def test_ssb(dpix, backend, n_threads): lt_ctx = lt.Context(InlineJobExecutor(debug=True, inline_threads=n_threads)) try: if backend == 'cupy': set_use_cuda(0) dtype = np.float64 scaling = 4 shape = (29, 30, 189 // scaling, 197 // scaling) # The acceleration voltage U in keV U = 300 lamb = wavelength(U) # STEM semiconvergence angle in radians semiconv = 25e-3 # Diameter of the primary beam in the diffraction pattern in pixels semiconv_pix = 78.6649 / scaling cy = 93 // scaling cx = 97 // scaling input_data = ( np.random.uniform(0, 1, np.prod(shape)) * np.linspace(1.0, 1000.0, num=np.prod(shape)) ) input_data = input_data.astype(np.float64).reshape(shape) udf = SSB_UDF(lamb=lamb, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, dtype=dtype, cy=cy, cx=cx, method='subpix') dataset = MemoryDataSet( data=input_data, tileshape=(20, shape[2], shape[3]), num_partitions=2, sig_dims=2, ) result = lt_ctx.run_udf(udf=udf, dataset=dataset) result_f, reference_masks = reference_ssb(input_data, U=U, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, cy=cy, cx=cx) task_data = udf.get_task_data() udf_masks = task_data['masks'].computed_masks half_y = shape[0] // 2 + 1 # Use symmetry and reshape like generate_masks() reference_masks = reference_masks[:half_y].reshape((half_y*shape[1], shape[2], shape[3])) print(np.max(np.abs(udf_masks.todense() - reference_masks))) print(np.max(np.abs(result['fourier'].data - result_f))) assert np.allclose(result['fourier'].data, result_f) backwards = result['amplitude'].data**2 * np.exp(1j*result['phase'].data) assert np.allclose(result['fourier'].data, np.fft.fft2(backwards)) finally: if backend == 'cupy': set_use_cpu(0)
def test_masks(): scaling = 4 dtype = np.float64 shape = (29, 30, 189 // scaling, 197 // scaling) # ? shape = np.random.uniform(1, 300, (4,1,)) # The acceleration voltage U in keV U = 300 lambda_e = wavelength(U) # STEM pixel size in m, here 50 STEM pixels on 0.5654 nm dpix = 0.5654/50*1e-9 # STEM semiconvergence angle in radians semiconv = 25e-3 # Diameter of the primary beam in the diffraction pattern in pixels semiconv_pix = 78.6649 / scaling cy = 93 // scaling cx = 97 // scaling input_data = np.random.uniform(0, 1, shape) _, reference_masks = reference_ssb( input_data, U=U, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, cy=cy, cx=cx ) # print(np.max(np.abs(np.abs(result['fourier']) - np.abs(result_f)))) half_y = shape[0] // 2 + 1 # Use symmetry and reshape like generate_masks() reference_masks = reference_masks[:half_y].reshape((half_y*shape[1], shape[2], shape[3])) masks = generate_masks( reconstruct_shape=shape[:2], mask_shape=shape[2:], dtype=dtype, lamb=lambda_e, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, cy=cy, cx=cx, transformation=identity(), method="subpix" ).todense() assert reference_masks.shape == masks.shape print(reference_masks) print(masks) print(reference_masks - masks) print("maximum difference: ", np.max(np.abs(reference_masks - masks))) print(np.where(reference_masks != masks)) assert np.any(reference_masks != 0) assert np.allclose(reference_masks, masks)
def test_ssb_rotate(n_threads): lt_ctx = lt.Context(InlineJobExecutor(debug=True, inline_threads=n_threads)) dtype = np.float64 scaling = 4 det = 45 shape = (29, 30, det, det) # ? shape = np.random.uniform(1, 300, (4,1,)) # The acceleration voltage U in keV U = 300 lamb = wavelength(U) # STEM pixel size in m, here 50 STEM pixels on 0.5654 nm dpix = 0.5654/50*1e-9 # STEM semiconvergence angle in radians semiconv = 25e-3 # Diameter of the primary beam in the diffraction pattern in pixels semiconv_pix = 78.6649 / scaling cy = det // 2 cx = det // 2 input_data = ( np.random.uniform(0, 1, np.prod(shape)) * np.linspace(1.0, 1000.0, num=np.prod(shape)) ) input_data = input_data.astype(np.float64).reshape(shape) data_90deg = np.zeros_like(input_data) # Rotate 90 degrees clockwise for y in range(det): for x in range(det): data_90deg[:, :, x, det-1-y] = input_data[:, :, y, x] udf = SSB_UDF(lamb=lamb, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, dtype=dtype, cy=cy, cx=cx, transformation=rotate_deg(-90.)) dataset = MemoryDataSet( data=data_90deg, tileshape=(20, shape[2], shape[3]), num_partitions=2, sig_dims=2, ) result = lt_ctx.run_udf(udf=udf, dataset=dataset) result_f, _ = reference_ssb(input_data, U=U, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, cy=cy, cx=cx) assert np.allclose(result['fourier'].data, result_f)
def test_wavelength(dtype, atol): # Handbook of Physics in Medicine and Biology p.40-3 # Table 40.1 'Electron wavelengths at some acceleration voltages used in TEM' U_voltages = np.array([100, 200, 300, 400, 1000], dtype=dtype) wavelength_expected = np.array( [3.70e-12, 2.51e-12, 1.97e-12, 1.64e-12, 0.87e-12], dtype=dtype) shape = U_voltages.shape[0] wavelength_result_ssb = np.zeros((shape), dtype=dtype) for i in range(0, shape): wavelength_result_ssb[i] = wavelength(U_voltages[i]) assert np.allclose(wavelength_result_ssb, wavelength_expected, atol=atol)
def test_ssb_roi(n_threads): lt_ctx = lt.Context(InlineJobExecutor(debug=True, inline_threads=n_threads)) dtype = np.float64 scaling = 4 shape = (29, 30, 189 // scaling, 197 // scaling) # ? shape = np.random.uniform(1, 300, (4,1,)) # The acceleration voltage U in keV U = 300 lamb = wavelength(U) # STEM pixel size in m, here 50 STEM pixels on 0.5654 nm dpix = 0.5654/50*1e-9 # STEM semiconvergence angle in radians semiconv = 25e-3 # Diameter of the primary beam in the diffraction pattern in pixels semiconv_pix = 78.6649 / scaling cy = 93 // scaling cx = 97 // scaling input_data = ( np.random.uniform(0, 1, np.prod(shape)) * np.linspace(1.0, 1000.0, num=np.prod(shape)) ) input_data = input_data.astype(np.float64).reshape(shape) udf = SSB_UDF(lamb=lamb, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, dtype=dtype, cy=cy, cx=cx) dataset = MemoryDataSet( data=input_data, tileshape=(20, shape[2], shape[3]), num_partitions=2, sig_dims=2, ) roi_1 = np.random.choice([True, False], shape[:2]) roi_2 = np.invert(roi_1) result_1 = lt_ctx.run_udf(udf=udf, dataset=dataset, roi=roi_1) result_2 = lt_ctx.run_udf(udf=udf, dataset=dataset, roi=roi_2) result_f, _ = reference_ssb(input_data, U=U, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, cy=cy, cx=cx) assert np.allclose(result_1['fourier'].data + result_2['fourier'].data, result_f)
def reference_ssb(data, U, dpix, semiconv, semiconv_pix, cy=None, cx=None): # 'U' - The acceleration voltage U in keV # 'dpix' - STEM pixel size in m # 'semiconv' - STEM semiconvergence angle in radians # 'semiconv_pix' - Diameter of the primary beam in the diffraction pattern in pixels dpix = np.array(dpix) reordered = np.moveaxis(data, (0, 1), (2, 3)) ffts = np.fft.fft2(reordered) rearranged_ffts = np.moveaxis(ffts, (2, 3), (0, 1)) Nblock = np.array(data.shape[0:2]) Nscatter = np.array(data.shape[2:4]) # electron wavelength in m lamb = wavelength(U) # spatial freq. step size in scattering space d_Kf = np.sin(semiconv)/lamb/semiconv_pix # spatial freq. step size according to probe raster d_Qp = 1/dpix/Nblock result_f = np.zeros(data.shape[:2], dtype=rearranged_ffts.dtype) masks = np.zeros_like(data) if cx is None: cx = data.shape[-1] / 2 if cy is None: cy = data.shape[-2] / 2 y, x = np.ogrid[0:Nscatter[0], 0:Nscatter[1]] filter_center = circular( centerX=cx, centerY=cy, imageSizeX=Nscatter[1], imageSizeY=Nscatter[0], radius=semiconv_pix, antialiased=True ).astype(np.float64) for row in range(Nblock[0]): for column in range(Nblock[1]): qp = np.array((row, column)) flip = qp > Nblock / 2 real_qp = qp.copy() real_qp[flip] = qp[flip] - Nblock[flip] sy, sx = real_qp * d_Qp / d_Kf filter_positive = circular( centerX=cx+sx, centerY=cy+sy, imageSizeX=Nscatter[1], imageSizeY=Nscatter[0], radius=semiconv_pix, antialiased=True ).astype(np.float64) filter_negative = circular( centerX=cx-sx, centerY=cy-sy, imageSizeX=Nscatter[1], imageSizeY=Nscatter[0], radius=semiconv_pix, antialiased=True ).astype(np.float64) mask_positive = filter_center * filter_positive * (filter_negative == 0) mask_negative = filter_center * filter_negative * (filter_positive == 0) non_zero_positive = mask_positive.sum() non_zero_negative = mask_negative.sum() f = rearranged_ffts[row, column] if non_zero_positive >= 1 and non_zero_negative >= 1: tmp = ( (f * mask_positive).sum() / non_zero_positive - (f * mask_negative).sum() / non_zero_negative ) / 2 result_f[row, column] = tmp masks[row, column] = ((mask_positive / non_zero_positive) - ( mask_negative / non_zero_negative)) / 2 assert np.allclose(result_f[row, column], (f*masks[row, column]).sum()) else: assert non_zero_positive < 1 assert non_zero_negative < 1 result_f[0, 0] = (rearranged_ffts[0, 0] * filter_center).sum() / filter_center.sum() masks[0, 0] = filter_center / filter_center.sum() return result_f, masks
def test_validate_ssb(real_params, real_intensity_ds, real_plane_wave, real_reference_ssb, lt_ctx, method, external_container): ''' The mask generation methods can produce slightly different masks. Since SSB strongly suppresses noise, including any features where real space and diffraction space don't properly align, slight differences in the mask stack can lead to amplifying errors if the input data contains no actual features and the signal sums up to nearly zero. For that reason the correctness of mask generation functions shoud be tested on simulated data that contains a pronounced signal. Furthermore, this allows to compare the reconstruction with a "ground truth" phase. ''' dtype = np.float64 shape = real_intensity_ds.shape # The acceleration voltage U in keV U = real_params["U"] lamb = wavelength(U) # STEM semiconvergence angle in radians semiconv = real_params["semiconv"] # Diameter of the primary beam in the diffraction pattern in pixels semiconv_pix = real_params["semiconv_pix"] cy = real_params["cy"] cx = real_params["cx"] dpix = real_params["dpix"] transformation = real_params["transformation"] if external_container: masks = generate_masks( reconstruct_shape=shape[:2], mask_shape=shape[2:], dtype=dtype, lamb=lamb, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, cy=cy, cx=cx, transformation=transformation, method=method, cutoff=1, ) mask_container = MaskContainer( mask_factories=lambda: masks, dtype=masks.dtype, use_sparse='scipy.sparse.csc', count=masks.shape[0], ) else: mask_container = None udf = SSB_UDF( lamb=lamb, dpix=dpix, semiconv=semiconv, semiconv_pix=semiconv_pix, dtype=dtype, cy=cy, cx=cx, mask_container=mask_container, method=method, cutoff=1, ) ssb_res = lt_ctx.run_udf(udf=udf, dataset=real_intensity_ds) result_f, reference_masks = real_reference_ssb # We apply the amplitude scaling to the raw reference SSB result reference_ssb_raw = np.fft.ifft2(result_f) reference_ssb_amp = np.abs(reference_ssb_raw) reference_ssb_phase = np.angle(reference_ssb_raw) reference_ssb_res = np.sqrt(reference_ssb_amp) * np.exp(1j*reference_ssb_phase) ssb_phase = ssb_res['phase'].data ref_phase = np.angle(real_plane_wave) ssb_amp = ssb_res['amplitude'].data ref_amp = np.abs(real_plane_wave) # The phases are usually shifted by a constant offset # Looking at Std removes the offset # TODO the current data is at the limit of SSB reconstruction. Better data should be simulated. # TODO work towards 100 % correspondence with suitable test dataset assert np.std(ssb_phase - ref_phase) < 0.1 * np.std(ssb_phase) # Compare reconstructed amplitude # We can't use std(amp) since the amplitude is nearly constant over the FOV print("Max ref: ", np.max(np.abs(ssb_amp - ref_amp)), np.max(np.abs(ref_amp))) assert np.max(np.abs(ssb_amp - ref_amp)) < 0.1 * np.max(np.abs(ref_amp)) # Make sure the methods are at least reasonably comparable # TODO work towards 100 % correspondence with suitable test dataset # TODO make the amplitude of the reconstruction match ssb_res_complex = ssb_res['complex'].data print( "Max between: ", np.max(np.abs(ssb_res_complex - reference_ssb_res)), np.max(np.abs(ssb_res_complex)) ) print( "Std between: ", np.std(ssb_res_complex - reference_ssb_res), np.std(ssb_res_complex) ) diffmax = np.max(np.abs(ssb_res_complex - reference_ssb_res)) difflimit = 0.01*np.max(np.abs(ssb_res_complex)) assert diffmax < difflimit assert np.std(ssb_res_complex - reference_ssb_res) < 0.01*np.std(ssb_res_complex)