def __init__(self, D, H, Hprime, gamma, to_learn=['W', 'pi', 'sigma'], comm=MPI.COMM_WORLD): """ MCA-ET init method. Takes data dimension *D*, number of hidden causes *H*, and ET approximation parameters *Hprime* and *gamma*. Optional list of parameters *to_learn* and MPI *comm* object. """ CAModel.__init__(self, D, H, Hprime, gamma, to_learn, comm) # self.rho_temp_bound = 1.05 # for rho: never use a T smaller than this self.W_tol = 1e-4 # for W: ensure W[W<W_tol] = W_tol # Noise Policy W_tol = self.W_tol self.noise_policy = { 'W': (W_tol, +np.inf, True), 'pi': (W_tol, 1 - W_tol, False), 'sigma': (W_tol, +np.inf, False) }
def __init__(self, D, H, Hprime, gamma, to_learn=['W', 'pi', 'sigma'], comm=MPI.COMM_WORLD): """ MMCA-ET init method. Takes data dimension *D*, number of hidden causes *H*, and ET approximation parameters *Hprime* and *gamma*. Optional list of parameters *to_learn* and MPI *comm* object. """ CAModel.__init__(self, D, H, Hprime, gamma, to_learn, comm) # self.rho_T_bound = 1.20 # for rho: never use a T smaller than this self.rho_lbound = 1 # for rho: never use a rho smaller than this self.rho_ubound = 35 # for rho: never use a rho larger than this self.tol = 1e-4 # for W: ensure W[W<tol] = tol self.rev_corr = False # Noise Policy tol = self.tol self.noise_policy = { 'W': (-np.inf, +np.inf, False), 'pi': (tol, 1 - tol, False), 'sigma': (tol, +np.inf, False) }
def __init__(self, D, H, Hprime, gamma, to_learn=['W', 'pi', 'sigma'], comm=MPI.COMM_WORLD): CAModel.__init__(self, D, H, Hprime, gamma, to_learn, comm)
def __init__(self, D, H, Hprime, gamma, to_learn=["W", "pi", "sigma"], comm=MPI.COMM_WORLD): """ MCA-ET init method. Takes data dimension *D*, number of hidden causes *H*, and ET approximation parameters *Hprime* and *gamma*. Optional list of parameters *to_learn* and MPI *comm* object. """ CAModel.__init__(self, D, H, Hprime, gamma, to_learn, comm) # self.rho_temp_bound = 1.05 # for rho: never use a T smaller than this self.W_tol = 1e-4 # for W: ensure W[W<W_tol] = W_tol # Noise Policy W_tol = self.W_tol self.noise_policy = { "W": (W_tol, +np.inf, True), "pi": (W_tol, 1 - W_tol, False), "sigma": (W_tol, +np.inf, False), }
def __init__(self, D, H, Hprime, gamma, to_learn=['W', 'pi', 'sigma'], comm=MPI.COMM_WORLD): """ MMCA-ET init method. Takes data dimension *D*, number of hidden causes *H*, and ET approximation parameters *Hprime* and *gamma*. Optional list of parameters *to_learn* and MPI *comm* object. """ CAModel.__init__(self, D, H, Hprime, gamma, to_learn, comm) # self.rho_T_bound = 1.20 # for rho: never use a T smaller than this self.rho_lbound = 1 # for rho: never use a rho smaller than this self.rho_ubound = 35 # for rho: never use a rho larger than this self.tol = 1e-4 # for W: ensure W[W<tol] = tol self.rev_corr = False # Noise Policy tol = self.tol self.noise_policy = { 'W' : ( -np.inf, +np.inf, False ), 'pi' : ( tol, 1-tol, False ), 'sigma': ( tol, +np.inf, False ) }