Example #1
0
def init_function_pars():

    global FUNCTION_PAR_NAMES
    global FUNCTION_NORM_PARS
    global FUNCTION_DEFAULT_PARS

    FUNCTION_PAR_NAMES = {}
    FUNCTION_NORM_PARS = {}

    funcFactory = pyLike.SourceFactory_funcFactory()

    names = pyLike.StringVector()
    funcFactory.getFunctionNames(names)

    for fname in names:

        pars = FUNCTION_DEFAULT_PARS.setdefault(fname, {})
        par_names = FUNCTION_PAR_NAMES.setdefault(fname, [])

        if 'EblAtten' in fname and fname[len('EblAtten::'
                                             ):] in FUNCTION_DEFAULT_PARS:
            pars.update(FUNCTION_DEFAULT_PARS[fname[len('EblAtten::'):]])

        fn = funcFactory.create(fname)
        try:
            FUNCTION_NORM_PARS[fname] = fn.normPar().getName()
        except Exception:
            FUNCTION_NORM_PARS[fname] = None

        params = pyLike.ParameterVector()
        fn.getParams(params)

        for i, p in enumerate(params):

            pname = p.getName()
            par_names += [pname]

            if pname == 'Scale':
                pars.setdefault(pname, DEFAULT_SCALE_DICT)
            elif pname == 'Prefactor':
                pars.setdefault(pname, DEFAULT_NORM_DICT)
            else:
                pars.setdefault(pname, {})

            bounds = p.getBounds()
            par_dict = dict(name=pname,
                            value=p.getValue(),
                            min=bounds[0],
                            max=bounds[1],
                            scale=1.0,
                            free=False)

            par_dict.update(copy.deepcopy(pars[pname]))
            par_dict['name'] = pname
            pars[pname] = par_dict
Example #2
0
 def constrain_params(self, srcNames, cov_scale=1.0):
     for name in srcNames:
         free_pars = pyLike.ParameterVector()
         self.srcs[name].funcs["Spectrum"].getFreeParams(free_pars)
         for i in range(free_pars.size()):
             par = free_pars[i]
             err = par.error()
             val = par.getValue()
             if par.error() == 0.0 or not par.isFree():
                 continue            
             self.addGaussianPrior(name, par.getName(), val, err * cov_scale)
Example #3
0
 def minosError(self, component, srcname, parname, level=1):
     freeParams = pyLike.ParameterVector()
     self.composite.getFreeParams(freeParams)
     saved_values = [par.getValue() for par in freeParams]
     indx = self._compositeIndex(component, srcname, parname)
     if indx == -1:
         raise RuntimeError("Invalid parameter specification.")
     try:
         errors = self.optObject.Minos(indx, level)
         self.composite.setFreeParamValues(saved_values)
         return errors
     except RuntimeError, message:
         print "Minos error encountered for parameter %i." % indx
         self.composite.setFreeParamValues(saved_values)
Example #4
0
def gtlike_spectrum_to_dict(spectrum):
    """ Convert a pyLikelihood object to a python dictionary which can
        be easily saved to a file."""
    parameters = pyLike.ParameterVector()
    spectrum.getParams(parameters)
    d = dict(spectrum_type=spectrum.genericName())
    for p in parameters:

        pname = p.getName()
        pval = p.getTrueValue()
        perr = abs(p.error() * p.getScale()) if p.isFree() else np.nan
        d[pname] = np.array([pval, perr])

        if d['spectrum_type'] == 'FileFunction':
            ff = pyLike.FileFunction_cast(spectrum)
            d['file'] = ff.filename()
    return d
Example #5
0
    def __init__(self, like):
        self.like = like
        self.sources = dict()

        all_names = like.sourceNames()
        self.covariance = like.covariance

        for name in all_names:

            spectrum = like[name].src.spectrum()

            parameters = pyLikelihood.ParameterVector()
            spectrum.getParams(parameters)

            self.sources[name] = d = dict(parameters=dict(), spectrum=spectrum)
            for p in parameters:
                d['parameters'][p.getName()] = _Parameter(p)
Example #6
0
def gtlike_spectrum_to_vectors(spectrum):
    """ Convert a pyLikelihood object to a python dictionary which can
        be easily saved to a file."""

    o = {'param_names': np.zeros(10, dtype='S32'),
         'param_values': np.empty(10, dtype=float) * np.nan,
         'param_errors': np.empty(10, dtype=float) * np.nan,
         }

    parameters = pyLike.ParameterVector()
    spectrum.getParams(parameters)
    for i, p in enumerate(parameters):
        o['param_names'][i] = p.getName()
        o['param_values'][i] = p.getTrueValue()
        perr = abs(p.error() * p.getScale()) if p.isFree() else np.nan
        o['param_errors'][i] = perr

    return o
Example #7
0
 def minosError(self, component_name, srcname, parname, level=1):
     freeParams = pyLike.ParameterVector()
     self.composite.getFreeParams(freeParams)
     saved_values = [par.getValue() for par in freeParams]
     indx = self._compositeIndex(component_name, srcname, parname)
     if indx == -1:
         raise RuntimeError("Invalid parameter specification")
     try:
         errors = self.optObject.Minos(indx, level)
         self.composite.setFreeParamValues(saved_values)
         return errors
     except RuntimeError, message:
         print "Minos error encountered for parameter %i." % par_index
         print "Attempting to reset free parameters."
         for tiedName, component in zip(self.srcNames, self.components):
             if component_name == tiedName:
                 component.thaw(component.par_index(srcname, parname))
                 break
         self.composite.setFreeParamValues(saved_values)
         raise RuntimeError(message)