def clean_trials(trialevents):
    resampled_dict = {}
    for trial in trialevents.Trial.unique():
        starttime, stoptime = trialevents.loc[trialevents.Trial == trial,
                                              'TETTime'].iloc[[0, -1]]
        rawtrial = trialevents.loc[(trialevents.TETTime >= starttime)
                                   & (trialevents.TETTime <= stoptime)]
        cleantrial = pupil_utils.deblink(rawtrial)
        string_cols = ['Load', 'Trial', 'Condition']
        trial_resamp = pupil_utils.resamp_filt_data(cleantrial,
                                                    filt_type='low',
                                                    string_cols=string_cols)
        baseline = trial_resamp.loc[trial_resamp.Condition == 'Ready',
                                    'DiameterPupilLRFilt'].last(
                                        '250ms').mean()
        baseline_blinks = trial_resamp.loc[trial_resamp.Condition == 'Ready',
                                           'BlinksLR'].last('250ms').mean()
        if baseline_blinks > .5:
            baseline = np.nan
        trial_resamp['Baseline'] = baseline
        trial_resamp['Dilation'] = trial_resamp[
            'DiameterPupilLRFilt'] - trial_resamp['Baseline']
        trial_resamp = trial_resamp[trial_resamp.Condition == 'Record']
        trial_resamp.index = pd.DatetimeIndex(
            (trial_resamp.index - trial_resamp.index[0]).astype(np.int64))
        resampled_dict[trial] = trial_resamp
    dfresamp = pd.concat(resampled_dict, names=['Trial', 'Timestamp'])
    return dfresamp
Example #2
0
def clean_trials(trialevents):
    resampled_dict = {}
    for trial in trialevents.Trial.unique():
        rawtrial = trialevents.loc[trialevents.Trial == trial]
        rawtrial = rawtrial.loc[(rawtrial.CurrentObject == 'Ready') | (
            rawtrial.CurrentObject.str.contains('PlayWord'))]
        cleantrial = pupil_utils.deblink(rawtrial,
                                         pupilthresh_hi=4.,
                                         pupilthresh_lo=1.5)
        cleantrial.loc[:, 'Trial'] = cleantrial.Trial.astype('str')
        string_cols = ['Trial', 'CurrentObject']
        trial_resamp = pupil_utils.resamp_filt_data(cleantrial,
                                                    filt_type='low',
                                                    string_cols=string_cols)
        baseline = trial_resamp.loc[trial_resamp.CurrentObject == "Ready",
                                    "DiameterPupilLRFilt"].last(
                                        "1000ms").mean()
        trial_resamp['Baseline'] = baseline
        trial_resamp['Dilation'] = trial_resamp[
            'DiameterPupilLRFilt'] - trial_resamp['Baseline']
        trial_resamp = trial_resamp[trial_resamp.CurrentObject.str.match(
            "PlayWord")]
        trial_resamp.index = pd.DatetimeIndex(
            (trial_resamp.index - trial_resamp.index[0]).astype(np.int64))
        resampled_dict[trial] = trial_resamp
    dfresamp = pd.concat(resampled_dict, names=['Trial', 'Timestamp'])
    dfresamp = dfresamp.reset_index(level='Trial', drop=True).reset_index()
    return dfresamp
Example #3
0
def proc_subject(filelist):
    """Given an infile of raw pupil data, saves out:
        1. Session level data with dilation data summarized for each trial
        2. Dataframe of average peristumulus timecourse for each condition
        3. Plot of average peristumulus timecourse for each condition
        4. Percent of samples with blinks """
    tpre = 0.5
    tpost = 2.5
    samp_rate = 30.
    for fname in filelist:
        print('Processing {}'.format(fname))
        if (os.path.splitext(fname)[-1]
                == ".gazedata") | (os.path.splitext(fname)[-1] == ".csv"):
            df = pd.read_csv(fname, sep="\t")
        elif os.path.splitext(fname)[-1] == ".xlsx":
            df = pd.read_excel(fname, parse_dates=False)
        else:
            raise IOError('Could not open {}'.format(fname))
        subid = pupil_utils.get_subid(df['Subject'], fname)
        timepoint = pupil_utils.get_timepoint(df['Session'], fname)
        oddball_sess = get_oddball_session(fname)
        df = pupil_utils.deblink(df)
        dfresamp = pupil_utils.resamp_filt_data(df)
        dfresamp['Condition'] = np.where(dfresamp.CRESP == 5, 'Standard',
                                         'Target')
        pupil_utils.plot_qc(dfresamp, fname)
        sessdf = get_sessdf(dfresamp)
        sessdf['BlinkPct'] = get_blink_pct(dfresamp, fname)
        dfresamp['zDiameterPupilLRFilt'] = pupil_utils.zscore(
            dfresamp['DiameterPupilLRFilt'])
        targdf, standdf = proc_all_trials(sessdf,
                                          dfresamp['zDiameterPupilLRFilt'],
                                          tpre, tpost, samp_rate)
        targdf_long = reshape_df(targdf)
        standdf_long = reshape_df(standdf)
        glm_results = ts_glm(
            dfresamp.zDiameterPupilLRFilt,
            sessdf.loc[sessdf.Condition == 'Target', 'Timestamp'],
            sessdf.loc[sessdf.Condition == 'Standard',
                       'Timestamp'], dfresamp.BlinksLR)
        # Set subject ID and session as (as type string)
        glm_results['Subject'] = subid
        glm_results['Session'] = timepoint
        glm_results['OddballSession'] = oddball_sess
        save_glm_results(glm_results, fname)
        allconddf = standdf_long.append(targdf_long).reset_index(drop=True)
        # Set subject ID and session as (as type string)
        allconddf['Subject'] = subid
        allconddf['Session'] = timepoint
        allconddf['OddballSession'] = oddball_sess
        plot_pstc(allconddf, fname)
        save_pstc(allconddf, fname)
        # Set subject ID and session as (as type string)
        sessdf['Subject'] = subid
        sessdf['Session'] = timepoint
        sessdf['OddballSession'] = oddball_sess
        sessout = pupil_utils.get_outfile(fname, '_SessionData.csv')
        sessdf.to_csv(sessout, index=False)
Example #4
0
def proc_subject(filelist):
    """Given an infile of raw pupil data, saves out:
        1. Session level data with dilation data summarized for each trial
        2. Dataframe of average peristumulus timecourse for each condition
        3. Plot of average peristumulus timecourse for each condition
        4. Percent of samples with blinks """
    for fname in filelist:
        print('Processing {}'.format(fname))
        if (os.path.splitext(fname)[-1] == ".gazedata") | (os.path.splitext(fname)[-1] == ".csv"):
            df = pd.read_csv(fname, sep="\t")
        elif os.path.splitext(fname)[-1] == ".xlsx":
            df = pd.read_excel(fname)
        else: 
            raise IOError('Could not open {}'.format(fname))
        subid = pupil_utils.get_subid(df['Subject'], fname)
        timepoint = pupil_utils.get_timepoint(df['Session'], fname)
        df = df[df.CurrentObject.str.contains("Recall", na=False)]
        df = pupil_utils.deblink(df)
        dfresamp = clean_trials(df)
        dfresamp = dfresamp[dfresamp.index<=dfresamp.index[0] + pd.offsets.Second(30)]
        dfresamp1s = dfresamp.resample('1S', closed='right', label='right').mean()
        dfresamp1s.index = dfresamp1s.index.round('S')
        dfresamp1s = dfresamp1s.dropna(how='all')
        pupildf = dfresamp1s.reset_index().rename(columns={
                                            'index':'Timestamp',
                                            'DiameterPupilLRFilt':'Diameter',
                                            'BlinksLR':'BlinkPct'})
        pupilcols = ['Subject', 'Timestamp', 'Dilation',
                     'Baseline', 'Diameter', 'BlinkPct']
        pupildf = pupildf[pupilcols].sort_values(by='Timestamp')
        # Keep only first 30s of trial
        pupildf = pupildf.loc[pupildf.Timestamp<=pupildf.Timestamp[0] + pd.offsets.Second(30)]
        # Set subject ID and session as (as type string)
        pupildf['Subject'] = subid
        pupildf['Session'] = timepoint  
        pupil_outname = pupil_utils.get_proc_outfile(fname, '_ProcessedPupil.csv')
        pupil_outname = pupil_outname.replace("HVLT_Recall-Recognition","HVLT_Recall")        
        pupil_outname = pupil_outname.replace("-Delay","-Recall")
        pupildf.to_csv(pupil_outname, index=False)
        print('Writing processed data to {0}'.format(pupil_outname))
        plot_trials(pupildf, fname)

        #### Create data for 10 second blocks
        dfresamp10s = dfresamp.resample('10s', closed='right', label='right').mean()
        pupilcols = ['Subject', 'Timestamp', 'Dilation', 'Baseline', 
                     'DiameterPupilLRFilt', 'BlinksLR']
        pupildf10s = dfresamp10s.reset_index()[pupilcols].sort_values(by='Timestamp')
        pupildf10s = pupildf10s[pupilcols].rename(columns={'DiameterPupilLRFilt':'Diameter',
                                         'BlinksLR':'BlinkPct'})
        # Set subject ID as (as type string)
        pupildf10s['Subject'] = subid
        pupildf10s['Session'] = timepoint  
        pupildf10s['Timestamp'] = pd.to_datetime(pupildf10s.Timestamp).dt.strftime('%H:%M:%S')
        pupil10s_outname = pupil_utils.get_proc_outfile(fname, '_ProcessedPupil_Tertiles.csv')
        pupil10s_outname = pupil10s_outname.replace("HVLT_Recall-Recognition","HVLT_Recall")        
        pupil10s_outname = pupil10s_outname.replace("-Delay","-Recall")
        'Writing tertile data to {0}'.format(pupil10s_outname)
        pupildf10s.to_csv(pupil10s_outname, index=False)
def proc_subject(filelist):
    """
    Given an infile of raw pupil data, saves out:
        1) Session level data with dilation data summarized for each trial
        2) Dataframe of average peristumulus timecourse for each condition
        3) Plot of average peristumulus timecourse for each condition
        4) Percent of samples with blinks 
    """
    for fname in filelist:
        print('Processing {}'.format(fname))
        if (os.path.splitext(fname)[-1]
                == ".gazedata") | (os.path.splitext(fname)[-1] == ".csv"):
            df = pd.read_csv(fname, sep="\t")
        elif os.path.splitext(fname)[-1] == ".xlsx":
            df = pd.read_excel(fname)
        else:
            raise IOError('Could not open {}'.format(fname))
        subid = pupil_utils.get_subid(df['Subject'], fname)
        timepoint = pupil_utils.get_timepoint(df['Session'], fname)
        # Keep only samples after last sample of Recall
        df = df[df[df.CurrentObject == "Recall"].index[-1] + 1:]
        df = pupil_utils.deblink(df)
        dfresamp = pupil_utils.resamp_filt_data(df,
                                                filt_type='low',
                                                string_cols=['CurrentObject'])
        # Resampling fills forward fills Current Object when missing. This
        # results in values of "Response" at beginning of trials. Reaplce these
        # by backfilling from first occurrence of "Fixation" in every trial.
        for i in dfresamp.TrialId.unique():
            trialstartidx = (dfresamp.TrialId == i).idxmax()
            fixstartidx = (
                dfresamp.loc[dfresamp.TrialId == i,
                             "CurrentObject"] == "Fixation").idxmax()
            dfresamp.loc[trialstartidx:fixstartidx,
                         "CurrentObject"] = "Fixation"
        dfresamp = clean_trials(df)
        pupildf = proc_all_trials(dfresamp)
        pupildf['Subject'] = subid
        pupildf['Session'] = timepoint
        pupildf = pupildf.rename(columns={
            'DiameterPupilLRFilt': 'Diameter',
            'BlinksLR': 'BlinkPct'
        })
        # Reorder columns
        cols = [
            'Subject', 'Session', 'TrialId', 'Baseline', 'Diameter',
            'Dilation', 'BlinkPct', 'Duration', 'Condition'
        ]
        pupildf = pupildf[cols]
        pupil_outname = pupil_utils.get_proc_outfile(fname,
                                                     '_ProcessedPupil.csv')
        pupil_outname = pupil_outname.replace("-Delay", "-Recognition")
        pupildf.to_csv(pupil_outname, index=False)
        print('Writing processed data to {0}'.format(pupil_outname))
def proc_subject(filelist):
    """
    Given an infile of raw pupil data, saves out:
        1) Session level data with dilation data summarized for each trial
        2) Dataframe of average peristumulus timecourse for each condition
        3) Plot of average peristumulus timecourse for each condition
        4) Percent of samples with blinks 
    """
    for fname in filelist:
        print('Processing {}'.format(fname))
        if (os.path.splitext(fname)[-1]
                == ".gazedata") | (os.path.splitext(fname)[-1] == ".csv"):
            df = pd.read_csv(fname, sep="\t")
        elif os.path.splitext(fname)[-1] == ".xlsx":
            df = pd.read_excel(fname)
        else:
            raise IOError('Could not open {}'.format(fname))
        subid = pupil_utils.get_subid(df['Subject'], fname)
        timepoint = pupil_utils.get_timepoint(df['Session'], fname)
        # Keep only samples after last sample of Recall
        df = df[df[df.CurrentObject == "Recall"].index[-1] + 1:]
        df = pupil_utils.deblink(df)
        dfresamp = clean_trials(df)
        alltrialsdf = proc_all_trials(dfresamp)
        # Remove trials with >50% blinks
        alltrialsdf = alltrialsdf[alltrialsdf.BlinkPct < .50]

        plot_trials(alltrialsdf, fname)
        pupildf = alltrialsdf.groupby(['Condition', 'Timestamp'])[[
            'Baseline', 'DiameterPupilLRFilt', 'Dilation', 'BlinksLR',
            'Duration'
        ]].mean()
        pupildf['ntrials'] = alltrialsdf.groupby(['Condition',
                                                  'Timestamp']).size()
        pupildf = pupildf.reset_index()
        pupildf['Subject'] = subid
        pupildf['Session'] = timepoint
        pupildf = pupildf.rename(columns={
            'DiameterPupilLRFilt': 'Diameter',
            'BlinksLR': 'BlinkPct'
        })
        # Reorder columns
        cols = [
            'Subject', 'Session', 'Baseline', 'Timestamp', 'Diameter',
            'Dilation', 'BlinkPct', 'Duration', 'Condition', 'ntrials'
        ]
        pupildf = pupildf[cols]
        pupil_outname = pupil_utils.get_proc_outfile(fname,
                                                     '_ProcessedPupil.csv')
        pupil_outname = pupil_outname.replace("HVLT_Recall-Recognition",
                                              "HVLT_Recognition")
        pupil_outname = pupil_outname.replace("-Delay", "-Recognition")
        pupildf.to_csv(pupil_outname, index=False)
        print('Writing processed data to {0}'.format(pupil_outname))
def clean_trials(df, trialevents):
    resampled_dict = {}
    for trialnum in trialevents.Trial.unique():
        basestart, basestop, respstart, respstop =  trialevents.loc[trialevents.Trial==trialnum,'TETTime']
        condition = trialevents.loc[trialevents.Trial==trialnum,'Condition'].iat[0]
        rawtrial = df.loc[(df.TETTime>=basestart) & (df.TETTime<=respstop)]
        rawtrial.loc[(rawtrial.TETTime>=basestart) & (rawtrial.TETTime<=basestop),'Phase'] = 'Baseline' 
        rawtrial.loc[(rawtrial.TETTime>=respstart) & (rawtrial.TETTime<=respstop),'Phase'] = 'Response' 
#        rawtrial = rawtrial[rawtrial.Condition=='Response']
        cleantrial = pupil_utils.deblink(rawtrial)
        trial_resamp = pupil_utils.resamp_filt_data(cleantrial, filt_type='low', string_cols=['CurrentObject', 'Phase'])
        baseline = trial_resamp['DiameterPupilLRFilt'].first('1000ms').mean()
#        baseline = trial_resamp.DiameterPupilLRFilt.iat[0]
        trial_resamp['Baseline'] = baseline
        trial_resamp['Dilation'] = trial_resamp['DiameterPupilLRFilt'] - trial_resamp['Baseline']
        trial_resamp = trial_resamp[trial_resamp.Phase=='Response']
        trial_resamp['Condition'] = condition
        resampled_dict[trialnum] = trial_resamp        
    dfresamp = pd.concat(resampled_dict, names=['Trial','Timestamp'], sort=True)
    return dfresamp
Example #8
0
def proc_subject(filelist):
    """Given an infile of raw pupil data, saves out:
        1. Session level data with dilation data summarized for each trial
        2. Dataframe of average peristumulus timecourse for each condition
        3. Plot of average peristumulus timecourse for each condition
        4. Percent of samples with blinks """
    tpre = 0.250
    tpost = 2.5
    samp_rate = 30.
    for pupil_fname in filelist:
        print('Processing {}'.format(pupil_fname))
        if (os.path.splitext(pupil_fname)[-1] == ".gazedata") | (
                os.path.splitext(pupil_fname)[-1] == ".csv"):
            df = pd.read_csv(pupil_fname, sep="\t")
        elif os.path.splitext(pupil_fname)[-1] == ".xlsx":
            df = pd.read_excel(pupil_fname, parse_dates=False)
        else:
            raise IOError('Could not open {}'.format(pupil_fname))
        subid = pupil_utils.get_subid(df['Subject'], pupil_fname)
        timepoint = pupil_utils.get_timepoint(df['Session'], pupil_fname)
        df = pupil_utils.deblink(df)
        df.CurrentObject.replace('StimulusRecord', 'Stimulus', inplace=True)
        dfresamp = pupil_utils.resamp_filt_data(
            df, filt_type='band', string_cols=['TrialId', 'CurrentObject'])
        dfresamp = dfresamp.drop(columns='TrialId_x').rename(
            columns={'TrialId_y': 'TrialId'})
        eprime_fname = get_eprime_fname(pupil_fname)
        eprime = pd.read_csv(eprime_fname,
                             sep='\t',
                             encoding='utf-16',
                             skiprows=0)
        if not np.array_equal(eprime.columns[:3],
                              ['ExperimentName', 'Subject', 'Session']):
            eprime = pd.read_csv(eprime_fname,
                                 sep='\t',
                                 encoding='utf-16',
                                 skiprows=1)
        eprime = eprime.rename(columns={"Congruency": "Condition"})
        pupil_utils.plot_qc(dfresamp, pupil_fname)
        sessdf = get_sessdf(dfresamp, eprime)
        sessdf['BlinkPct'] = get_blink_pct(dfresamp, pupil_fname)
        dfresamp['zDiameterPupilLRFilt'] = pupil_utils.zscore(
            dfresamp['DiameterPupilLRFilt'])
        condf, incondf, neutraldf = proc_all_trials(
            sessdf, dfresamp['zDiameterPupilLRFilt'], tpre, tpost, samp_rate)
        condf_long = reshape_df(condf)
        incondf_long = reshape_df(incondf)
        neutraldf_long = reshape_df(neutraldf)
        glm_results = ts_glm(dfresamp.zDiameterPupilLRFilt,
                             sessdf.loc[sessdf.Condition == 'C', 'Timestamp'],
                             sessdf.loc[sessdf.Condition == 'I', 'Timestamp'],
                             sessdf.loc[sessdf.Condition == 'N',
                                        'Timestamp'], dfresamp.BlinksLR)
        # Set subject ID and session as (as type string)
        glm_results['Subject'] = subid
        glm_results['Session'] = timepoint
        save_glm_results(glm_results, pupil_fname)
        allconddf = condf_long.append(incondf_long).reset_index(drop=True)
        allconddf = allconddf.append(neutraldf_long).reset_index(drop=True)
        # Set subject ID and session as (as type string)
        allconddf['Subject'] = subid
        allconddf['Session'] = timepoint
        allconddf = allconddf[allconddf.Timepoint < 3.0]
        plot_pstc(allconddf, pupil_fname)
        save_pstc(allconddf, pupil_fname)
        sessdf['Subject'] = subid
        sessdf['Session'] = timepoint
        sessout = pupil_utils.get_proc_outfile(pupil_fname, '_SessionData.csv')
        sessdf.to_csv(sessout, index=False)