def evaluate(self, parameters, config): loss = 0.0 acc = 0.0 result = (0.0, 1, {}) if self.step == 'k-means' and self.y_test is not None: # predicting labels y_pred_kmeans = self.kmeans.predict(self.x_test) # computing metrics acc = my_metrics.acc(self.y_test, y_pred_kmeans) nmi = my_metrics.nmi(self.y_test, y_pred_kmeans) ami = my_metrics.ami(self.y_test, y_pred_kmeans) ari = my_metrics.ari(self.y_test, y_pred_kmeans) ran = my_metrics.ran(self.y_test, y_pred_kmeans) h**o = my_metrics.h**o(self.y_test, y_pred_kmeans) print( out_1 % (self.client_id, self.f_round, acc, nmi, ami, ari, ran, h**o)) if self.f_round % 10 == 0: # print confusion matrix my_fn.print_confusion_matrix(self.y_test, y_pred_kmeans, client_id=self.client_id, path_to_out=self.out_dir) # plotting outcomes on the labels if self.outcomes_test is not None: times = self.outcomes_test[:, 0] events = self.outcomes_test[:, 1] my_fn.plot_lifelines_pred(times, events, y_pred_kmeans, client_id=self.client_id, path_to_out=self.out_dir) if self.ids_test is not None: pred = {'ID': self.ids_test, 'label': y_pred_kmeans} my_fn.dump_pred_dict('pred_client_' + str(self.client_id), pred, path_to_out=self.out_dir) # dumping and retrieving the results metrics = { "accuracy": acc, "normalized_mutual_info_score": nmi, "adjusted_mutual_info_score": ami, "adjusted_rand_score": ari, "rand_score": ran, "homogeneity_score": h**o } result = metrics.copy() result['client'] = self.client_id result['round'] = self.f_round my_fn.dump_result_dict('client_' + str(self.client_id), result, path_to_out=self.out_dir) result = (loss, len(self.x_test), metrics) return result
def evaluate(self, parameters, config): loss = 0.0 acc = 0.0 result = () metrics = {} if self.step == 'pretrain_ae': # evaluation loss = self.autoencoder.evaluate(self.x_test, self.x_test, verbose=0) metrics = {"loss": loss} result = metrics.copy() result['client'] = self.client_id result['round'] = self.f_round my_fn.dump_result_dict('client_' + str(self.client_id) + '_ae', result, path_to_out=self.out_dir) print(out_2 % (self.client_id, self.f_round, loss)) result = (loss, len(self.x_test), {}) elif self.step == 'k-means': # predicting labels y_pred_kmeans = self.kmeans.predict( self.encoder.predict(self.x_test)) # computing metrics acc = my_metrics.acc(self.y_test, y_pred_kmeans) nmi = my_metrics.nmi(self.y_test, y_pred_kmeans) ami = my_metrics.ami(self.y_test, y_pred_kmeans) ari = my_metrics.ari(self.y_test, y_pred_kmeans) ran = my_metrics.ran(self.y_test, y_pred_kmeans) h**o = my_metrics.h**o(self.y_test, y_pred_kmeans) print( out_1 % (self.client_id, self.f_round, acc, nmi, ami, ari, ran, h**o)) if self.f_round % 10 == 0: # print confusion matrix my_fn.print_confusion_matrix(self.y_test, y_pred_kmeans, client_id=self.client_id, path_to_out=self.out_dir) # retrieving the results result = (loss, len(self.x_test), metrics) elif self.step == 'clustering': # evaluation q = self.clustering_model.predict(self.x_test, verbose=0) # update the auxiliary target distribution p p = target_distribution(q) # retrieving loss loss = self.clustering_model.evaluate(self.x_test, p, verbose=0) # evaluate the clustering performance using some metrics y_pred = q.argmax(1) # plotting outcomes on the labels if self.outcomes_test is not None: times = self.outcomes_test[:, 0] events = self.outcomes_test[:, 1] my_fn.plot_lifelines_pred(times, events, y_pred, client_id=self.client_id, path_to_out=self.out_dir) # evaluating metrics if self.y_test is not None: acc = my_metrics.acc(self.y_test, y_pred) nmi = my_metrics.nmi(self.y_test, y_pred) ami = my_metrics.ami(self.y_test, y_pred) ari = my_metrics.ari(self.y_test, y_pred) ran = my_metrics.ran(self.y_test, y_pred) h**o = my_metrics.h**o(self.y_test, y_pred) if self.f_round % 10 == 0: # print confusion matrix my_fn.print_confusion_matrix(self.y_test, y_pred, client_id=self.client_id, path_to_out=self.out_dir) print(out_1 % (self.client_id, self.f_round, acc, nmi, ami, ari, ran, h**o)) # dumping and retrieving the results metrics = { "accuracy": acc, "normalized_mutual_info_score": nmi, "adjusted_mutual_info_score": ami, "adjusted_rand_score": ari, "rand_score": ran, "homogeneity_score": h**o } result = metrics.copy() result['loss'] = loss result['client'] = self.client_id result['round'] = self.local_iter my_fn.dump_result_dict('client_' + str(self.client_id), result, path_to_out=self.out_dir) if self.id_test is not None: pred = {'ID': self.id_test, 'label': y_pred} my_fn.dump_pred_dict('pred_client_' + str(self.client_id), pred, path_to_out=self.out_dir) result = (loss, len(self.x_test), metrics) return result
def test(self, config): print('Begin evaluation session...\n') # Generator in eval mode self.generator.eval() self.encoder.eval() # Set number of examples for cycle calcs n_sqrt_samp = 5 n_samp = n_sqrt_samp * n_sqrt_samp test_imgs, test_labels, test_ids, test_outcomes = next( iter(self.testloader)) times = test_outcomes[:, 0] events = test_outcomes[:, 1] test_imgs = Variable(test_imgs.type(self.TENSOR)) # Cycle through test real -> enc -> gen t_imgs, t_label = test_imgs.data, test_labels # Encode sample real instances e_tzn, e_tzc, e_tzc_logits = self.encoder(t_imgs) computed_labels = [] for pred in e_tzc.detach().cpu().numpy(): computed_labels.append(pred.argmax()) computed_labels = np.array(computed_labels) # computing metrics acc = my_metrics.acc(t_label.detach().cpu().numpy(), computed_labels) nmi = my_metrics.nmi(t_label.detach().cpu().numpy(), computed_labels) ami = my_metrics.ami(t_label.detach().cpu().numpy(), computed_labels) ari = my_metrics.ari(t_label.detach().cpu().numpy(), computed_labels) ran = my_metrics.ran(t_label.detach().cpu().numpy(), computed_labels) h**o = my_metrics.h**o(t_label.detach().cpu().numpy(), computed_labels) print(out_1 % (self.client_id, self.f_epoch, acc, nmi, ami, ari, ran, h**o)) # plotting outcomes on the labels # if self.outcomes_loader is not None: my_fn.plot_lifelines_pred(times, events, computed_labels, client_id=self.client_id, path_to_out=self.out_dir) if self.f_epoch % 10 == 0: # print confusion matrix my_fn.print_confusion_matrix(t_label.detach().cpu().numpy(), computed_labels, client_id=self.client_id, path_to_out=self.out_dir) # dumping and retrieving the results metrics = { "accuracy": acc, "normalized_mutual_info_score": nmi, "adjusted_mutual_info_score": ami, "adjusted_rand_score": ari, "rand_score": ran, "homogeneity_score": h**o } result = metrics.copy() # Generate sample instances from encoding teg_imgs = self.generator(e_tzn, e_tzc) # Calculate cycle reconstruction loss self.img_mse_loss = self.mse_loss(t_imgs, teg_imgs) # Save img reco cycle loss self.c_i.append(self.img_mse_loss.item()) # Cycle through randomly sampled encoding -> generator -> encoder zn_samp, zc_samp, zc_samp_idx = sample_z(shape=n_samp, latent_dim=self.latent_dim, n_c=self.n_c, cuda=self.cuda) # Generate sample instances gen_imgs_samp = self.generator(zn_samp, zc_samp) # Encode sample instances zn_e, zc_e, zc_e_logits = self.encoder(gen_imgs_samp) # Calculate cycle latent losses self.lat_mse_loss = self.mse_loss(zn_e, zn_samp) self.lat_xe_loss = self.xe_loss(zc_e_logits, zc_samp_idx) # Save latent space cycle losses self.c_zn.append(self.lat_mse_loss.item()) self.c_zc.append(self.lat_xe_loss.item()) # Save cycled and generated examples! if self.save_images: r_imgs, i_label = self.real_imgs.data[: n_samp], self.itruth_label[: n_samp] e_zn, e_zc, e_zc_logits = self.encoder(r_imgs) reg_imgs = self.generator(e_zn, e_zc) save_image(reg_imgs.data[:n_samp], self.img_dir / 'cycle_reg_%06i.png' % (self.f_epoch), nrow=n_sqrt_samp, normalize=True) save_image(gen_imgs_samp.data[:n_samp], self.img_dir / 'gen_%06i.png' % (self.f_epoch), nrow=n_sqrt_samp, normalize=True) # Generate samples for specified classes stack_imgs = [] for idx in range(self.n_c): # Sample specific class zn_samp, zc_samp, zc_samp_idx = sample_z( shape=self.n_c, latent_dim=self.latent_dim, n_c=self.n_c, fix_class=idx, cuda=self.cuda) # Generate sample instances gen_imgs_samp = self.generator(zn_samp, zc_samp) if (len(stack_imgs) == 0): stack_imgs = gen_imgs_samp else: stack_imgs = torch.cat((stack_imgs, gen_imgs_samp), 0) # Save class-specified generated examples! save_image(stack_imgs, self.img_dir / 'gen_classes_%06i.png' % (self.f_epoch), nrow=self.n_c, normalize=True) print("[Federated Epoch %d/%d] [Client ID %d] \n" "\tCycle Losses: [x: %f] [z_n: %f] [z_c: %f]\n" % (self.f_epoch, config['total_epochs'], self.client_id, self.img_mse_loss.item(), self.lat_mse_loss.item(), self.lat_xe_loss.item())) result['img_mse_loss'] = self.img_mse_loss.item() result['lat_mse_loss'] = self.lat_mse_loss.item() result['lat_xe_loss'] = self.lat_xe_loss.item() result['client'] = self.client_id result['round'] = self.f_epoch my_fn.dump_result_dict('client_' + str(self.client_id), result, path_to_out=self.out_dir) pred = {'ID': test_ids, 'label': computed_labels} my_fn.dump_pred_dict('pred_client_' + str(self.client_id), pred, path_to_out=self.out_dir)
t_imgs, t_label = test_imgs.data, test_labels # Encode sample real instances e_tzn, e_tzc, e_tzc_logits = encoder(t_imgs) computed_labels = [] for pred in e_tzc.detach().cpu().numpy(): computed_labels.append(pred.argmax()) computed_labels = np.array(computed_labels) # computing metrics acc = my_metrics.acc(t_label.detach().cpu().numpy(), computed_labels) nmi = my_metrics.nmi(t_label.detach().cpu().numpy(), computed_labels) ami = my_metrics.ami(t_label.detach().cpu().numpy(), computed_labels) ari = my_metrics.ari(t_label.detach().cpu().numpy(), computed_labels) ran = my_metrics.ran(t_label.detach().cpu().numpy(), computed_labels) h**o = my_metrics.h**o(t_label.detach().cpu().numpy(), computed_labels) if args.dataset == 'euromds': # plotting outcomes on the labels my_fn.plot_lifelines_pred(time=times, event=events, labels=computed_labels, path_to_out=path_to_out) if epoch % 10 == 0: # print confusion matrix my_fn.print_confusion_matrix(y=t_label.detach().cpu().numpy(), y_pred=computed_labels, path_to_out=path_to_out) # dumping and retrieving the results metrics = { "accuracy": acc, "normalized_mutual_info_score": nmi, "adjusted_mutual_info_score": ami,