (1 - c ** 2) ** (-.5)).log_prob(z[t]) else: log_pzt = Normal(b + c * z[t - 1], 1).log_prob(z[t]) log_pxt = Normal(0, torch.exp(a) * torch.exp(z[t] / 2)).log_prob(y[t]) return log_pzt + log_pxt def sample_observed(self, ζ, y, fc_steps=0): a, _, _, _, _, _ = self.unpack_natural(ζ) z = self.sample_unobserved(ζ, y, fc_steps) return Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() def sample_unobserved(self, ζ, y, fc_steps=0): assert y is not None a, b, c, _, _, _ = self.unpack_natural(ζ) # get a sample of states by filtering wrt y z = torch.empty((len(y) + fc_steps,)) self.simulate_log_phatN(y=y, ζ=ζ, sample=z) # now project states forward fc_steps if fc_steps > 0: for t in range(self.input_length, self.input_length + fc_steps): z[t] = b + c * z[t - 1] + Normal(0, 1).sample() return Normal(0, torch.exp(a) * torch.exp(z / 2)).sample() def proposal_for(self, y: torch.Tensor, ζ: torch.Tensor) -> PFProposal: _, _, _, d, e, f = self.unpack_natural(ζ) return AR1Proposal(μ=d, ρ=e, σ=f) def __repr__(self): return ( f"Stochastic volatility model with parameters {{a, b, c}}:\n" f"\ty_t = exp(a * z_t/2) ε_t t=1,…,{self.input_length}\n" f"\tz_t = b + c * z_{{t-1}} + ν_t, t=2,…,{self.input_length}\n" f"\tz_1 = b + 1/√(1 - c^2) ν_1\n" f"\twhere ε_t, ν_t ~ Ν(0,1)\n\n" f"Filter with {self.num_particles} particles; AR(1) proposal params {{d, e, f}}:\n" f"\tz_t = d + e * z_{{t-1}} + f η_t, t=2,…,{self.input_length}\n" f"\tz_1 = d + f/√(1 - e^2) η_1\n" f"\twhere η_t ~ Ν(0,1)\n" )