Example #1
0
def complementary_filter(accel: List[DataPoint],
                         gyro: List[DataPoint],
                         fq=16.0):
    ts = [v.start_time for v in accel]
    acc_x = [v.sample[0] for v in accel]
    acc_y = [v.sample[1] for v in accel]
    acc_z = [v.sample[2] for v in accel]

    gyr_x = [v.sample[0] for v in gyro]
    gyr_y = [v.sample[1] for v in gyro]
    gyr_z = [v.sample[2] for v in gyro]

    dt = 1.0 / fq  # 1/16.0;
    M_PI = math.pi
    hpf = 0.85
    lpf = 0.15

    thetaX_acc = [0] * len(acc_x)  # math.atan2(-acc_z,acc_y)*180/M_PI;
    thetaY_acc = [0] * len(acc_x)  # math.atan2(acc_x,acc_z)*180/M_PI;
    thetaZ_acc = [0] * len(acc_x)  # math.atan2(acc_y,acc_x)*180/M_PI;

    thetaX = [0] * len(gyr_x)
    thetaY = [0] * len(gyr_y)
    thetaZ = [0] * len(gyr_z)

    for index in range(len(gyr_x)):
        thetaX_acc[index] = math.atan2(-acc_z[index],
                                       acc_y[index]) * 180 / M_PI
        thetaY_acc[index] = math.atan2(acc_x[index], acc_z[index]) * 180 / M_PI
        thetaZ_acc[index] = math.atan2(acc_y[index], acc_x[index]) * 180 / M_PI

        if index == 0:
            thetaX[index] = hpf * thetaX[index] * dt + lpf * thetaX_acc[index]
            thetaY[index] = hpf * thetaY[index] * dt + lpf * thetaY_acc[index]
            thetaZ[index] = hpf * thetaZ[index] * dt + lpf * thetaZ_acc[index]
        else:
            thetaX[index] = hpf * (thetaX[index - 1] +
                                   gyr_x[index] * dt) + lpf * thetaX_acc[index]
            thetaY[index] = hpf * (thetaY[index - 1] +
                                   gyr_y[index] * dt) + lpf * thetaY_acc[index]
            thetaZ[index] = hpf * (thetaZ[index - 1] +
                                   gyr_z[index] * dt) + lpf * thetaZ_acc[index]

    rolls = [
        DataPoint(start_time=v.start_time, sample=thetaX[i])
        for i, v in enumerate(accel)
    ]
    pitches = [
        DataPoint(start_time=v.start_time, sample=thetaY[i])
        for i, v in enumerate(accel)
    ]
    yaws = [
        DataPoint(start_time=v.start_time, sample=thetaZ[i])
        for i, v in enumerate(accel)
    ]
    return rolls, pitches, yaws
def get_random_EMA(cur_dir, filename) -> List[DataPoint]:
    emas = get_EMA_data(cur_dir, filename)
    data = []
    for ema in emas:
        d = ema[2]
        jsn_file = json.loads(d)
        status = jsn_file['status']
        # print(d)
        if status == 'COMPLETED':
            is_smoked = jsn_file['question_answers'][39]['response'][0]
            # print(is_smoked, status)
            if is_smoked.lower() == 'yes':
                nSmoked = jsn_file['question_answers'][40]['response'][0]
                if int(nSmoked) == 1:
                    nQI = 41
                else:
                    nQI = 42
                # options: ["0 - 2 hrs", "2 hrs - 4 hrs", "4 hrs - 6 hrs", "6 hrs - 8 hrs", "8 hrs - 10 hrs", "10 hrs - 12 hrs", "More than 12 hrs"]
                howlong_ago = jsn_file['question_answers'][nQI]['response']
                if howlong_ago is None:
                    howlong_ago = jsn_file['question_answers'][nQI +
                                                               1]['response']

                sample = [int(nSmoked)]
                # print(howlong_ago, nSmoked)
                for hla in howlong_ago:
                    hla = str(hla)
                    if hla in ["More than 12 hrs"]:
                        sample.extend(
                            [12 * 60 * 60 * 1000, 24 * 60 * 60 * 1000])
                        continue
                    st = hla.split('-')[0]
                    et = hla.split('-')[1]
                    st = st.split(' ')[0]
                    st = int(st.strip()) * 60 * 60 * 1000
                    et = et.strip().split(' ')[0]
                    et = int(et.strip()) * 60 * 60 * 1000
                    sample.extend([st, et])

                # print([ema[0], ema[1], nSmoked, howlong_ago, sample])
                # data.append([ema[0], ema[1], int(nSmoked)])
                if len(sample) > 3:
                    print('great than 1 timeslots', len(sample) / 2)
                data.append(
                    DataPoint(start_time=ema[0], offset=ema[1], sample=sample))
            else:
                data.append(
                    DataPoint(start_time=ema[0], offset=ema[1], sample=[0]))
    return data
def line_parser_offset(input):
    ts, offset, sample = input.split(',', 2)
    start_time = int(float(ts)) / 1000.0

    sample = convert_sample(sample)
    if len(sample) == 1:
        sample = sample[0]
    return DataPoint(start_time=datetime.fromtimestamp(start_time, tz), offset=offset, sample=sample)
def get_smoking_EMA(cur_dir, filename) -> List[DataPoint]:

    emas = get_EMA_data(cur_dir, filename)
    data = []
    for ema in emas:
        d = ema[2]
        jsn_file = json.loads(d)
        status = jsn_file['status']
        if status == 'COMPLETED':
            is_smoked = jsn_file['question_answers'][0]['question_answer'][0:3]
            #             print(is_smoked)
            if is_smoked.lower() == 'yes':
                data.append(DataPoint(start_time=ema[0], offset=ema[1], sample=1))
                # data.append([ema[0], ema[1], 1])
            else:
                data.append(DataPoint(start_time=ema[0], offset=ema[1], sample=0))
                # data.append([ema[0], ema[1], 0])
    return data
def line_parser(input, sd_indx, fd_indx, dd_indx, cd_indx):
    ts, sample = input.split(',', 1)
    sample = convert_sample(sample)
    ts = sample[6]
    # gt = sample[8]
    # gt = sample[8+6] #smoking conf
    # gt = sample[8+9] #eating conf

    start_time = int(float(ts)) / 1000.0
    accel_dp = DataPoint(start_time=datetime.fromtimestamp(start_time, tz),
                         offset='0', sample=[sample[0], -sample[1], sample[2]])
    gyro_dp = DataPoint(start_time=datetime.fromtimestamp(start_time, tz), offset='0',
                        sample=[sample[3], -sample[4], sample[5]])

    gt_sd = None
    gt_fd = None
    gt_dd = None
    gt_cd = None

    if sd_indx != -1:
        gt_sd = DataPoint(start_time=datetime.fromtimestamp(start_time, tz), offset='0', sample=sample[sd_indx])
    if fd_indx != -1:
        gt_fd = DataPoint(start_time=datetime.fromtimestamp(start_time, tz), offset='0', sample=sample[fd_indx])
    if dd_indx != -1:
        gt_dd = DataPoint(start_time=datetime.fromtimestamp(start_time, tz), offset='0', sample=sample[dd_indx])
    if cd_indx != -1:
        gt_cd = DataPoint(start_time=datetime.fromtimestamp(start_time, tz), offset='0', sample=sample[cd_indx])

    return accel_dp, gyro_dp, gt_sd, gt_fd, gt_dd, gt_cd
Example #6
0
def magnitude(data: List[DataPoint]):

    input_sample = np.array([i.sample for i in data])

    mag_sample = norm(input_sample, axis=1).tolist()

    result = [
        DataPoint(start_time=v.start_time,
                  offset=v.start_time,
                  sample=mag_sample[i]) for i, v in enumerate(data)
    ]

    return result
Example #7
0
def calculate_pitch(accel_data: List[DataPoint]):
    pitch_list = []
    for dp in accel_data:
        ay = dp.sample[1]
        az = dp.sample[2]
        ptch = 180 * math.atan2(-ay, -az) / math.pi
        pitch_list.append(
            DataPoint(start_time=dp.start_time,
                      end_time=dp.end_time,
                      offset=dp.offset,
                      sample=ptch))

    return pitch_list
Example #8
0
def calculate_yaw(accel_data: List[DataPoint]):
    yaw_list = []
    for dp in accel_data:
        ax = dp.sample[0]
        ay = dp.sample[1]
        yw = 180 * math.atan2(ay, ax) / math.pi
        yaw_list.append(
            DataPoint(start_time=dp.start_time,
                      end_time=dp.end_time,
                      offset=dp.offset,
                      sample=yw))

    return yaw_list
def classify_puffs(features):
    clf = get_posture_model()
    labels = []
    for dp in features:
        predicted_label = clf.predict([dp.sample])
        predicted_label = int(str(predicted_label))
        labels.append(
            DataPoint(start_time=dp.start_time,
                      offset=dp.offset,
                      end_time=dp.end_time,
                      sample=predicted_label))

    return labels
def get_smoking_self_report(cur_dir, filename) -> List[DataPoint]:
    emas = get_EMA_data(cur_dir, filename)
    data = []
    for ema in emas:
        d = ema[2]
        jsn_file = json.loads(d)
        status = jsn_file['message']
        if 'YES' in status:
            #             print(status)
            data.append(DataPoint(start_time=ema[0], offset=ema[1], sample=1))
            # print(ema)
            # data.append([ema[0], ema[1], status])
    return data
Example #11
0
def calculate_roll(accel_data: List[DataPoint]):
    roll_list = []
    for dp in accel_data:
        ax = dp.sample[0]
        ay = dp.sample[1]
        az = dp.sample[2]
        rll = 180 * math.atan2(ax, math.sqrt(ay * ay + az * az)) / math.pi
        roll_list.append(
            DataPoint(start_time=dp.start_time,
                      end_time=dp.end_time,
                      offset=dp.offset,
                      sample=rll))

    return roll_list
Example #12
0
def moving_average_convergence_divergence(
        slow_moving_average_data: List[DataPoint],
        fast_moving_average_data: List[DataPoint], THRESHOLD: float,
        near: int):
    '''
    Generates intersection points of two moving average signals
    :param slow_moving_average_data:
    :param fast_moving_average_data:
    :param THRESHOLD: Cut-off value
    :param near: # of nearest point to ignore
    :return:
    '''
    slow_moving_average = np.array(
        [data.sample for data in slow_moving_average_data])
    fast_moving_average = np.array(
        [data.sample for data in fast_moving_average_data])

    index_list = [0] * len(slow_moving_average)
    cur_index = 0

    for index in range(len(slow_moving_average)):
        diff = slow_moving_average[index] - fast_moving_average[index]
        if diff > THRESHOLD:
            if cur_index == 0:
                index_list[cur_index] = index
                cur_index = cur_index + 1
                index_list[cur_index] = index
            else:
                if index <= index_list[cur_index] + near:
                    index_list[cur_index] = index
                else:
                    cur_index = cur_index + 1
                    index_list[cur_index] = index
                    cur_index = cur_index + 1
                    index_list[cur_index] = index

    intersection_points = []
    if cur_index > 0:
        for index in range(0, cur_index, 2):
            start_index = index_list[index]
            end_index = index_list[index + 1]
            start_time = slow_moving_average_data[start_index].start_time
            end_time = slow_moving_average_data[end_index].start_time
            intersection_points.append(
                DataPoint(start_time=start_time,
                          end_time=end_time,
                          sample=[index_list[index], index_list[index + 1]]))

    return intersection_points
def get_accelerometer(data_dir, wrist) -> List[DataPoint]:
    if wrist in [LEFT_WRIST]:
        accel_x = load_data(data_dir + ax_left_filename)
        accel_y = load_data(data_dir + ay_left_filename)
        accel_z = load_data(data_dir + az_left_filename)
    else:
        accel_x = load_data(data_dir + ax_right_filename)
        accel_y = load_data(data_dir + ay_right_filename)
        accel_z = load_data(data_dir + az_right_filename)

    accel = []
    for index, val in enumerate(accel_x):
        sample = [accel_x[index].sample, accel_y[index].sample, accel_z[index].sample]
        accel.append(DataPoint(start_time=val.start_time, offset=val.offset, sample=sample))

    return accel
def get_gyroscope(data_dir, wrist) -> List[DataPoint]:
    if wrist in [LEFT_WRIST]:
        gyro_x = load_data(data_dir + gx_left_filename)
        gyro_y = load_data(data_dir + gy_left_filename)
        gyro_z = load_data(data_dir + gz_left_filename)
    else:
        gyro_x = load_data(data_dir + gx_right_filename)
        gyro_y = load_data(data_dir + gy_right_filename)
        gyro_z = load_data(data_dir + gz_right_filename)

    gyro = []
    for index, val in enumerate(gyro_x):
        sample = [gyro_x[index].sample, gyro_y[index].sample, gyro_z[index].sample]
        gyro.append(DataPoint(start_time=val.start_time, offset=val.offset, sample=sample))

    return gyro
Example #15
0
def merge_two_datastream(accel: List[DataPoint], gyro: List[DataPoint]):
    # usually accel is 16Hz and gyro is 32 Hz
    # make gyro 16 Hz
    A = np.array(
        [[dp.start_time.timestamp(), dp.sample[0], dp.sample[1], dp.sample[2]]
         for dp in accel])
    G = np.array(
        [[dp.start_time.timestamp(), dp.sample[0], dp.sample[1], dp.sample[2]]
         for dp in gyro])
    At = A[:, 0]

    Gt = G[:, 0]
    Gx = G[:, 1]
    Gy = G[:, 2]
    Gz = G[:, 3]
    i = 0
    j = 0
    _Gx = [0] * len(At)
    _Gy = [0] * len(At)
    _Gz = [0] * len(At)
    while (i < len(At)) and (j < len(Gt)):
        while Gt[j] < At[i]:
            j = j + 1
            if j >= len(Gt):
                break
        if j < len(Gt):
            if (At[i] == Gt[j]) | (j == 0):
                _Gx[i] = Gx[j]
                _Gy[i] = Gy[j]
                _Gz[i] = Gz[j]
            else:
                _Gx[i] = getInterpoletedValue(Gx[j - 1], Gx[j], Gt[j - 1],
                                              Gt[j], At[i])
                _Gy[i] = getInterpoletedValue(Gy[j - 1], Gy[j], Gt[j - 1],
                                              Gt[j], At[i])
                _Gz[i] = getInterpoletedValue(Gz[j - 1], Gz[j], Gt[j - 1],
                                              Gt[j], At[i])
        i = i + 1

    gyro = [
        DataPoint(start_time=dp.start_time,
                  end_time=dp.end_time,
                  offset=dp.offset,
                  sample=[_Gx[i], _Gy[i], _Gz[i]])
        for i, dp in enumerate(accel)
    ]
    return gyro
Example #16
0
def smooth(data: List[DataPoint], span: int = 5) -> List[DataPoint]:
    """
    Smooths data using moving average filter over a span.
    The first few elements of data_smooth are given by
    data_smooth(1) = data(1)
    data_smooth(2) = (data(1) + data(2) + data(3))/3
    data_smooth(3) = (data(1) + data(2) + data(3) + data(4) + data(5))/5
    data_smooth(4) = (data(2) + data(3) + data(4) + data(5) + data(6))/5

    for more details follow the below links:
    https://www.mathworks.com/help/curvefit/smooth.html
    http://stackoverflow.com/a/40443565

    :return: data_smooth
    :param data:
    :param span:
    """

    if data is None or len(data) == 0:
        return []

    sample = [i.sample for i in data]
    sample_middle = np.convolve(sample, np.ones(span, dtype=int),
                                'valid') / span
    divisor = np.arange(1, span - 1, 2)
    sample_start = np.cumsum(sample[:span - 1])[::2] / divisor
    sample_end = (np.cumsum(sample[:-span:-1])[::2] / divisor)[::-1]
    sample_smooth = np.concatenate((sample_start, sample_middle, sample_end))

    data_smooth = []

    if len(sample_smooth) == len(data):
        for i, item in enumerate(data):
            dp = DataPoint.from_tuple(sample=sample_smooth[i],
                                      start_time=item.start_time,
                                      end_time=item.end_time)
            data_smooth.append(dp)
    else:
        raise Exception(
            "Smoothed data length does not match with original data length.")

    return data_smooth
def get_marked_smoking_puffs_filtered(data_dir, wrist) -> List[DataPoint]:
    if wrist in [LEFT_WRIST]:
        filename = data_dir + 'puff_timestamp_leftwrist.csv'
        label = 1
    else:
        filename = data_dir + 'puff_timestamp_rightwrist.csv'
        label = 2

    fp = open(filename)
    file_content = fp.read()
    fp.close()

    lines = file_content.splitlines()
    puff_timings = []
    for line in lines:
        start_time = int(line) / 1000.0
        tz = pytz.timezone('US/Central')

        puff_timings.append(DataPoint(start_time=datetime.fromtimestamp(start_time, tz), sample=label))

    return puff_timings
Example #18
0
def moving_average_curve(data: List[DataPoint],
                         window_length: int) -> List[DataPoint]:
    """
    Moving average curve from filtered (using moving average) samples.

    :return: mac
    :param data:
    :param window_length:
    """
    if data is None or len(data) == 0:
        return []

    sample = [i.sample for i in data]
    mac = []
    for i in range(window_length, len(sample) - (window_length + 1)):
        sample_avg = np.mean(sample[i - window_length:i + window_length + 1])
        mac.append(
            DataPoint.from_tuple(sample=sample_avg,
                                 start_time=data[i].start_time,
                                 end_time=data[i].end_time))

    return mac
def get_all_marked_smoking_puffs(data_dir, wrist, pid, sid) -> List[DataPoint]:
    if wrist in [LEFT_WRIST]:
        filename = ground_truth_file + pid + '_' + sid + '_smoking_puff_left.csv'
        label = 1
    else:
        filename = ground_truth_file + pid + '_' + sid + '_smoking_puff_right.csv'
        label = 2

    try:
        fp = open(filename)
        file_content = fp.read()
        fp.close()
    except:
        return []

    lines = file_content.splitlines()
    puff_timings = []
    for line in lines:
        start_time = int(line.split(',')[0]) / 1000.0
        puff_timings.append(DataPoint(start_time=datetime.fromtimestamp(start_time), sample=label))

    return puff_timings
def generate_smoking_episode(puff_labels) -> List[DataPoint]:
    '''
    Generates smoking episodes from classified puffs
    :param puff_labels:
    :return: list of smoking episodes
    '''
    only_puffs = [dp for dp in puff_labels if dp.sample > 0]

    smoking_episode_data = []

    cur_index = 0
    while cur_index < len(only_puffs):
        temp_index = cur_index
        dp = only_puffs[temp_index]
        prev = dp
        temp_index = temp_index + 1
        if temp_index >= len(only_puffs):
            break
        while ((
            (only_puffs[temp_index].start_time - dp.start_time <=
             timedelta(seconds=MINIMUM_TIME_DIFFERENCE_FIRST_AND_LAST_PUFFS))
                | (only_puffs[temp_index].start_time - prev.start_time <
                   timedelta(seconds=MINIMUM_INTER_PUFF_DURATION)))):
            prev = only_puffs[temp_index]
            temp_index = temp_index + 1
            if temp_index >= len(only_puffs):
                break
        temp_index = temp_index - 1
        if (temp_index - cur_index + 1) >= MINIMUM_PUFFS_IN_EPISODE:
            wrist = get_smoking_wrist(only_puffs, cur_index, temp_index)
            smoking_episode_data.append(
                DataPoint(start_time=only_puffs[cur_index].start_time,
                          end_time=only_puffs[temp_index].start_time,
                          sample=wrist))

            cur_index = temp_index + 1
        else:
            cur_index = cur_index + 1
    return smoking_episode_data
def line_parser(input):
    ts, sample = input.split(',')
    start_time = int(float(ts)) / 1000.0

    sample = float(sample)
    return DataPoint(start_time=datetime.fromtimestamp(start_time, tz), sample=sample)
Example #22
0
def moving_average_convergence_divergence_new(
        slow_moving_average_data: List[DataPoint],
        fast_moving_average_data: List[DataPoint], accel: List[DataPoint]):
    '''
    Generates intersection points of two moving average signals
    :param slow_moving_average_data:
    :param fast_moving_average_data:
    :param THRESHOLD: Cut-off value
    :param near: # of nearest point to ignore
    :return:
    '''
    s = np.array([data.sample for data in slow_moving_average_data])
    f = np.array([data.sample for data in fast_moving_average_data])

    bit_map = [0] * len(s)
    for i in range(len(s)):
        if f[i] > s[i]:
            bit_map[i] = 0
        else:
            bit_map[i] = 1

    for i in range(len(s)):
        if bit_map[i] == 0 and bit_map[max(0, i - 4)] == 1 and bit_map[min(
                len(s), i + 4)] == 1:
            bit_map[i] = 1

    cur_index = 0
    intersection_points = []

    while cur_index < len(s):
        if bit_map[cur_index] == 1:
            start_index = cur_index
            while cur_index < len(s) and bit_map[cur_index] == 1:
                cur_index = cur_index + 1
            end_index = cur_index - 1

            diff = []
            i = start_index - 1
            while i >= 0 and bit_map[i] == 0:
                diff.append(f[i] - s[i])
                i = i - 1
            i = i + 1
            if len(diff) > 0:
                prev_peak_diff = np.mean(diff)
            else:
                prev_peak_diff = 0
            # prev_peak_dur = (slow_moving_average_data[start_index].start_time - slow_moving_average_data[
            #     i].start_time).total_seconds()
            prev_peak_start_index = i

            ay = [accel[i].sample[1] for i in range(i, start_index)]
            prev_ay_mean = np.mean(ay)
            prev_ay_sd = np.std(ay)

            diff = []
            i = end_index + 1
            while i < len(s) and bit_map[i] == 0:
                diff.append(f[i] - s[i])
                i = i + 1
            i = i - 1
            if len(diff) > 0:
                next_peak_diff = np.mean(diff)
            else:
                next_peak_diff = 0
            # next_peak_dur = (slow_moving_average_data[i].start_time - slow_moving_average_data[
            #     end_index].start_time).total_seconds()
            next_peak_start_index = i
            ay = [accel[i].sample[1] for i in range(end_index, i)]
            nxt_ay_mean = np.mean(ay)
            nxt_ay_sd = np.std(ay)

            # if prev_peak_dur > 0.45 and next_peak_dur > 0.45 and prev_peak_dur < 4 and next_peak_dur < 4:
            intersection_points.append(
                DataPoint(
                    start_time=slow_moving_average_data[start_index].
                    start_time,
                    end_time=slow_moving_average_data[end_index].start_time,
                    sample=[
                        start_index, end_index, prev_peak_start_index,
                        next_peak_start_index, prev_peak_diff, next_peak_diff,
                        prev_ay_mean, nxt_ay_mean, prev_ay_sd, nxt_ay_sd
                    ]))
        else:
            cur_index = cur_index + 1

    return intersection_points