Example #1
0
 def post_process_solutions(self, solutions, params, param_strs, all_ranks,
                            run_date, total_seconds):
     ''' See base class.
     '''
     output_file = auto_name_if_needed(self.params, self.output_format,
                                       self.output_dir)
     if output_file:
         categorical = self.params.get_parameter_value(
             'CATEGORICAL_CATEGORY')
         if not categorical.strip():
             categorical = None
         if output_file.endswith('.xls'):
             work_book = xlwt.Workbook()
         elif output_file.endswith('.xlsx'):
             work_book = XlsxWorkbook()
         elif output_file.endswith('.csv'):
             work_book = TxtWriter(os.path.splitext(output_file)[0])
         else:
             raise ValueError('File {0} has unsupported output format'.format
                              (output_file))
         writer = XLSWriter(self.params, work_book, run_date, total_seconds,
                            ranks=all_ranks, categorical=categorical)
         try:
             for count, sol in enumerate(solutions):
                 writer.write_data(sol, param_strs[count])
             work_book.save(output_file)
         except ValueError:
             work_book = TxtWriter(os.path.splitext(output_file)[0])
             writer = XLSWriter(self.params, work_book, run_date,
                                total_seconds, ranks=all_ranks,
                                categorical=categorical)
             for count, sol in enumerate(solutions):
                 writer.write_data(sol, param_strs[count])
             work_book.save(output_file)
Example #2
0
def test_super_efficiency_medium(DEA_example2_data):
    data = DEA_example2_data
    data.add_input_category('I1')
    data.add_input_category('I2')
    data.add_input_category('I3')
    data.add_output_category('O1')
    data.add_output_category('O2')
    model = EnvelopmentModelBase(
        data,
        EnvelopmentModelInputOriented(generate_supper_efficiency_upper_bound),
        DefaultConstraintCreator())
    super_efficiency_model = SupperEfficiencyModel(model)
    start_time = datetime.datetime.now()
    solution = super_efficiency_model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_optimal_solution_status_and_sizes(solution, data)
    dmus = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
    utils_for_tests.check_efficiency_scores(dmus, [
        1.652173892, 0.6485875732, 0.909247759, 1.116838534, 0.5490716156,
        2.485294106, 1.244945494, 0.824120607, 2.299898658, 0.6267333816,
        1.088235274
    ], solution, data, 1e-6)
    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(solution)
    work_book.save('tests/test_super_efficiency_output.xls')
    def create_default_tabs(self, solutions, params_to_print, all_params,
                            run_date, total_seconds, ranks, categorical):
        ''' Creates all tabs.

            Args:
                solutions (list of Solution): list with solutions that
                    must be displayed, can have 1, 2 or 4 elements.
                params_to_print (Parameters): parameters that should be
                    displayed.
                all_params (list of str): list with strings that should
                    appear before printing every solution from solutions.
                run_date (datetime): date and time when the problem was solved.
                total_seconds (float): time (in seconds) needed to solve
                    the problem.
                ranks (list of dict of str to double):
                    list that contains dictionaries that map DMU code
                    to peel the onion rank.
                categorical (str): name of the categorical variable
                    used in categorical analysis.
        '''
        writer = XLSWriter(params_to_print, self, run_date, total_seconds,
                           ranks=ranks, categorical=categorical)
        nb_models = len(solutions)
        # +1 for parameters sheet, it is stored separately
        nb_sheets = len(writer.worksheets) + 1
        progress_recorder = GuiProgress(self.parent.progress_bar, nb_models,
                                        nb_sheets)
        self.last_modified_tab = -1
        self.clear_all_tabs()
        self.nb_filled_tabs = 0
        for count, sol in enumerate(solutions):
            writer.write_data(sol, all_params[count], progress_recorder)
        self.modify_tab_names()
        self.remove_unused_tabs()
        progress_recorder.set_position(100)
def test_all_constraints_multiplier_model(data):

    model = MultiplierModelBase(data, 0, MultiplierInputOrientedModel())

    bounds = {'I1': (None, 0.4)}
    model = MultiplierModelWithVirtualWeightRestrictions(model, bounds)

    abs_bounds = {'I2': (None, 0.2)}
    model = MultiplierModelWithAbsoluteWeightRestrictions(model, abs_bounds)

    ratio_bounds = {('I1', 'I2'): (None, 0.4), ('O1', 'O2'): (0.01, None)}
    model = MultiplierModelWithPriceRatioConstraints(model, ratio_bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, abs_bounds)
    utils_for_tests.check_if_category_is_within_virtual_limits(
        model_solution, bounds)
    utils_for_tests.check_if_category_is_within_price_ratio_constraints(
        model_solution, ratio_bounds)

    work_book = Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_all_constraints_multi_output.xls')
def test_abs_weight_restrictions_multiplier_model(data):

    base_model = MultiplierModelBase(data, 0, MultiplierInputOrientedModel())

    bounds = {'I2': (0.01, 0.5)}
    model = MultiplierModelWithAbsoluteWeightRestrictions(base_model, bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, bounds)

    work_book = Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_abs_weights_multi_output.xls')

    bounds = {'I2': (None, 0.05)}
    model = MultiplierModelWithAbsoluteWeightRestrictions(base_model, bounds)

    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()

    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, bounds)

    work_book2 = Workbook()
    writer = XLSWriter(Parameters(), work_book2, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book2.save('tests/test_abs_weights_upper_bound_multi_output.xls')
def test_abs_weight_restrictions_multiplier_model(data):

    base_model = MultiplierModelBase(data, 0,
                                     MultiplierInputOrientedModel())

    bounds = {'I2': (0.01, 0.5)}
    model = MultiplierModelWithAbsoluteWeightRestrictions(base_model, bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, bounds)

    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_abs_weights_multi_output.xls')

    bounds = {'I2': (None, 0.05)}
    model = MultiplierModelWithAbsoluteWeightRestrictions(base_model, bounds)

    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()

    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, bounds)

    work_book2 = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book2, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book2.save('tests/test_abs_weights_upper_bound_multi_output.xls')
def test_maximize_slacks_usual_weakly_disposable_vars():
    categories, xls_data, dmu_name, sheet_name = read_data(
        'tests/DEA_example2_data.xls')
    coefficients, has_same_dmus = convert_to_dictionary(xls_data)
    assert has_same_dmus is False
    assert validate_data(categories, coefficients) is True
    data = construct_input_data_instance(categories, coefficients)
    data.add_input_category('I1')
    data.add_input_category('I2')
    data.add_input_category('I3')
    data.add_output_category('O1')
    data.add_output_category('O2')
    model = EnvelopmentModelVRSDecorator(
        EnvelopmentModelBase(data,
                             EnvelopmentModelInputOriented(
                                 generate_upper_bound_for_efficiency_score),
                             DisposableVarsConstraintCreator(
                             set(['I2', 'O1']))))
    model = MaximizeSlacksModel(model)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_optimal_solution_status_and_sizes(
        model_solution, data)
    dmus = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
    utils_for_tests.check_efficiency_scores(dmus, [1, 0.86998617, 1, 1, 1, 1,
                                                   1, 1, 1, 0.6386574, 1],
                                            model_solution, data)
    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_max_slacks_weakly_disp_vars_output.xls')
    clean_up_pickled_files()
def test_all_constraints_multiplier_model(data):

    model = MultiplierModelBase(data, 0,
                                MultiplierInputOrientedModel())

    bounds = {'I1': (None, 0.4)}
    model = MultiplierModelWithVirtualWeightRestrictions(model, bounds)

    abs_bounds = {'I2': (None, 0.2)}
    model = MultiplierModelWithAbsoluteWeightRestrictions(model, abs_bounds)

    ratio_bounds = {('I1', 'I2'): (None, 0.4), ('O1', 'O2'): (0.01, None)}
    model = MultiplierModelWithPriceRatioConstraints(model, ratio_bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, abs_bounds)
    utils_for_tests.check_if_category_is_within_virtual_limits(
        model_solution, bounds)
    utils_for_tests.check_if_category_is_within_price_ratio_constraints(
        model_solution, ratio_bounds)

    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_all_constraints_multi_output.xls')
Example #9
0
def test_maximize_slacks_usual_weakly_disposable_vars():
    categories, xls_data, dmu_name, sheet_name = read_data(
        'tests/DEA_example2_data.xls')
    coefficients, has_same_dmus = convert_to_dictionary(xls_data)
    assert has_same_dmus is False
    assert validate_data(categories, coefficients) is True
    data = construct_input_data_instance(categories, coefficients)
    data.add_input_category('I1')
    data.add_input_category('I2')
    data.add_input_category('I3')
    data.add_output_category('O1')
    data.add_output_category('O2')
    model = EnvelopmentModelVRSDecorator(
        EnvelopmentModelBase(
            data,
            EnvelopmentModelInputOriented(
                generate_upper_bound_for_efficiency_score),
            DisposableVarsConstraintCreator(set(['I2', 'O1']))))
    model = MaximizeSlacksModel(model)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_optimal_solution_status_and_sizes(
        model_solution, data)
    dmus = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
    utils_for_tests.check_efficiency_scores(
        dmus, [1, 0.86998617, 1, 1, 1, 1, 1, 1, 1, 0.6386574, 1],
        model_solution, data)
    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_max_slacks_weakly_disp_vars_output.xls')
    clean_up_pickled_files()
def test_super_efficiency_medium(DEA_example2_data):
    data = DEA_example2_data
    data.add_input_category('I1')
    data.add_input_category('I2')
    data.add_input_category('I3')
    data.add_output_category('O1')
    data.add_output_category('O2')
    model = EnvelopmentModelBase(
        data,
        EnvelopmentModelInputOriented(generate_supper_efficiency_upper_bound),
        DefaultConstraintCreator())
    super_efficiency_model = SupperEfficiencyModel(model)
    start_time = datetime.datetime.now()
    solution = super_efficiency_model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_optimal_solution_status_and_sizes(solution, data)
    dmus = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
    utils_for_tests.check_efficiency_scores(
        dmus,
        [1.652173892, 0.6485875732, 0.909247759,
         1.116838534, 0.5490716156, 2.485294106,
         1.244945494, 0.824120607, 2.299898658,
         0.6267333816, 1.088235274],
        solution, data, 1e-6)
    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(solution)
    work_book.save('tests/test_super_efficiency_output.xls')
def test_run_with_categorical_dmus(categorical_from_book):
    data = categorical_from_book
    model = MultiplierModelBase(data, 0,
                                MultiplierInputOrientedModel())
    categorical_model = ModelWithCategoricalDMUs(model, 'Category')
    start_time = datetime.datetime.now()
    solution = categorical_model.run()
    end_time = datetime.datetime.now()
    dmus = ['L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'L9', 'L10',
            'L11', 'L12',
            'L13', 'L14', 'L15', 'L16', 'L17', 'L18', 'L19', 'L20',
            'L21', 'L22', 'L23']
    utils_for_tests.check_efficiency_scores(dmus, [0.377, 0.879, 0.936, 1, 1, 1,
                                                   0.743, 0.648, 1, 0.815,
                                                   0.646,
                                                   0.835, 0.794, 0.835, 1,
                                                   0.687, 1, 0.787, 1,
                                                   0.849, 0.787, 0.681, 1],
                                            solution, data, 1e-3)
    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds(),
                       categorical='Category')
    writer.write_data(solution)
    work_book.save('tests/test_categorical_output.xls')
def test_run_with_categorical_dmus(categorical_from_book):
    data = categorical_from_book
    model = MultiplierModelBase(data, 0,
                                MultiplierInputOrientedModel())
    categorical_model = ModelWithCategoricalDMUs(model, 'Category')
    start_time = datetime.datetime.now()
    solution = categorical_model.run()
    end_time = datetime.datetime.now()
    dmus = ['L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7', 'L8', 'L9', 'L10',
            'L11', 'L12',
            'L13', 'L14', 'L15', 'L16', 'L17', 'L18', 'L19', 'L20',
            'L21', 'L22', 'L23']
    utils_for_tests.check_efficiency_scores(dmus, [0.377, 0.879, 0.936, 1, 1, 1,
                                                   0.743, 0.648, 1, 0.815,
                                                   0.646,
                                                   0.835, 0.794, 0.835, 1,
                                                   0.687, 1, 0.787, 1,
                                                   0.849, 0.787, 0.681, 1],
                                            solution, data, 1e-3)
    work_book = Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds(),
                       categorical='Category')
    writer.write_data(solution)
    work_book.save('tests/test_categorical_output.xls')
Example #13
0
def test_write_data_xls(model):
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    work_book = xlwt.Workbook()
    params = Parameters()
    writer = XLSWriter(params, work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_output.xls')
def test_price_ratio_restrictions_env_model(data):
    model = EnvelopmentModelBase(data,
                                 EnvelopmentModelInputOriented(
                                     generate_upper_bound_for_efficiency_score),
                                 DefaultConstraintCreator())

    bounds = {('I1', 'I2'): (None, 0.4), ('O1', 'O2'): (0.01, None)}
    model = EnvelopmentModelWithPriceRatioConstraints(model, bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_price_ratio_constraints(
        model_solution, bounds)

    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_price_ratio_env_output.xls')
def test_virual_restrictions_env_model(data):
    model = EnvelopmentModelBase(data,
                                 EnvelopmentModelInputOriented(
                                     generate_upper_bound_for_efficiency_score),
                                 DefaultConstraintCreator())

    bounds = {'I2': (0.01, 0.5)}
    model = EnvelopmentModelWithVirtualWeightRestrictions(model, bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_virtual_limits(
        model_solution, bounds)

    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_virtual_constraints_env_output.xls')
Example #16
0
 def post_process_solutions(self, solutions, params, param_strs, all_ranks,
                            run_date, total_seconds):
     ''' See base class.
     '''
     output_file = auto_name_if_needed(self.params, self.output_format,
                                       self.output_dir)
     if output_file:
         categorical = self.params.get_parameter_value(
             'CATEGORICAL_CATEGORY')
         if not categorical.strip():
             categorical = None
         if output_file.endswith('.xls'):
             work_book = xlwt.Workbook()
         elif output_file.endswith('.xlsx'):
             work_book = XlsxWorkbook()
         elif output_file.endswith('.csv'):
             work_book = TxtWriter(os.path.splitext(output_file)[0])
         else:
             raise ValueError(
                 'File {0} has unsupported output format'.format(
                     output_file))
         writer = XLSWriter(self.params,
                            work_book,
                            run_date,
                            total_seconds,
                            ranks=all_ranks,
                            categorical=categorical)
         try:
             for count, sol in enumerate(solutions):
                 writer.write_data(sol, param_strs[count])
             work_book.save(output_file)
         except ValueError:
             work_book = TxtWriter(os.path.splitext(output_file)[0])
             writer = XLSWriter(self.params,
                                work_book,
                                run_date,
                                total_seconds,
                                ranks=all_ranks,
                                categorical=categorical)
             for count, sol in enumerate(solutions):
                 writer.write_data(sol, param_strs[count])
             work_book.save(output_file)
def test_virual_restrictions_env_model(data):
    model = EnvelopmentModelBase(
        data,
        EnvelopmentModelInputOriented(
            generate_upper_bound_for_efficiency_score),
        DefaultConstraintCreator())

    bounds = {'I2': (0.01, 0.5)}
    model = EnvelopmentModelWithVirtualWeightRestrictions(model, bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_virtual_limits(
        model_solution, bounds)

    work_book = Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_virtual_constraints_env_output.xls')
def test_price_ratio_restrictions_env_model(data):
    model = EnvelopmentModelBase(
        data,
        EnvelopmentModelInputOriented(
            generate_upper_bound_for_efficiency_score),
        DefaultConstraintCreator())

    bounds = {('I1', 'I2'): (None, 0.4), ('O1', 'O2'): (0.01, None)}
    model = EnvelopmentModelWithPriceRatioConstraints(model, bounds)
    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    utils_for_tests.check_if_category_is_within_price_ratio_constraints(
        model_solution, bounds)

    work_book = Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_price_ratio_env_output.xls')
Example #19
0
def test_peel_the_onion_CRS_multi_output_oriented(DEA_example2_data):
    model = _create_large_model_CRS_multi_output_oriented_with_non_discretionary(
        DEA_example2_data)
    start_time = datetime.datetime.now()
    solution, ranks, state = peel_the_onion_method(model)
    end_time = datetime.datetime.now()
    _check_large_model_CRS_multi_output_oriented_with_non_discretionary(
        solution, model.input_data)
    dmus = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
    expected_ranks = [1, 3, 2, 1, 3, 1, 1, 2, 1, 2, 1]
    utils_for_tests.check_onion_ranks(
        model.input_data, dmus, expected_ranks, ranks)

    work_book = Workbook()
    ranks_as_list = []
    ranks_as_list.append(ranks)
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds(),
                       ranks=ranks_as_list)
    writer.write_data(solution)
    work_book.save('tests/test_peel_the_onion.xls')
def test_super_efficiency_with_VRS(DEA_example2_data):
    data = DEA_example2_data
    data.add_input_category('I1')
    data.add_input_category('I2')
    data.add_input_category('I3')
    data.add_output_category('O1')
    data.add_output_category('O2')
    model = EnvelopmentModelBase(
        data,
        EnvelopmentModelInputOriented(generate_supper_efficiency_upper_bound),
        DefaultConstraintCreator())
    model = EnvelopmentModelVRSDecorator(model)
    super_efficiency_model = SupperEfficiencyModel(model)
    start_time = datetime.datetime.now()
    solution = super_efficiency_model.run()
    end_time = datetime.datetime.now()
    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(solution)
    work_book.save('tests/test_super_efficiency_with_VRS.xls')
Example #21
0
def test_super_efficiency_with_VRS(DEA_example2_data):
    data = DEA_example2_data
    data.add_input_category('I1')
    data.add_input_category('I2')
    data.add_input_category('I3')
    data.add_output_category('O1')
    data.add_output_category('O2')
    model = EnvelopmentModelBase(
        data,
        EnvelopmentModelInputOriented(generate_supper_efficiency_upper_bound),
        DefaultConstraintCreator())
    model = EnvelopmentModelVRSDecorator(model)
    super_efficiency_model = SupperEfficiencyModel(model)
    start_time = datetime.datetime.now()
    solution = super_efficiency_model.run()
    end_time = datetime.datetime.now()
    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(solution)
    work_book.save('tests/test_super_efficiency_with_VRS.xls')
def test_peel_the_onion_CRS_multi_output_oriented(DEA_example2_data):
    model = _create_large_model_CRS_multi_output_oriented_with_non_discretionary(
        DEA_example2_data)
    start_time = datetime.datetime.now()
    solution, ranks, state = peel_the_onion_method(model)
    end_time = datetime.datetime.now()
    _check_large_model_CRS_multi_output_oriented_with_non_discretionary(
        solution, model.input_data)
    dmus = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K']
    expected_ranks = [1, 3, 2, 1, 3, 1, 1, 2, 1, 2, 1]
    utils_for_tests.check_onion_ranks(
        model.input_data, dmus, expected_ranks, ranks)

    work_book = xlwt.Workbook()
    ranks_as_list = []
    ranks_as_list.append(ranks)
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds(),
                       ranks=ranks_as_list)
    writer.write_data(solution)
    work_book.save('tests/test_peel_the_onion.xls')
def test_abs_restrictions_env_model_output(data):
    filename = 'tests/DEA_Harish_parameters.txt'
    params = parse_parameters_from_file(filename)
    categories, data, dmu_name, sheet_name = read_data(
        params.get_parameter_value('DATA_FILE'))
    coefficients, has_same_dmus = convert_to_dictionary(data)
    model_input = construct_input_data_instance(categories, coefficients)
    models, all_params = build_models(params, model_input)
    assert len(models) == 1 and len(all_params) == 1
    model = models[0]

    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    bounds = {'Urban Roads (%)': (None, 0.003)}
    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, bounds)

    work_book = xlwt.Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_abs_constraints_env_outoriented_output.xls')
def test_abs_restrictions_env_model_output(data):
    filename = 'tests/DEA_Harish_parameters.txt'
    params = parse_parameters_from_file(filename)
    categories, data, dmu_name, sheet_name = read_data(
        params.get_parameter_value('DATA_FILE'))
    coefficients, has_same_dmus = convert_to_dictionary(data)
    model_input = construct_input_data_instance(categories, coefficients)
    models, all_params = build_models(params, model_input)
    assert len(models) == 1 and len(all_params) == 1
    model = models[0]

    start_time = datetime.datetime.now()
    model_solution = model.run()
    end_time = datetime.datetime.now()
    bounds = {'Urban Roads (%)': (None, 0.003)}
    utils_for_tests.check_if_category_is_within_abs_limits(
        model_solution, bounds)

    work_book = Workbook()
    writer = XLSWriter(Parameters(), work_book, datetime.datetime.today(),
                       (end_time - start_time).total_seconds())
    writer.write_data(model_solution)
    work_book.save('tests/test_abs_constraints_env_outoriented_output.xls')
    def on_save_solution(self):
        ''' Saves solution to file.

            This method is called when save solution button is pressed.
            If there is a solution, this method will ask user to provide
            a file name where solution should be stored. If a valid name
            is provided,
            solution is saved to that file. Allowed file formats are:
            .xls and .xlsx.
            Default file extension is .xlsx.

            If the user checked 'csv' as solution output format, then
            the user will be asked to choose a directory where all csv files
            will be written.
        '''
        if self.model_solutions is not None:
            assert(self.param_strs is not None)
            if (self.solution_format_var.get() == 1 or
                    self.solution_format_var.get() == 2):
                file_name = self.ask_file_name_to_save(
                    self.solution_format_var.get())
                dir_name = ''
            else:
                dir_name = askdirectory()
                file_name = ''
            if file_name or dir_name:
                print(file_name)
                self.status_lbl.config(text='Saving solution to file...')
                if file_name.endswith('.xls'):
                    work_book = xlwt.Workbook()
                elif file_name.endswith('.xlsx'):
                    work_book = XlsxWorkbook()
                else:
                    # all not supported formats will be written to csv
                    assert(dir_name)
                    work_book = TxtWriter(dir_name)
                writer = XLSWriter(self.params, work_book, self.run_date,
                                   self.total_seconds,
                                   ranks=self.ranks,
                                   categorical=self.categorical)
                nb_models = len(self.model_solutions)
                # +1 for parameters sheet, it is stored separately
                nb_sheets = len(writer.worksheets) + 1
                progress_recorder = GuiProgress(self.progress_bar, nb_models,
                                                nb_sheets)

                try:
                    for count, sol in enumerate(self.model_solutions):
                        writer.write_data(sol, self.param_strs[count],
                                          progress_recorder)
                    work_book.save(file_name)
                except ValueError:
                    # can happen if maximum number of rows is exceeded
                    self.status_lbl.config(
                        text='File is too large for xls format,'
                        ' it will be saved to csv instead')
                    work_book = TxtWriter(os.path.splitext(file_name)[0])
                    writer = XLSWriter(self.params, work_book, self.run_date,
                                       self.total_seconds,
                                       ranks=self.ranks,
                                       categorical=self.categorical)
                    progress_recorder.set_position(0)
                    for count, sol in enumerate(self.model_solutions):
                        writer.write_data(sol, self.param_strs[count],
                                          progress_recorder)
                    work_book.save(file_name)
                progress_recorder.set_position(100)
                self.parent.change_solution_tab_name('Solution')
                self.status_lbl.config(text='Solution saved')
Example #26
0
    def on_save_solution(self):
        ''' Saves solution to file.

            This method is called when save solution button is pressed.
            If there is a solution, this method will ask user to provide
            a file name where solution should be stored. If a valid name
            is provided,
            solution is saved to that file. Allowed file formats are:
            .xls and .xlsx.
            Default file extension is .xlsx.

            If the user checked 'csv' as solution output format, then
            the user will be asked to choose a directory where all csv files
            will be written.
        '''
        if self.model_solutions is not None:
            assert (self.param_strs is not None)
            if (self.solution_format_var.get() == 1
                    or self.solution_format_var.get() == 2):
                file_name = self.ask_file_name_to_save(
                    self.solution_format_var.get())
                dir_name = ''
            else:
                dir_name = askdirectory()
                file_name = ''
            if file_name or dir_name:
                print(file_name)
                self.status_lbl.config(text='Saving solution to file...')
                if file_name.endswith('.xls'):
                    work_book = xlwt.Workbook()
                elif file_name.endswith('.xlsx'):
                    work_book = XlsxWorkbook()
                else:
                    # all not supported formats will be written to csv
                    assert (dir_name)
                    work_book = TxtWriter(dir_name)
                writer = XLSWriter(self.params,
                                   work_book,
                                   self.run_date,
                                   self.total_seconds,
                                   ranks=self.ranks,
                                   categorical=self.categorical)
                nb_models = len(self.model_solutions)
                # +1 for parameters sheet, it is stored separately
                nb_sheets = len(writer.worksheets) + 1
                progress_recorder = GuiProgress(self.progress_bar, nb_models,
                                                nb_sheets)

                try:
                    for count, sol in enumerate(self.model_solutions):
                        writer.write_data(sol, self.param_strs[count],
                                          progress_recorder)
                    work_book.save(file_name)
                except ValueError:
                    # can happen if maximum number of rows is exceeded
                    self.status_lbl.config(
                        text='File is too large for xls format,'
                        ' it will be saved to csv instead')
                    work_book = TxtWriter(os.path.splitext(file_name)[0])
                    writer = XLSWriter(self.params,
                                       work_book,
                                       self.run_date,
                                       self.total_seconds,
                                       ranks=self.ranks,
                                       categorical=self.categorical)
                    progress_recorder.set_position(0)
                    for count, sol in enumerate(self.model_solutions):
                        writer.write_data(sol, self.param_strs[count],
                                          progress_recorder)
                    work_book.save(file_name)
                progress_recorder.set_position(100)
                self.parent.change_solution_tab_name('Solution')
                self.status_lbl.config(text='Solution saved')