class Strategy: def __init__(self, instrument_id, time_frame, start_asset): # 策略初始化时需传入合约id、k线周期、初始资金参数 print("{} {} 海龟交易策略已启动!".format(get_localtime(), instrument_id)) # 程序启动时打印提示信息 config.loads("config.json") # 载入配置文件 self.instrument_id = instrument_id # 合约id self.time_frame = time_frame # k线周期 self.exchange = OKEXFUTURES(config.access_key, config.secret_key, config.passphrase, self.instrument_id, leverage=20) # 初始化交易所 self.market = MARKET(self.exchange, self.instrument_id, self.time_frame) # 初始化market self.position = POSITION(self.exchange, self.instrument_id, self.time_frame) # 初始化position self.indicators = INDICATORS(self.exchange, self.instrument_id, self.time_frame) # 初始化indicators self.database = "回测" # 如从purequant服务器的数据库上获取历史k线数据进行回测,必须为"回测" self.datasheet = self.instrument_id.split("-")[0].lower() + "_" + time_frame # 数据表 if config.first_run == "true": # 程序第一次启动时保存数据,实盘时如策略中止再重启时,可以将配置文件中的first_run改成"false",程序再次启动会直接读取数据库中保存的数据 storage.mysql_save_strategy_run_info(self.database, self.datasheet, get_localtime(), "none", 0, 0, 0, 0, "none", 0, 0, 0, start_asset) # 读取数据库中保存的总资金、总盈亏数据 self.total_asset = storage.read_mysql_datas(0, self.database, self.datasheet, "总资金", ">")[-1][-1] self.total_profit = storage.read_mysql_datas(0, self.database, self.datasheet, "总资金", ">")[-1][-2] # 策略总盈亏 # 一些策略参数 self.contract_value = self.market.contract_value() # 合约面值 self.ATRLength = 20 # 平均波动周期 self.boLength = 20 # 短周期 BreakOut Length self.fsLength = 55 # 长周期 FailSafe Length self.teLength = 10 # 离市周期 Trailing Exit Length self.LastProfitableTradeFilter = 1 # 使用入市过滤条件 self.PreBreakoutFailure = False # 前一次是否突破失败 self.CurrentEntries = 0 # 当前持仓的开仓次数 self.counter = 0 # 计数器,用以控制单根bar最大交易次数 def begin_trade(self, kline=None): # 实盘时从交易所实时获取k线数据,回测时传入自定义的kline try: # 如果k线数据不够长就返回 if self.indicators.CurrentBar(kline=kline) < self.fsLength: return # 非回测模式下时间戳就是当前本地时间 timestamp = ts_to_datetime_str(utctime_str_to_ts(kline[-1][0])) if kline else get_localtime() # k线更新时计数器归零 if self.indicators.BarUpdate(kline=kline): self.counter = 0 AvgTR = self.indicators.ATR(self.ATRLength, kline=kline) # 计算真实波幅 N = float(AvgTR[-2]) # N值为前一根bar上的ATR值,需将numpy.float64数据类型转换为float类型,下面的转换同理 Units = int(self.total_asset / self.contract_value / 5) # 每一份头寸大小为总资金的20% """计算短周期唐奇安通道""" # 唐奇安通道上轨,延后1个Bar DonchianHi = float(self.indicators.HIGHEST(self.boLength, kline=kline)[-2]) # 唐奇安通道下轨,延后1个Bar DonchianLo = float(self.indicators.LOWEST(self.boLength, kline=kline)[-2]) """计算长周期唐奇安通道""" # 唐奇安通道上轨,延后1个Bar,长周期 fsDonchianHi = float(self.indicators.HIGHEST(self.fsLength, kline=kline)[-2]) # 唐奇安通道下轨,延后1个Bar,长周期 fsDonchianLo = float(self.indicators.LOWEST(self.fsLength, kline=kline)[-2]) """计算止盈唐奇安通道""" # 离市时判断需要的N周期最低价 ExitLowestPrice = float(self.indicators.LOWEST(self.teLength, kline=kline)[-2]) # 离市时判断需要的N周期最高价 ExitHighestPrice = float(self.indicators.HIGHEST(self.teLength, kline=kline)[-2]) # 当不使用过滤条件,或者使用过滤条件且条件PreBreakoutFailure为True时,短周期开仓 if self.indicators.CurrentBar(kline=kline) >= self.boLength and self.position.amount() == 0 and (self.LastProfitableTradeFilter != 1 or self.PreBreakoutFailure == False) and self.counter < 1: if self.market.high(-1, kline=kline) >= DonchianHi: # 突破了短周期唐奇安通道上轨 price = DonchianHi # 开多价格为短周期唐奇安通道上轨 amount = Units # 开多数量为Units receipt = self.exchange.buy(price, amount) # 开多 push(receipt) # 推送下单结果 self.CurrentEntries += 1 # 记录一次开仓次数 self.PreBreakoutFailure = False # 将标识重置为默认值,根据离场时的盈亏情况再修改 storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "买入开多", price, amount, amount * self.contract_value, price, "long", amount, 0, self.total_profit, self.total_asset) # 将信息保存至数据库 self.counter += 1 # 计数器加1 if self.market.low(-1, kline=kline) <= DonchianLo: # 突破了短周期唐奇安通道下轨 price = DonchianLo # 开空价格为DonchianLo amount = Units # 开空数量为Units receipt = self.exchange.sellshort(price, amount) # 开空 push(receipt) # 推送下单结果 self.CurrentEntries += 1 # 记录一次开仓次数 self.PreBreakoutFailure = False # 将标识重置为默认值,根据离场时的盈亏情况再修改 storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "卖出开空", price, amount, amount * self.contract_value, price, "short", amount, 0, self.total_profit, self.total_asset) # 保存信息至数据库 self.counter += 1 # 计数器加1 # 长周期突破开仓,其他逻辑和短周期突破开仓一样。 if self.indicators.CurrentBar(kline=kline) >= self.fsLength and self.position.amount() == 0 and self.counter < 1: if self.market.high(-1, kline=kline) >= fsDonchianHi: # 突破了长周期唐奇安通道上轨 price = fsDonchianHi # 开多价格为长周期唐奇安通道上轨值 amount = Units # 数量为Units receipt = self.exchange.buy(price, amount) # 下单并返回下单结果 push(receipt) # 推送下单结果 self.CurrentEntries += 1 # 记录一次开仓次数 self.PreBreakoutFailure = False # 将标识重置为默认值 storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "买入开多", price, amount, amount * self.contract_value, price, "long", amount, 0, self.total_profit, self.total_asset) # 将信息保存至数据库 self.counter += 1 # 计数器加1 if self.market.low(-1, kline=kline) <= fsDonchianLo: # 突破长周期唐奇安通道下轨 price = fsDonchianLo # 开空价格为长周期唐奇安通道下轨值 amount = Units # 开空数量为Units receipt = self.exchange.sellshort(price, amount) # 下单并返回下单结果 push(receipt) # 推送下单结果 self.CurrentEntries += 1 # 记录一次开仓次数 self.PreBreakoutFailure = False # 将标识重置为默认值 storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "卖出开空", price, amount, amount * self.contract_value, price, "short", amount, 0, self.total_profit, self.total_asset) self.counter += 1 # 计数器加1 # 止盈、加仓和止损 if self.position.direction() == "long" and self.counter < 1: # 持多仓的情况。回测时是一根k线上整个策略从上至下运行一次,所以在此处设置计数器过滤 if self.market.low(-1, kline=kline) <= ExitLowestPrice: # 跌破止盈价 profit = self.position.coverlong_profit(last=ExitLowestPrice, market_type="usd_contract") # 平仓前计算利润,传入最新价以及计算盈利的合约类型 self.total_profit += profit # 计算经过本次盈亏后的总利润 self.total_asset += profit # 计算经过本次盈亏后的总资金 price = ExitLowestPrice # 平多价格为ExitLowestPrice amount = self.position.amount() # 数量为当前持仓数量 receipt = self.exchange.sell(price, amount) # 平所有多单仓位 push(receipt) # 推送下单结果 storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "卖出平多", price, amount, amount * self.contract_value, 0, "none", 0, profit, self.total_profit, self.total_asset) self.counter += 1 # 计数器加1 self.CurrentEntries = 0 # 平仓后将开仓次数还原为0 else: # 加仓指令 '''以最高价为标准,判断是否能加仓,并限制最大加仓次数 如果价格过前次开仓价格1/2N,则直接加仓 ''' while self.market.high(-1, kline=kline) >= (self.position.price() + 0.5 * N) and (self.CurrentEntries <= 4): price = self.position.price() + 0.5 * N # 加仓的开仓价格为持仓价格+0.5 * N amount = Units # 数量为Units storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "多头加仓", price, amount, amount * self.contract_value, (self.position.price() + price) / 2, "long", self.position.amount() + amount, 0, self.total_profit, self.total_asset) receipt = self.exchange.buy(price, amount) push(receipt) self.CurrentEntries += 1 # 止损指令 if self.market.low(-1, kline=kline) <= (self.position.price() - 2 * N): # 如果回落大于最后下单价格-2n,就止损 profit = self.position.coverlong_profit(last=self.position.price() - 2 * N, market_type="usd_contract") self.total_profit += profit # 计算经过本次盈亏后的总利润 self.total_asset += profit # 计算经过本次盈亏后的总资金 price = self.position.price() - 2 * N amount = self.position.amount() receipt = self.exchange.sell(price, amount) # 全部止损平仓 push(receipt) self.PreBreakoutFailure = True # 记录为突破失败,下次交易将使用长周期开仓 storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "卖出止损", price, amount, amount * self.contract_value, 0, "none", 0, profit, self.total_profit, self.total_asset) self.counter += 1 self.CurrentEntries = 0 # 平仓后将开仓次数还原为0 elif self.position.direction() == "short" and self.counter < 1: # 持空头的情况,除方向以外,其他逻辑和上面持多仓的一致 if self.market.high(-1, kline=kline) >= ExitHighestPrice: profit = self.position.covershort_profit(last=ExitHighestPrice, market_type="usd_contract") self.total_profit += profit self.total_asset += profit price = ExitHighestPrice amount = self.position.amount() receipt = self.exchange.buytocover(price, amount) push(receipt) storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "买入平空", price, amount, amount * self.contract_value, 0, "none", 0, profit, self.total_profit, self.total_asset) self.counter += 1 self.CurrentEntries = 0 # 平仓后将开仓次数还原为0 else: while self.market.low(-1, kline=kline) <= (self.position.price() - 0.5 * N) and (self.CurrentEntries <= 4): price = self.position.price() - 0.5 * N amount = Units storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "空头加仓", price, amount, amount * self.contract_value, (self.position.price() + price) / 2, "short", self.position.amount() + amount, 0, self.total_profit, self.total_asset) receipt = self.exchange.sellshort(self.position.price() - 0.5 * N, Units) push(receipt) self.CurrentEntries += 1 if self.market.high(-1, kline=kline) >= (self.position.price() + 2 * N): profit = self.position.covershort_profit(last=self.position.price() + 2 * N, market_type="usd_contract") self.total_profit += profit self.total_asset += profit price = self.position.price() + 2 * N amount = self.position.amount() receipt = self.exchange.buytocover(price, amount) push(receipt) self.PreBreakoutFailure = True storage.mysql_save_strategy_run_info(self.database, self.datasheet, timestamp, "买入止损", price, amount, amount * self.contract_value, 0, "none", 0, profit, self.total_profit, self.total_asset) self.counter += 1 self.CurrentEntries = 0 # 平仓后将开仓次数还原为0 except: logger.error()
class SIGNALIZE: """实盘时根据从交易所获取的k线数据绘制k线图、成交量图及指标""" def __init__(self, platform, symbol, time_frame): self.__platform = platform self.__symbol = symbol self.__time_frame = time_frame self.__market = MARKET(self.__platform, self.__symbol, self.__time_frame) # pull some data self.__indicators = INDICATORS(self.__platform, self.__symbol, self.__time_frame) self.__kline = platform.get_kline(self.__time_frame) self.__kline.reverse() # format it in pandas try: # dataframe有7列的情况 self.__df = pd.DataFrame(self.__kline, columns=[ 'time', 'open', 'high', 'low', 'close', 'volume', 'currency_volume' ]) self.__df = self.__df.astype({ 'time': 'datetime64[ns]', 'open': 'float64', 'close': 'float64', 'high': 'float64', 'low': 'float64', 'volume': 'float64', 'currency_volume': 'float64' }) except: # dataframe只有6列的情况,如okex的现货k线数据 self.__df = pd.DataFrame( self.__kline, columns=['time', 'open', 'high', 'low', 'close', 'volume']) self.__df = self.__df.astype({ 'time': 'datetime64[ns]', 'open': 'float64', 'close': 'float64', 'high': 'float64', 'low': 'float64', 'volume': 'float64' }) # create three plot 创建三层图纸,第一层画k线,第二层画成交量,第三层画一些适宜于副图显示的指标 fplt.foreground = '#FFFFFF' # 前景色 fplt.background = '#333333' # 背景色 fplt.odd_plot_background = '#333333' # 第二层图纸的背景色 fplt.cross_hair_color = "#FFFFFF" # 准星的颜色 self.__ax, self.__ax2, self.__ax3 = fplt.create_plot(symbol, rows=3) # plot candle sticks candles = self.__df[['time', 'open', 'close', 'high', 'low']] fplt.candlestick_ochl(candles, ax=self.__ax) # overlay volume on the plot volumes = self.__df[['time', 'open', 'close', 'volume']] fplt.volume_ocv(volumes, ax=self.__ax2) fplt.add_legend("VOLUME", self.__ax2) # 增加"VOLUME"图例 """ plot indicators """ def show(self): """最后必须调用此函数以显示图像""" fplt.show() def plot_last(self, color=None): """在图上画出最新成交价这根横线,便于观察""" last = self.__market.last() array = np.empty(len(self.__kline)) array.fill(last) color = color if color is not None else "#CD7F32" # 默认设置为红色 fplt.plot(self.__df['time'], array, color=color, ax=self.__ax, legend="LAST {}".format(last)) def plot_array(self, array, ax, legend, color=None): """ 绘制任意的数组成线性 :param array: 传入一个数组 :param ax: 加载在第几行的图上 :param legend: 图例名称 :param color: 颜色 :return: """ if ax == 1: ax = self.__ax elif ax == 2: ax = self.__ax2 elif ax == 3: ax = self.__ax3 color = color if color is not None else "#FF0000" # 默认设置为红色 fplt.plot(self.__df['time'], array, color=color, ax=ax, legend=legend) def plot_atr(self, length, color=None): """ 在图上画出ATR :param length: ATR指标参数 :param color: 线的颜色 :return: """ color = color if color is not None else "#FF0000" # 默认设置为红色 fplt.plot(self.__df['time'], self.__indicators.ATR(length), color=color, ax=self.__ax3, legend='ATR({})'.format(length)) def plot_boll(self, length, color1=None, color2=None, color3=None): """ 在图上画出布林通道的上轨、中轨、下轨 :param length: BOLL指标参数 :param upperband_color: 上轨颜色 :param middleband_color: 中轨颜色 :param lowerband_color: 下轨颜色 :return: """ color1 = color1 if color1 is not None else "#FF0000" # 默认设置为红色 color2 = color2 if color2 is not None else "#00FF00" # 默认设置为绿色 color3 = color3 if color3 is not None else "#0000FF" # 默认设置为蓝色 upperband_array = self.__indicators.BOLL(length)['upperband'] middleband_array = self.__indicators.BOLL(length)["middleband"] lowerband_array = self.__indicators.BOLL(length)["lowerband"] fplt.plot(self.__df['time'], upperband_array, color=color1, ax=self.__ax, legend='BOLL({})-UPPERBAND'.format(length)) fplt.plot(self.__df['time'], middleband_array, color=color2, ax=self.__ax, legend='BOLL({})-MIDDLEBAND'.format(length)) fplt.plot(self.__df['time'], lowerband_array, color=color3, ax=self.__ax, legend='BOLL({})-LOWERBAND'.format(length)) # 副图上也加载 fplt.plot(self.__df['time'], upperband_array, color=color1, ax=self.__ax3, legend='BOLL({})-UPPERBAND'.format(length)) fplt.plot(self.__df['time'], middleband_array, color=color2, ax=self.__ax3, legend='BOLL({})-MIDDLEBAND'.format(length)) fplt.plot(self.__df['time'], lowerband_array, color=color3, ax=self.__ax3, legend='BOLL({})-LOWERBAND'.format(length)) def plot_highest(self, length, color=None): """ 在图上画出最高价 :param length: HIGHEST指标参数 :param color: 线的颜色 :return: """ color = color if color is not None else "#FF0000" # 默认设置红黑色 fplt.plot(self.__df['time'], self.__indicators.HIGHEST(length), color=color, ax=self.__ax, legend='HIGHEST({})'.format(length)) # 副图也加载 fplt.plot(self.__df['time'], self.__indicators.HIGHEST(length), color=color, ax=self.__ax3, legend='HIGHEST({})'.format(length)) def plot_ma(self, length, color=None): """ 在图上画出移动平均线 :param length: 简单移动平均线参数 :param color: 线的颜色 :return: """ color = color if color is not None else "#FF0000" # 默认设置为红色 # 主图与副图加载指标 fplt.plot(self.__df['time'], self.__indicators.MA(length), color=color, ax=self.__ax, legend='MA({})'.format(length)) fplt.plot(self.__df['time'], self.__indicators.MA(length), color=color, ax=self.__ax3, legend='MA({})'.format(length)) def plot_macd(self, fastperiod, slowperiod, signalperiod, color1=None, color2=None, color3=None): """ 在图上画出MACD指标 :param fastperiod: :param slowperiod: :param signalperiod: :param color1: :param color2: :param color3: :return: """ color1 = color1 if color1 is not None else "#FF0000" # 默认设置为红色 color2 = color2 if color2 is not None else "#00FF00" # 默认设置为绿色 color3 = color3 if color3 is not None else "#0000FF" # 默认设置为蓝色 dif = self.__indicators.MACD(fastperiod, slowperiod, signalperiod)['DIF'] dea = self.__indicators.MACD(fastperiod, slowperiod, signalperiod)["DEA"] macd = self.__indicators.MACD(fastperiod, slowperiod, signalperiod)["MACD"] fplt.plot(self.__df['time'], dif, color=color1, ax=self.__ax3, legend='MACD({}, {}, {})-DIF'.format(fastperiod, slowperiod, signalperiod)) fplt.plot(self.__df['time'], dea, color=color2, ax=self.__ax3, legend='MACD({}, {}, {})-DEA'.format(fastperiod, slowperiod, signalperiod)) fplt.plot(self.__df['time'], macd, color=color3, ax=self.__ax3, legend='MACD({}, {}, {})-MACD'.format( fastperiod, slowperiod, signalperiod)) def plot_ema(self, length, color=None): """ 在图上画出EMA指标 :param length: :param color: :return: """ color = color if color is not None else "#FF0000" # 默认设置为红色 fplt.plot(self.__df['time'], self.__indicators.EMA(length), color=color, ax=self.__ax, legend='EMA({})'.format(length)) # 副图也加载 fplt.plot(self.__df['time'], self.__indicators.EMA(length), color=color, ax=self.__ax3, legend='EMA({})'.format(length)) def plot_kama(self, length, color=None): """在图上画出KAMA指标""" color = color if color is not None else "#FF0000" # 默认设置为红色 fplt.plot(self.__df['time'], self.__indicators.KAMA(length), color=color, ax=self.__ax, legend='KAMA({})'.format(length)) # 副图也加载 fplt.plot(self.__df['time'], self.__indicators.KAMA(length), color=color, ax=self.__ax3, legend='KAMA({})'.format(length)) def plot_kdj(self, fastk_period, slowk_period, slowd_period, color1=None, color2=None): """ 在图上画出KDJ指标 :param fastk_period: :param slowk_period: :param slowd_period: :param color1: :param color2: :param color3: :return: """ color1 = color1 if color1 is not None else "#FF0000" # 默认设置为红色 color2 = color2 if color2 is not None else "#00FF00" # 默认设置为绿色 k = self.__indicators.KDJ(fastk_period, slowk_period, slowd_period)['k'] d = self.__indicators.KDJ(fastk_period, slowk_period, slowd_period)["d"] # 仅副图加载 fplt.plot(self.__df['time'], k, color=color1, ax=self.__ax3, legend='KDJ({}, {}, {})-K'.format(fastk_period, slowk_period, slowd_period)) fplt.plot(self.__df['time'], d, color=color2, ax=self.__ax3, legend='KDJ({}, {}, {})-D'.format(fastk_period, slowk_period, slowd_period)) def plot_lowest(self, length, color=None): """LOWEST""" color = color if color is not None else "#FF0000" # 默认设置红黑色 fplt.plot(self.__df['time'], self.__indicators.LOWEST(length), color=color, ax=self.__ax, legend='LOWEST({})'.format(length)) # 副图也加载 fplt.plot(self.__df['time'], self.__indicators.LOWEST(length), color=color, ax=self.__ax3, legend='LOWEST({})'.format(length)) def plot_obv(self, color=None): """OBV""" color = color if color is not None else "#FF0000" # 默认设置红黑色 # 仅副图加载 fplt.plot(self.__df['time'], self.__indicators.OBV(), color=color, ax=self.__ax3, legend='OBV') def plot_rsi(self, length, color=None): """RSI""" color = color if color is not None else "#FF0000" # 默认设置为红色 # 仅副图加载 fplt.plot(self.__df['time'], self.__indicators.RSI(length), color=color, ax=self.__ax3, legend='RSI({})'.format(length)) def plot_roc(self, length, color=None): """ROC""" color = color if color is not None else "#FF0000" # 默认设置为红色 # 仅副图加载 fplt.plot(self.__df['time'], self.__indicators.ROC(length), color=color, ax=self.__ax3, legend='ROC({})'.format(length)) def plot_stochrsi(self, timeperiod, fastk_period, fastd_period, color1=None, color2=None): """STOCHRSI""" color1 = color1 if color1 is not None else "#FF0000" # 默认设置为红色 color2 = color2 if color2 is not None else "#00FF00" # 默认设置为绿色 stochrsi = self.__indicators.STOCHRSI(timeperiod, fastk_period, fastd_period)['stochrsi'] fastk = self.__indicators.STOCHRSI(timeperiod, fastk_period, fastd_period)["fastk"] # 仅副图加载 fplt.plot(self.__df['time'], stochrsi, color=color1, ax=self.__ax3, legend='STOCHRSI({}, {}, {})-STOCHRSI'.format( timeperiod, fastk_period, fastd_period)) fplt.plot(self.__df['time'], fastk, color=color2, ax=self.__ax3, legend='STOCHRSI({}, {}, {})-FASTK'.format( timeperiod, fastk_period, fastd_period)) def plot_sar(self, color=None): """ 在图上画出SAR :param length: SAR指标参数 :param color: 线的颜色 :return: """ color = color if color is not None else "#FF0000" # 默认设置为红色 # 主副图均加载 fplt.plot(self.__df['time'], self.__indicators.SAR(), color=color, ax=self.__ax, legend='SAR') fplt.plot(self.__df['time'], self.__indicators.SAR(), color=color, ax=self.__ax3, legend='SAR') def plot_stddev(self, length, color=None): """STDDEV""" color = color if color is not None else "#FF0000" # 默认设置为红色 # 仅副图加载 fplt.plot(self.__df['time'], self.__indicators.STDDEV(length), color=color, ax=self.__ax3, legend='STDDEV({})'.format(length)) def plot_trix(self, length, color=None): """STDDEV""" color = color if color is not None else "#FF0000" # 默认设置为红色 # 仅副图加载 fplt.plot(self.__df['time'], self.__indicators.TRIX(length), color=color, ax=self.__ax3, legend='TRIX({})'.format(length)) def plot_volume(self, color=None): """VOLUME""" color = color if color is not None else "#FF0000" # 默认设置为红色 # 仅副图均加载 fplt.plot(self.__df['time'], self.__indicators.VOLUME(), color=color, ax=self.__ax3, legend='VOLUME')