Example #1
0
def get_model(cfg):
    cfg.merge_from_file('../configs/second/car.yaml')
    anchors = AnchorGenerator(cfg).anchors
    preprocessor = Preprocessor(cfg)
    model = Second(cfg).cuda().eval()
    ckpt = torch.load('../pvrcnn/ckpts/epoch_12.pth')['state_dict']
    model.load_state_dict(ckpt, strict=True)
    return model, preprocessor, anchors
Example #2
0
 def __init__(self,):
     self.cfg = cfg
     self.cfg.merge_from_file('../configs/second/car.yaml')
     self.preprocessor = Preprocessor(cfg)
     self.anchors = AnchorGenerator(cfg).anchors.cuda()
     self.net = PV_RCNN(cfg).cuda().eval()
     # self.net = Second(cfg).cuda().eval()
     ckpt = torch.load('./ckpts/epoch_49.pth')
     self.net.load_state_dict(ckpt['state_dict'])
     pass
Example #3
0
 def __init__(self, cfg, split):
     super(KittiDataset, self).__init__()
     self.split = split
     self.rootdir = cfg.DATA.ROOTDIR
     self.load_annotations(cfg)
     if split == 'train':
         anchors = AnchorGenerator(cfg).anchors
         self.target_assigner = ProposalTargetAssigner(cfg, anchors)
         self.augmentation = ChainedAugmentation(cfg)
     self.cfg = cfg
Example #4
0
 def __init__(self, cfg):
     super(KittiDatasetTrain, self).__init__(cfg, split='train')
     anchors = AnchorGenerator(cfg).anchors
     DatabaseBuilder(cfg, self.annotations)
     self.target_assigner = ProposalTargetAssigner(cfg, anchors)
     self.augmentation = ChainedAugmentation(cfg)