Example #1
0
def plot_distribution(ax, cmap, probabilitydist, fig, time_from, reference_data=None):
    """
    Plot forecasted ProbabilityDistribution objects on a matplotlib axis

    :param ax: matplotlib axis
    :param cmap: matplotlib colormap name
    :param probabilitydist: list of ProbabilityDistribution objects
    :param fig: matplotlib figure
    :param time_from: starting time (on x axis) to begin the plots
    :param reference_data:
    :return:
    """
    from matplotlib.patches import Rectangle
    from matplotlib.collections import PatchCollection
    patches = []
    colors = []
    for ct, dt in enumerate(probabilitydist):
        disp = 0.0
        if reference_data is not None:
            disp = reference_data[time_from+ct]

        for y in dt.bins:
            s = Rectangle((time_from+ct, y+disp), 1, dt.resolution, fill=True, lw = 0)
            patches.append(s)
            colors.append(dt.density(y))
    scale = Transformations.Scale()
    colors = scale.apply(colors)
    pc = PatchCollection(patches=patches, match_original=True)
    pc.set_clim([0, 1])
    pc.set_cmap(cmap)
    pc.set_array(np.array(colors))
    ax.add_collection(pc)
    cb = fig.colorbar(pc, ax=ax)
    cb.set_label('Density')
Example #2
0
def plot_distribution(ax,
                      cmap,
                      probabilitydist,
                      fig,
                      time_from,
                      reference_data=None):
    from matplotlib.patches import Rectangle
    from matplotlib.collections import PatchCollection
    patches = []
    colors = []
    for ct, dt in enumerate(probabilitydist):
        disp = 0.0
        if reference_data is not None:
            disp = reference_data[time_from + ct]

        for y in dt.bins:
            s = Rectangle((time_from + ct, y + disp),
                          1,
                          dt.resolution,
                          fill=True,
                          lw=0)
            patches.append(s)
            colors.append(dt.density(y))
    scale = Transformations.Scale()
    colors = scale.apply(colors)
    pc = PatchCollection(patches=patches, match_original=True)
    pc.set_clim([0, 1])
    pc.set_cmap(cmap)
    pc.set_array(np.array(colors))
    ax.add_collection(pc)
    cb = fig.colorbar(pc, ax=ax)
    cb.set_label('Density')
Example #3
0
    def __init__(self, **kwargs):
        self.h = kwargs.get('h', .5)
        """Width parameter"""
        self.kernel = kwargs.get("kernel", "epanechnikov")
        """Kernel function"""
        self.data = kwargs.get("data", None)
        self.transf = Transformations.Scale(min=0, max=1)

        if self.data is not None:
            self.data = self.transf.apply(self.data)
Example #4
0
    def build(self, data):
        diff = Transformations.Differential(1)
        data2 = diff.apply(data)
        davg = np.abs(np.mean(data2) / 2)

        if davg <= 1.0:
            base = 0.1
        elif 1 < davg <= 10:
            base = 1.0
        elif 10 < davg <= 100:
            base = 10
        else:
            base = 100

        sets = {}

        kwargs = {'type': self.type, 'variable': self.variable}

        dlen = self.max - self.min
        npart = math.ceil(dlen / base)
        partition = math.ceil(self.min)
        for c in range(npart):
            _name = self.get_name(c)
            if self.membership_function == Membership.trimf:
                sets[_name] = FuzzySet.FuzzySet(
                    _name, Membership.trimf,
                    [partition - base, partition, partition + base], partition,
                    **kwargs)
            elif self.membership_function == Membership.gaussmf:
                sets[_name] = FuzzySet.FuzzySet(_name, Membership.gaussmf,
                                                [partition, base / 2],
                                                partition)
            elif self.membership_function == Membership.trapmf:
                sets[_name] = FuzzySet.FuzzySet(_name, Membership.trapmf, [
                    partition - base, partition - (base / 2), partition +
                    (base / 2), partition + base
                ], partition, **kwargs)

            partition += base

        return sets
Example #5
0
 def __init__(self,h, kernel="epanechnikov"):
     self.h = h
     """Width parameter"""
     self.kernel = kernel
     """Kernel function"""
     self.transf = Transformations.Scale(min=0,max=1)
Example #6
0
#!/usr/bin/python
# -*- coding: utf8 -*-

import os
import numpy as np
import matplotlib.pylab as plt
#from mpl_toolkits.mplot3d import Axes3D

import pandas as pd
from pyFTS.common import Transformations

tdiff = Transformations.Differential(1)

from pyFTS.data import TAIEX, SP500, NASDAQ

dataset = TAIEX.get_data()
#dataset = SP500.get_data()[11500:16000]
#dataset = NASDAQ.get_data()
#print(len(dataset))

from pyFTS.partitioners import Grid, Util as pUtil
partitioner = Grid.GridPartitioner(data=dataset[:800], npart=10, transformation=tdiff)


from pyFTS.common import Util as cUtil
from pyFTS.benchmarks import benchmarks as bchmk, Util as bUtil, Measures, knn, quantreg, arima, naive

from pyFTS.models import pwfts, song, chen, ifts, hofts
from pyFTS.models.ensemble import ensemble

model = chen.ConventionalFTS(partitioner=partitioner)
Example #7
0
from pyFTS.data import TAIEX as tx
from pyFTS.common import Transformations

from pyFTS.data import SONDA
df = SONDA.get_dataframe()
train = df.iloc[0:578241]  #three years
test = df.iloc[1572480:2096640]  #one year
del df

from pyFTS.partitioners import Grid, Util as pUtil
from pyFTS.common import Transformations, Util
from pyFTS.models.multivariate import common, variable, mvfts
from pyFTS.models.seasonal import partitioner as seasonal
from pyFTS.models.seasonal.common import DateTime

bc = Transformations.BoxCox(0)
tdiff = Transformations.Differential(1)

np = 10

model = mvfts.MVFTS("")

fig, axes = plt.subplots(nrows=5, ncols=1, figsize=[15, 10])

sp = {
    'seasonality':
    DateTime.day_of_year,
    'names': [
        'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
        'Nov', 'Dec'
    ]
Example #8
0
def SelecaoSimples_MenorRMSE(original, parameters, modelo):
    ret = []
    errors = []
    forecasted_best = []
    print("Série Original")
    fig = plt.figure(figsize=[20, 12])
    fig.suptitle("Comparação de modelos ")
    ax0 = fig.add_axes([0, 0.5, 0.65, 0.45])  # left, bottom, width, height
    ax0.set_xlim([0, len(original)])
    ax0.set_ylim([min(original), max(original)])
    ax0.set_title('Série Temporal')
    ax0.set_ylabel('F(T)')
    ax0.set_xlabel('T')
    ax0.plot(original, label="Original")
    min_rmse = 100000.0
    best = None
    for p in parameters:
        sets = Grid.GridPartitioner(data=original, npart=p).sets
        fts = modelo(str(p) + " particoes")
        fts.train(original, sets=sets)
        # print(original)
        forecasted = fts.forecast(original)
        forecasted.insert(0, original[0])
        # print(forecasted)
        ax0.plot(forecasted, label=fts.name)
        error = Measures.rmse(np.array(forecasted), np.array(original))
        print(p, error)
        errors.append(error)
        if error < min_rmse:
            min_rmse = error
            best = fts
            forecasted_best = forecasted
    handles0, labels0 = ax0.get_legend_handles_labels()
    ax0.legend(handles0, labels0)
    ax1 = fig.add_axes([0.7, 0.5, 0.3, 0.45])  # left, bottom, width, height
    ax1.set_title('Comparação dos Erros Quadráticos Médios')
    ax1.set_ylabel('RMSE')
    ax1.set_xlabel('Quantidade de Partições')
    ax1.set_xlim([min(parameters), max(parameters)])
    ax1.plot(parameters, errors)
    ret.append(best)
    ret.append(forecasted_best)
    # Modelo diferencial
    print("\nSérie Diferencial")
    difffts = Transformations.differential(original)
    errors = []
    forecastedd_best = []
    ax2 = fig.add_axes([0, 0, 0.65, 0.45])  # left, bottom, width, height
    ax2.set_xlim([0, len(difffts)])
    ax2.set_ylim([min(difffts), max(difffts)])
    ax2.set_title('Série Temporal')
    ax2.set_ylabel('F(T)')
    ax2.set_xlabel('T')
    ax2.plot(difffts, label="Original")
    min_rmse = 100000.0
    bestd = None
    for p in parameters:
        sets = Grid.GridPartitioner(data=difffts, npart=p)
        fts = modelo(str(p) + " particoes")
        fts.train(difffts, sets=sets)
        forecasted = fts.forecast(difffts)
        forecasted.insert(0, difffts[0])
        ax2.plot(forecasted, label=fts.name)
        error = Measures.rmse(np.array(forecasted), np.array(difffts))
        print(p, error)
        errors.append(error)
        if error < min_rmse:
            min_rmse = error
            bestd = fts
            forecastedd_best = forecasted
    handles0, labels0 = ax2.get_legend_handles_labels()
    ax2.legend(handles0, labels0)
    ax3 = fig.add_axes([0.7, 0, 0.3, 0.45])  # left, bottom, width, height
    ax3.set_title('Comparação dos Erros Quadráticos Médios')
    ax3.set_ylabel('RMSE')
    ax3.set_xlabel('Quantidade de Partições')
    ax3.set_xlim([min(parameters), max(parameters)])
    ax3.plot(parameters, errors)
    ret.append(bestd)
    ret.append(forecastedd_best)
    return ret
Example #9
0
import os
import numpy as np
import matplotlib.pylab as plt

import pandas as pd

from pyFTS.common import Util as cUtil, FuzzySet
from pyFTS.partitioners import Grid, Entropy, Util as pUtil, Simple
from pyFTS.benchmarks import benchmarks as bchmk, Measures
from pyFTS.models import chen, yu, cheng, ismailefendi, hofts, pwfts, tsaur, song, sadaei, ifts
from pyFTS.models.ensemble import ensemble
from pyFTS.common import Membership, Util
from pyFTS.benchmarks import arima, quantreg, BSTS, gaussianproc, knn
from pyFTS.common import Transformations

tdiff = Transformations.Differential(1)

boxcox = Transformations.BoxCox(0)

from pyFTS.data import Enrollments, AirPassengers
'''
data = AirPassengers.get_data()

roi = Transformations.ROI()

#plt.plot(data)

_roi = roi.apply(data)

#plt.plot(_roi)
Example #10
0
 def __init__(self, h, kernel="epanechnikov"):
     self.h = h
     self.kernel = kernel
     self.transf = Transformations.Scale(min=0, max=1)
Example #11
0
from pyFTS.partitioners import Grid
from pyFTS.models import chen
from pyFTS.benchmarks import Measures
from pyFTS.common import Util as cUtil, fts
import pandas as pd
import numpy as np
import os
from pyFTS.common import Transformations
from copy import deepcopy
from pyFTS.nonstationary import flrg, util, honsfts, partitioners
from pyFTS.models.nonstationary import nsfts

bc = Transformations.BoxCox(0)

import dispy
import dispy.httpd

os.chdir("/home/petronio/Dropbox/Doutorado/Codigos/")


def evaluate_individual_model(model, partitioner, train, test, window_size, time_displacement):
    import numpy as np
    from pyFTS.partitioners import Grid
    from pyFTS.benchmarks import Measures

    try:
        model.train(train, sets=partitioner.sets, order=model.order, parameters=window_size)
        forecasts = model.forecast(test, time_displacement=time_displacement, window_size=window_size)
        _rmse = Measures.rmse(test[model.order:], forecasts[:-1])
        _mape = Measures.mape(test[model.order:], forecasts[:-1])
        _u = Measures.UStatistic(test[model.order:], forecasts[:-1])
Example #12
0
train_split = 1000
test_length = 200

from pyFTS.common import Transformations

from pyFTS.benchmarks import naive
from pyFTS.models.incremental import TimeVariant, IncrementalEnsemble
from pyFTS.models.nonstationary import common, perturbation, partitioners as nspart
from pyFTS.models.nonstationary import nsfts, util as nsUtil
from pyFTS.partitioners import Grid
from pyFTS.models import hofts, pwfts
from pyFTS.benchmarks import Measures
from pyFTS.common import Transformations, Util as cUtil

diff = Transformations.Differential(lag=1)

train = dataset[:1000]
test = dataset[1000:]

#grid = Grid.GridPartitioner(data=train, transformation=diff)
#model = pwfts.ProbabilisticWeightedFTS(partitioner=grid)
#model.append_transformation(diff)

model = naive.Naive()

model.fit(train)

for ct, ttrain, ttest in cUtil.sliding_window(test, 1000, .95, inc=.5):
    if model.shortname not in ('PWFTS', 'Naive'):
        model.predict(ttrain)