def inhibitory_connect(layers, source, dest1, dest2, dest3, weight):
     sim.Projection(layers[source].population, layers[dest1].population,
                    sim.OneToOneConnector(),
                    sim.StaticSynapse(weight=weight))
     sim.Projection(layers[source].population, layers[dest2].population,
                    sim.OneToOneConnector(),
                    sim.StaticSynapse(weight=weight))
     sim.Projection(layers[source].population, layers[dest3].population,
                    sim.OneToOneConnector(),
                    sim.StaticSynapse(weight=weight))
Example #2
0
 def set_distal_connections(self, connections):
     for src, tgt, sgm in connections:
         soma = pynn.PopulationView(self.soma, [int(src)])
         segment = pynn.PopulationView(self.distal,
                                       [2 * int(tgt) + int(sgm)])
         pynn.Projection(soma, segment,
                         pynn.OneToOneConnector(weights=0.014))
 def connect(self):
     # connect populations
     self.injection = pynn.Projection(self.sources,
                                      self.columns,
                                      pynn.FixedProbabilityConnector(
                                          0.02, weights=0.0033 * 2),
                                      target='excitatory',
                                      rng=pynn.random.NumpyRNG(seed=5337))
     self.recurrent_excitation = pynn.Projection(
         self.columns,
         self.columns,
         pynn.OneToOneConnector(weights=0.01 * 2),
         target='excitatory')
     self.lateral_inhibition = pynn.Projection(
         self.columns,
         self.columns,
         pynn.DistanceDependentProbabilityConnector('d < 10',
                                                    weights=0.004 * 2),
         target='inhibitory',
         rng=pynn.random.NumpyRNG(seed=5337))
     self.global_inhibition = pynn.Projection(
         self.inhibitory_pool,
         self.columns,
         pynn.FixedProbabilityConnector(0.8, weights=0.0012 * 2),
         target='inhibitory',
         rng=pynn.random.NumpyRNG(seed=5337))
     self.forward_inhibition = pynn.Projection(
         self.sources,
         self.inhibitory_pool,
         pynn.FixedProbabilityConnector(0.8, weights=0.0035),
         target='excitatory',
         rng=pynn.random.NumpyRNG(seed=5337))
Example #4
0
def test_ticket244():
    nest = pyNN.nest
    nest.setup(threads=4)
    p1 = nest.Population(4, nest.IF_curr_exp())
    p1.record('spikes')
    poisson_generator = nest.Population(3, nest.SpikeSourcePoisson(rate=1000.0))
    conn = nest.OneToOneConnector()
    syn = nest.StaticSynapse(weight=1.0)
    nest.Projection(poisson_generator, p1.sample(3), conn, syn, receptor_type="excitatory")
    nest.run(15)
    p1.get_data()
def create_corner_layer_for(input_layers):
    shape = input_layers[0].shape
    total_output_neurons = np.prod(shape)

    output_population = sim.Population(total_output_neurons,
                                       sim.IF_curr_exp(),
                                       label='corner')
    for layer in input_layers:
        sim.Projection(layer.population, output_population,
                       sim.OneToOneConnector(),
                       sim.StaticSynapse(weight=1., delay=0.5))

    return Layer(output_population, shape)
Example #6
0
    def connect(self):
        n_cells = self.parameters.config.n_cells
        n_segments = self.parameters.config.n_segments

        # connect populations
        pynn.Projection(self.distal_input, self.distal,
                        pynn.OneToOneConnector(weights=0.025))

        for i in range(self.parameters.config.n_columns):
            # get "compartments" for all cells in this column
            inhibitions = self.inhibitory[i * n_cells:(i + 1) * n_cells]
            somas = self.soma[i * n_cells:(i + 1) * n_cells]
            proximal_input = pynn.PopulationView(self.proximal_input, [i])

            # set up connections with columnar symmetry
            pynn.Projection(inhibitions,
                            somas,
                            pynn.DistanceDependentProbabilityConnector(
                                'd>=1', weights=0.2),
                            target='SYN_2')  # 4
            pynn.Projection(proximal_input,
                            somas,
                            pynn.AllToAllConnector(weights=0.08),
                            target='SYN_1')  # 1
            pynn.Projection(proximal_input, inhibitions,
                            pynn.AllToAllConnector(weights=0.042))  # 2

            for j in range(self.parameters.config.n_cells):
                # get "compartments" for this specific cell
                segments = self.distal[i * n_cells * n_segments + j *
                                       n_segments:i * n_cells * n_segments +
                                       (j + 1) * n_segments]
                inhibition = pynn.PopulationView(self.inhibitory,
                                                 [i * n_cells + j])
                soma = pynn.PopulationView(self.soma, [i * n_cells + j])

                # set up connections with cellular symmetry
                pynn.Projection(segments,
                                inhibition,
                                pynn.AllToAllConnector(weights=0.15),
                                target='inhibitory')  # 3
                pynn.Projection(segments,
                                soma,
                                pynn.AllToAllConnector(weights=0.15),
                                target='SYN_3')  # 3
Example #7
0
    def connect(self):
        """Setup connections between populations"""

        params = self.parameters.projections

        # generate weights with normal distributed jitter and set up stimulus
        w = params.stimulus.weight + np.random.normal(
            0, params.stimulus.jitter, len(self.columns))
        stimulus_connector = pynn.OneToOneConnector(weights=w)
        pynn.Projection(self.stimulus, self.columns, stimulus_connector)

        # projection to accumulate/count the number of active columns
        accumulation_connector = pynn.AllToAllConnector(
            weights=params.accumulation.weight)
        pynn.Projection(self.columns, self.kill_switch, accumulation_connector)

        # projection to inhibit all columns
        inhibition_connector = pynn.AllToAllConnector(
            weights=params.inhibition.weight)
        pynn.Projection(self.kill_switch,
                        self.columns,
                        inhibition_connector,
                        target='inhibitory')

        # forward inhibition
        forward_inhibition_connector = pynn.FixedProbabilityConnector(
            params.forward_inhibition.probability,
            weights=params.forward_inhibition.weight)
        pynn.Projection(self.stimulus,
                        self.columns,
                        forward_inhibition_connector,
                        target='inhibitory')

        # calculate connectivity matrix
        n_columns = self.parameters.populations.columns.size
        n_inputs = self.parameters.config.input_size
        self.connections = (np.random.uniform(0, 1, n_columns * n_inputs) >
                            0.60).reshape(len(self.columns),
                                          n_inputs).astype(np.int64)
        self.permanences = np.random.normal(.3, .05,
                                            n_columns * n_inputs).reshape(
                                                len(self.columns), n_inputs)
def test_callback(data_input):
    global message
    message = data_input.actual.positions
    msg_list = list(message)

    #msg_list[0] = int(message[0].encode('hex'),16)
    #for i in
    #msg_list = int(message.encode('hex'),16)

    #print('============= Received image data.',message)
    rospy.loginfo('=====received data %r', msg_list[0])
    timer = Timer()
    dt = 0.1
    p.setup(timestep=dt)  # 0.1ms

    pop_1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1")
    #input = p.Population(1, p.SpikeSourceArray, {'spike_times': [[0,3,6]]}, label='input')
    input = p.Population(1, p.SpikeSourcePoisson,
                         {'rate': (msg_list[0] + 1.6) * 100})
    stat_syn = p.StaticSynapse(weight=50.0, delay=1)
    input_proj = p.Projection(input,
                              pop_1,
                              p.OneToOneConnector(),
                              synapse_type=stat_syn,
                              receptor_type='excitatory')

    pop_1.record(['v', 'spikes'])
    p.run(10)
    pop_1_data = pop_1.get_data()

    spikes = pop_1_data.segments[0].spiketrains[0]
    mean_rate = int(gaussian_convolution(spikes, dt))
    rospy.loginfo('=====mean_rate %r', mean_rate)  # mean_rate = 64
    rate_command = mean_rate
    # rate coding of the spike train
    '''
    pub = rospy.Publisher('/cmd_vel_mux/input/teleop', Twist, queue_size=10)
    # construct the output command
    command = Twist()
    command.linear.x = rate_command*0.02
    command.angular.z = rate_command/50000.
    pub.publish(command)
    '''
    pub = rospy.Publisher('/arm_controller/follow_joint_trajectory/goal',
                          FollowJointTrajectoryActionGoal,
                          queue_size=10)
    command = FollowJointTrajectoryActionGoal()
    command.header.stamp = rospy.Time.now()
    command.goal.trajectory.joint_names = ['elbow']
    point = JointTrajectoryPoint()
    point.positions = [rate_command / 10]
    point.time_from_start = rospy.Duration(1)
    command.goal.trajectory.points.append(point)
    pub.publish(command)
    rospy.loginfo('=====send command %r', command.goal.trajectory.points[0])

    fig_settings = {
        'lines.linewidth': 0.5,
        'axes.linewidth': 0.5,
        'axes.labelsize': 'small',
        'legend.fontsize': 'small',
        'font.size': 8
    }
    plt.rcParams.update(fig_settings)
    fig1 = plt.figure(1, figsize=(6, 8))

    def plot_spiketrains(segment):
        for spiketrain in segment.spiketrains:
            y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']
            plt.plot(spiketrain, y, '.')
            plt.ylabel(segment.name)
            plt.setp(plt.gca().get_xticklabels(), visible=False)

    def plot_signal(signal, index, colour='b'):
        label = "Neuron %d" % signal.annotations['source_ids'][index]
        plt.plot(signal.times, signal[:, index], colour, label=label)
        plt.ylabel("%s (%s)" %
                   (signal.name, signal.units._dimensionality.string))
        plt.setp(plt.gca().get_xticklabels(), visible=False)
        plt.legend()

    print("now plotting the network---------------")
    rospy.loginfo('--------now plotting---------------')
    n_panels = sum(a.shape[1]
                   for a in pop_1_data.segments[0].analogsignalarrays) + 2
    plt.subplot(n_panels, 1, 1)
    plot_spiketrains(pop_1_data.segments[0])
    panel = 3
    for array in pop_1_data.segments[0].analogsignalarrays:
        for i in range(array.shape[1]):
            plt.subplot(n_panels, 1, panel)
            plot_signal(array, i, colour='bg'[panel % 2])
            panel += 1
    plt.xlabel("time (%s)" % array.times.units._dimensionality.string)
    plt.setp(plt.gca().get_xticklabels(), visible=True)  #
Example #9
0
# cells.initialize('regime', 1002) # temporary hack
cells.initialize('Regime9ML', 1.0)  # temporary hack

# from numpy import r

input = sim.Population(3, sim.SpikeSourceArray)

numpy.random.seed(12345)
input[0].spike_times = numpy.add.accumulate(
    numpy.random.exponential(1000.0 / 100.0, size=1000))
input[1].spike_times = numpy.add.accumulate(
    numpy.random.exponential(1000.0 / 20.0, size=1000))
input[2].spike_times = numpy.add.accumulate(
    numpy.random.exponential(1000.0 / 50.0, size=1000))

connector = sim.OneToOneConnector(weights=1.0, delays=0.5)

conn = [
    sim.Projection(input[0:1], cells, connector, target='AMPA_spikeinput'),
    sim.Projection(input[1:2], cells, connector, target='GABAa_spikeinput'),
    sim.Projection(input[2:3], cells, connector, target='GABAb_spikeinput')
]

cells._record('iaf_V')
cells._record('AMPA_g')
cells._record('GABAa_g')
cells._record('GABAb_g')
cells.record()

sim.run(100.0)
Example #10
0
V1 = network.get_population("V1LayerToPlot")
V2 = network.get_population("V2LayerToPlot")
V4Bright = network.get_population("V4Brightness")
V4Dark = network.get_population("V4Darkness")
LGNBright.record("spikes")
LGNDark.record("spikes")
V1.record("spikes")
V2.record("spikes")
V4Bright.record("spikes")
V4Dark.record("spikes")
if inputPoisson:
    LGNBrightInput = sim.Population(ImageNumPixelRows * ImageNumPixelColumns,
                                    sim.SpikeSourcePoisson())
    LGNDarkInput = sim.Population(ImageNumPixelRows * ImageNumPixelColumns,
                                  sim.SpikeSourcePoisson())
    sim.Projection(LGNBrightInput, LGNBright, sim.OneToOneConnector(),
                   sim.StaticSynapse(weight=connections['brightInputToLGN']))
    sim.Projection(LGNDarkInput, LGNDark, sim.OneToOneConnector(),
                   sim.StaticSynapse(weight=connections['darkInputToLGN']))
if numSegmentationLayers > 1:
    if useSurfaceSegmentation:
        SurfaceSegmentationOff = network.get_population(
            "SurfaceSegmentationOff")
        SurfaceSegmentationOn = network.get_population("SurfaceSegmentationOn")
    if useBoundarySegmentation:
        BoundarySegmentationOff = network.get_population(
            "BoundarySegmentationOff")
        BoundarySegmentationOn = network.get_population(
            "BoundarySegmentationOn")
        network.get_population("BoundarySegmentationOnInter3").inject(
            sim.DCSource(amplitude=constantInput, start=0.0, stop=simTime))
Example #11
0
                           sim.IF_cond_alpha(**cell_params),
                           label="inhib_pop")

spike_source_1 = sim.Population(
    1, sim.SpikeSourceArray(spike_times=spike_time_for_id_1))
spike_source_2 = sim.Population(
    1, sim.SpikeSourceArray(spike_times=spike_time_for_id_2))
spike_source_3 = sim.Population(
    1, sim.SpikeSourceArray(spike_times=spike_time_for_id_3))
spike_source_4 = sim.Population(
    1, sim.SpikeSourceArray(spike_times=spike_time_for_id_4))
spike_source_9 = sim.Population(
    1, sim.SpikeSourceArray(spike_times=spike_time_for_id_9))

spike_2_conn_for_1 = sim.Projection(spike_source_1, cann_pop[1:2],
                                    sim.OneToOneConnector(),
                                    sim.StaticSynapse(weight=0.002, delay=0.1))
spike_2_conn_for_2 = sim.Projection(spike_source_2, cann_pop[2:3],
                                    sim.OneToOneConnector(),
                                    sim.StaticSynapse(weight=0.002, delay=0.1))
spike_2_conn_for_3 = sim.Projection(spike_source_3, cann_pop[3:4],
                                    sim.OneToOneConnector(),
                                    sim.StaticSynapse(weight=0.002, delay=0.1))
spike_2_conn_for_4 = sim.Projection(spike_source_4, cann_pop[4:5],
                                    sim.OneToOneConnector(),
                                    sim.StaticSynapse(weight=0.002, delay=0.1))
spike_2_conn_for_9 = sim.Projection(spike_source_9, cann_pop[9:10],
                                    sim.OneToOneConnector(),
                                    sim.StaticSynapse(weight=0.002, delay=0.1))

cann_2_cann = sim.Projection(
Example #12
0
#generate_spike_times = [[0], [500], [1000], [1500], [2000], [2500], [3000],
#                       [3500], [4000], [4500]] #, [5000]]
#spike_source = sim.Population(n_neurons,
#                              sim.SpikeSourceArray(
#                                  spike_times = generate_spike_times))

spike_source = sim.Population(
    n_neurons, sim.SpikeSourceArray(spike_times=[0, 1000, 3000]))

# populations and projections
layer_1 = sim.Population(n_neurons, sim.IF_curr_alpha(), label="layer_1")
'''
layer_2 = sim.Population(n_neurons, sim.IF_curr_alpha(),
                         label = "layer_2")
'''
proj_src_2_l1 = sim.Projection(spike_source, layer_1, sim.OneToOneConnector())
'''
proj_l1_2_l2 = sim.Projection(layer_1, layer_2, 
                              sim.OneToOneConnector())
'''
sim.run(sim_time)

layer_1.record(('spikes', 'v'))
#layer_2.record(['spikes', 'v'])
#layer_1.record(['v', 'spikes'])
#layer_2.record(['v', 'spikes'])

# plot the spikes
data_1 = layer_1.get_data().segments[0]
vm = data_1.filter(name="v")
Figure(Panel(vm, ylabel="Memb. Pot."),
Example #13
0
            '''

            #output poission
            pop = p.Population(
                num_output,
                p.SpikeSourcePoisson,
                {
                    'rate': MIN_rate,  #test_x[i],
                    'start': (epo * num_epo + i) * (dur_train + silence),
                    'duration': dur_train
                })
            temp_popv = p.PopulationView(pop, np.nonzero(train_y[ind])[0])
            temp_popv.set('rate', teaching_rate)
            TeachingPoission.append(pop)
    #print ImagePoission[10].get('start')
    ee_connector = p.OneToOneConnector(weights=3.0)
    for i in range(num_train * num_epo * 1):
        p.Projection(ImagePoission[i],
                     pop_input,
                     ee_connector,
                     target='excitatory')
    pop_output = p.Population(num_output, p.IF_curr_exp, cell_params_lif)

    weight_max = 1.3
    stdp_model = p.STDPMechanism(
        timing_dependence=p.SpikePairRule(tau_plus=10., tau_minus=10.0),
        weight_dependence=p.MultiplicativeWeightDependence(w_min=0.0,
                                                           w_max=weight_max,
                                                           A_plus=0.01,
                                                           A_minus=0.01)
        #AdditiveWeightDependence
Example #14
0
                                            label='Background Noise')
    background_noise_to_exc = simulator.Projection(
        noise_population, cortical_neurons_exc, simulator.AllToAllConnector(),
        noise_syn)
    background_noise_to_inh = simulator.Projection(
        noise_population, cortical_neurons_inh, simulator.AllToAllConnector(),
        noise_syn)
else:
    # If correlated is False, all cortical neurons receive independent noise
    noise_population_exc = simulator.Population(
        Ncell_exc**2, noise_model, label='Background Noise to Exc')
    noise_population_inh = simulator.Population(
        Ncell_inh**2, noise_model, label='Background Noise to Inh')
    background_noise_to_exc = simulator.Projection(
        noise_population_exc, cortical_neurons_exc,
        simulator.OneToOneConnector(), noise_syn)
    background_noise_to_inh = simulator.Projection(
        noise_population_inh, cortical_neurons_inh,
        simulator.OneToOneConnector(), noise_syn)

#############################
## Thalamo-Cortical connections
#############################

# Sample random phases and orientations

phases_space = np.linspace(-180, 180, 20)
orientation_space = np.linspace(-90, 90, 20)

phases_exc = np.random.rand(Ncell_exc**2) * 360  # Phases continium
#phases_exc = np.random.choice(phases_space, Ncell_exc*2) # Phases discrete
Example #15
0
    spike_times = spike_input))
neg_spike_src = sim.Population(1, sim.SpikeSourceArray(
    spike_times = neg_spike_times))

#spike_2_conn_for_1 = sim.Projection(spike_source_1, hd_cann_pop[1:2], sim.OneToOneConnector(),
#                      sim.StaticSynapse(weight = 0.002, delay = 0.1))
#spike_2_conn_for_2 = sim.Projection(spike_source_2, hd_cann_pop[2:3], sim.OneToOneConnector(),
#                      sim.StaticSynapse(weight = 0.002, delay = 0.1))
spike_2_conn_for_3 = sim.Projection(hd_spike_src, hd_cann_pop[3:4], sim.AllToAllConnector(),
                      sim.StaticSynapse(weight = 0.002, delay = 0.1))
#spike_2_conn_for_4 = sim.Projection(spike_source_4, hd_cann_pop[4:5], sim.OneToOneConnector(),
#                      sim.StaticSynapse(weight = 0.002, delay = 0.1))
#spike_2_conn_for_9 = sim.Projection(spike_source_9, hd_cann_pop[9:10], sim.OneToOneConnector(),
#                     sim.StaticSynapse(weight = 0.002, delay = 0.1))

pos_spikes = sim.Projection(pos_spike_src, pos_rot_conj[3:4], sim.OneToOneConnector(),
                            sim.StaticSynapse(weight = 0.2, delay = 0.1))

neg_spikes = sim.Projection(neg_spike_src, neg_rot_conj[4:5], sim.OneToOneConnector(),
                            sim.StaticSynapse(weight = 0.2, delay = 0.1))

# Connections/ Projections

hd_cann_2_hd_cann = sim.Projection(hd_cann_pop, hd_cann_pop, 
                                   sim.FromListConnector(hd_cann_connector, column_names=["weight"]),
                                   sim.StaticSynapse(weight = 0.0001, delay = 75))

hd_cann_2_inh = sim.Projection(hd_cann_pop, inhib_pop, sim.AllToAllConnector(),
                               sim.StaticSynapse(weight = 0.02, delay = 0.1),
                               receptor_type = "excitatory")
def create_brain():
	"""
	Initializes PyNN with the neuronal network that has to be simulated for the experiment
	"""

	GR_PARAMS = {'cm': 0.002,
                 'v_rest': -70.0,
                 'tau_m': 100.0,
                 'e_rev_E': 0.0,
                 'e_rev_I': -75.0,
                 'v_reset': -70.0,
                 'v_thresh': -40.0,
                 'tau_refrac': 1.0,
                 'tau_syn_E': 0.5,
                 'tau_syn_I': 2.0}

	GO_PARAMS = {'cm': 0.002,
                 'v_rest': -70.0,
                 'tau_m': 100.0,
                 'e_rev_E': 0.0,
                 'e_rev_I': -75.0,
                 'v_reset': -70.0,
                 'v_thresh': -40.0,
                 'tau_refrac': 1.0,
                 'tau_syn_E': 0.5,
                 'tau_syn_I': 2.0}

	PC_PARAMS = {'C_m': 0.314,
                 'g_L': 0.012,
                 'E_L': -70.0,
                 'E_ex': 0.0,
                 'E_in': -75.0,
                 'e_cs': 0.0,
                 'V_reset': -70.0,
                 'V_th': -52.0,
                 't_ref': 1.0,
                 'tau_syn_ex': 0.85,
                 'tau_syn_in': 5.45,
                 'tau_syn_cs': 0.85}

	VN_PARAMS = {'C_m': 0.002,
                 'g_L': 0.0002, 
                 'E_L': -70.0,
                 'E_ex': 0.0,
                 'E_in': -80.0,
                 'e_ts': 0.0,
                 'V_reset': -70.5,
                 'V_th': -40.0,
                 't_ref': 1.0,
                 'tau_syn_ex': 0.5,
                 'tau_syn_in': 7.0,
                 'tau_syn_ts': 0.85,
                 'tau_cos': 10.0,
                 'exponent': 2.0}
    
	##THIS MODULE CAN BE DOWNLOADED FROM https://github.com/jgarridoalcazar/SpikingCerebellum/
	#try:
	#	nest.Install('cerebellummodule')
	#except nest.NESTError:
	#	pass 
    
	
	parrot_neuron = sim.native_cell_type('parrot_neuron')
	
	# Create MF population 
	MF_population = sim.Population(num_MF_neurons,parrot_neuron,{},label='MFLayer')

	# Create GOC population    
	GOC_population = sim.Population(num_GOC_neurons,sim.IF_cond_alpha(**GO_PARAMS),label='GOCLayer')
	
	# Create MF-GO connections
	mf_go_connections = sim.Projection(MF_population,
                                           GOC_population,
                                           sim.OneToOneConnector(),
                                           sim.StaticSynapse(delay=1.0, weight=mf_go_weights))



	# Create GrC population
	GC_population = sim.Population(num_GC_neurons,sim.IF_cond_alpha(**GR_PARAMS),label='GCLayer')

	# Random distribution for synapses delays and weights
	delay_distr = RandomDistribution('uniform', (1.0, 10.0), rng=NumpyRNG(seed=85524))
	weight_distr_MF = RandomDistribution('uniform', (mf_gc_weights*0.8, mf_gc_weights*1.2), rng=NumpyRNG(seed=85524))
	weight_distr_GO = RandomDistribution('uniform', (go_gc_weights*0.8, go_gc_weights*1.2), rng=NumpyRNG(seed=24568))


	# Create MF-GC and GO-GC connections
	float_num_MF_neurons = float (num_MF_neurons)
	for i in range (num_MF_neurons):
		GC_medium_index = int(round((i / float_num_MF_neurons) * num_GC_neurons))
		GC_lower_index = GC_medium_index - 40
		GC_upper_index = GC_medium_index + 60
		if(GC_lower_index < 0):
			GC_lower_index = 0

		elif(GC_upper_index > num_GC_neurons):
			GC_upper_index = num_GC_neurons

		if(GC_lower_index < GC_medium_index):
			GO_GC_con1 = sim.Projection(sim.PopulationView(GOC_population, range(i, i+1)),
                                      sim.PopulationView(GC_population, range(GC_lower_index, GC_medium_index)),
                                      sim.AllToAllConnector(),
                                      sim.StaticSynapse(delay=delay_distr, weight=weight_distr_GO))

			MF_GC_con2 = sim.Projection(sim.PopulationView(MF_population, range(i, i+1)),
                                      sim.PopulationView(GC_population, range(GC_medium_index, GC_medium_index + 20)),
                                      sim.AllToAllConnector(),
                                      sim.StaticSynapse(delay=delay_distr, weight=weight_distr_MF))

		if((GC_medium_index + 20) < GC_upper_index):
			GO_GC_con3 = sim.Projection(sim.PopulationView(GOC_population, range(i, i+1)),
                                      sim.PopulationView(GC_population, range(GC_medium_index + 20, GC_upper_index)),
                                      sim.AllToAllConnector(),
                                      sim.StaticSynapse(delay=delay_distr, weight=weight_distr_GO))


	# Create PC population (THIS MODEL HAS BEEN DEFINED IN THE CEREBELLUMMODULE PACKAGE: https://github.com/jgarridoalcazar/SpikingCerebellum/)
	pc_neuron = sim.native_cell_type('iaf_cond_exp_cs')
	PC_population = sim.Population(num_PC_neurons,pc_neuron(**PC_PARAMS),label='PCLayer')

	# Create VN population (THIS MODEL HAS BEEN DEFINED IN THE CEREBELLUMMODULE PACKAGE: https://github.com/jgarridoalcazar/SpikingCerebellum/)
	vn_neuron = sim.native_cell_type('iaf_cond_exp_cos')
	VN_population = sim.Population(num_VN_neurons,vn_neuron(**VN_PARAMS),label='VNLayer')

	# Create IO population
	IO_population = sim.Population(num_IO_neurons,parrot_neuron,{},label='IOLayer')



	# Create MF-VN learning rule (THIS MODEL HAS BEEN DEFINED IN THE CEREBELLUMMODULE PACKAGE: https://github.com/jgarridoalcazar/SpikingCerebellum/)
	stdp_cos = sim.native_synapse_type('stdp_cos_synapse')(**{'weight':mf_vn_weights,
                                                              'delay':1.0,
                                                              'exponent': 2.0,
                                                              'tau_cos': 5.0,
                                                              'A_plus': 0.0000009,
                                                              'A_minus': 0.00001,
                                                              'Wmin': 0.0005,
                                                              'Wmax': 0.007})

    	# Create MF-VN connections
	mf_vn_connections = sim.Projection(MF_population,
					VN_population,
					sim.AllToAllConnector(),
					receptor_type='AMPA',
	#				synapse_type = sim.StaticSynapse(delay=1.0, weight=mf_vn_weights))
					synapse_type = stdp_cos)



	# Create PC-VN connections
	pc_vn_connections = sim.Projection(PC_population,
                                       VN_population,
                                       sim.OneToOneConnector(),
                                       receptor_type='GABA',
                                       synapse_type = sim.StaticSynapse(delay=1.0, weight=pc_vn_weights))

	# This second synapse with "receptor_type=TEACHING_SIGNAL" propagates the learning signals that drive the plasticity mechanisms in MF-VN synapses
	pc_vn_connections = sim.Projection(PC_population,
                                       VN_population,
                                       sim.OneToOneConnector(),
                                       receptor_type='TEACHING_SIGNAL',
                                       synapse_type = sim.StaticSynapse(delay=1.0, weight=0.0))




	
	# Create MF-VN learning rule (THIS MODEL HAS BEEN DEFINED IN THE CEREBELLUMMODULE PACKAGE: https://github.com/jgarridoalcazar/SpikingCerebellum/)
	stdp_syn = sim.native_synapse_type('stdp_sin_synapse')(**{'weight':gc_pc_weights,
                                                              'delay':1.0,
                                                              'exponent': 10,
                                                              'peak': 100.0,
                                                              'A_plus': 0.000014,
                                                              'A_minus': 0.00008,
                                                              'Wmin': 0.000,
                                                              'Wmax': 0.010})
      
	# Create GC-PC connections
	gc_pc_connections = sim.Projection(GC_population,
					PC_population,
					sim.AllToAllConnector(),
					receptor_type='AMPA',
	#				synapse_type = sim.StaticSynapse(delay=1.0, weight=gc_pc_weights))
					synapse_type = stdp_syn)


	# Create IO-PC connections. This synapse with "receptor_type=COMPLEX_SPIKE" propagates the learning signals that drive the plasticity mechanisms in GC-PC synapses
	io_pc_connections = sim.Projection(IO_population,
                                       PC_population,
                                       sim.OneToOneConnector(),
                                       receptor_type='COMPLEX_SPIKE',
                                       synapse_type = sim.StaticSynapse(delay=1.0, weight=io_pc_weights)) 




	# Group all neural layers
	population = MF_population + GOC_population + GC_population + PC_population + VN_population + IO_population 

	# Set Vm to resting potential
	# sim.initialize(PC_population, V_m=PC_population.get('E_L'))
	# sim.initialize(VN_population, V_m=VN_population.get('E_L'))
	
	return population
def create_S2_layers(C1_layers: Dict[float, Sequence[Layer]], feature_size,
                     s2_prototype_cells, refrac_s2=.1, stdp=True,
                     inhibition=True)\
        -> Dict[float, List[Layer]]:
    """
    Creates all prototype S2 layers for all sizes.

    Parameters:
        `layers_dict`: A dictionary containing for each size a list of C1
                       layers, for each feature one

        `feature_size`:

        `s2_prototype_cells`:

        `refrac_s2`:

        `stdp`: 

    Returns:
        A dictionary containing for each size a list of different S2
        layers, for each prototype one.
    """
    f_s = feature_size
    initial_weight = 25 / (f_s * f_s)
    weight_rng = rnd.RandomDistribution('normal',
                                        mu=initial_weight,
                                        sigma=initial_weight / 20)
    i_offset_rng = rnd.RandomDistribution('normal', mu=.5, sigma=.45)
    weights = list(
        map(lambda x: weight_rng.next() * 1000, range(4 * f_s * f_s)))
    S2_layers = {}
    i_offsets = list(
        map(lambda x: i_offset_rng.next(), range(s2_prototype_cells)))
    ndicts = list(map(lambda x: {}, range(s2_prototype_cells)))
    ondicts = list(map(lambda x: {}, range(s2_prototype_cells)))
    omdicts = list(map(lambda x: {}, range(s2_prototype_cells)))
    for size, layers in C1_layers.items():
        n, m = how_many_squares_in_shape(layers[0].shape, (f_s, f_s), f_s)
        if stdp:
            l_i_offsets = [list(map(lambda x: rnd.RandomDistribution('normal',
                             mu=i_offsets[i], sigma=.25).next(), range(n * m)))\
                                for i in range(s2_prototype_cells)]
        else:
            l_i_offsets = np.zeros((s2_prototype_cells, n * m))
        print('S2 Shape', n, m)
        layer_list = list(
            map(
                lambda i: Layer(
                    sim.Population(n * m,
                                   sim.IF_curr_exp(i_offset=l_i_offsets[i],
                                                   tau_refrac=refrac_s2),
                                   structure=space.Grid2D(aspect_ratio=m / n),
                                   label=str(i)), (n, m)),
                range(s2_prototype_cells)))
        for S2_layer in layer_list:
            for C1_layer in layers:
                S2_layer.projections[C1_layer.population.label] =\
                    connect_layer_to_layer(C1_layer, S2_layer, (f_s, f_s), f_s,
                                           [[w] for w in weights[:f_s * f_s]],
                                           stdp=stdp,
                                           initial_weight=initial_weight,
                                           ndicts=ndicts, ondicts=ondicts,
                                           omdicts=omdicts)
        S2_layers[size] = layer_list
    # Set the labels of the shared connections
    if stdp:
        t = time.clock()
        print('Set shared labels')
        for s2_label_dicts in [ndicts, ondicts, omdicts]:
            for i in range(s2_prototype_cells):
                w_iter = weights.__iter__()
                for label, (source, target) in s2_label_dicts[i].items():
                    conns = nest.GetConnections(source=source, target=target)
                    nest.SetStatus(conns, {
                        'label': label,
                        'weight': w_iter.__next__()
                    })
    print('Setting labels took', time.clock() - t)
    if inhibition:
        # Create inhibitory connections between the S2 cells
        # First between the neurons of the same layer...
        inh_weight = -10
        inh_delay = .1
        print('Create S2 self inhibitory connections')
        for layer_list in S2_layers.values():
            for layer in layer_list:
                sim.Projection(
                    layer.population, layer.population,
                    sim.AllToAllConnector(allow_self_connections=False),
                    sim.StaticSynapse(weight=inh_weight, delay=inh_delay))
        # ...and between the layers
        print('Create S2 cross-scale inhibitory connections')
        for i in range(s2_prototype_cells):
            for layer_list1 in S2_layers.values():
                for layer_list2 in S2_layers.values():
                    if layer_list1[i] != layer_list2[i]:
                        sim.Projection(
                            layer_list1[i].population,
                            layer_list2[i].population, sim.AllToAllConnector(),
                            sim.StaticSynapse(weight=inh_weight,
                                              delay=inh_delay))
    if stdp:
        # Create the inhibition between different prototype layers
        print('Create S2 cross-prototype inhibitory connections')
        for layer_list in S2_layers.values():
            for layer1 in layer_list:
                for layer2 in layer_list:
                    if layer1 != layer2:
                        sim.Projection(
                            layer1.population, layer2.population,
                            sim.OneToOneConnector(),
                            sim.StaticSynapse(weight=inh_weight - 1,
                                              delay=inh_delay))
    return S2_layers
Example #18
0
def run_retina(params):
    """Run the retina using the specified parameters."""

    print "Setting up simulation"
    timer = Timer()
    timer.start()  # start timer on construction
    pyNN.setup(timestep=params['dt'],
               max_delay=params['syn_delay'],
               threads=params['threads'],
               rng_seeds=params['kernelseeds'])

    N = params['N']
    phr_ON = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
    phr_OFF = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
    noise_ON = pyNN.Population(
        (N, N),
        pyNN.native_cell_type('noise_generator')(mean=0.0,
                                                 std=params['noise_std']))
    noise_OFF = pyNN.Population(
        (N, N),
        pyNN.native_cell_type('noise_generator')(mean=0.0,
                                                 std=params['noise_std']))

    phr_ON.set(start=params['simtime'] / 4,
               stop=params['simtime'] / 4 * 3,
               amplitude=params['amplitude'] * params['snr'])
    phr_OFF.set(start=params['simtime'] / 4,
                stop=params['simtime'] / 4 * 3,
                amplitude=-params['amplitude'] * params['snr'])

    # target ON and OFF populations
    v_init = params['parameters_gc'].pop('Vinit')
    out_ON = pyNN.Population((N, N),
                             pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(
                                 **params['parameters_gc']))
    out_OFF = pyNN.Population((N, N),
                              pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(
                                  **params['parameters_gc']))
    out_ON.initialize(v=v_init)
    out_OFF.initialize(v=v_init)

    #print "Connecting the network"

    retina_proj_ON = pyNN.Projection(phr_ON, out_ON, pyNN.OneToOneConnector())
    retina_proj_ON.set(weight=params['weight'])
    retina_proj_OFF = pyNN.Projection(phr_OFF, out_OFF,
                                      pyNN.OneToOneConnector())
    retina_proj_OFF.set(weight=params['weight'])

    noise_proj_ON = pyNN.Projection(noise_ON, out_ON, pyNN.OneToOneConnector())
    noise_proj_ON.set(weight=params['weight'])
    noise_proj_OFF = pyNN.Projection(noise_OFF, out_OFF,
                                     pyNN.OneToOneConnector())
    noise_proj_OFF.set(weight=params['weight'])

    out_ON.record('spikes')
    out_OFF.record('spikes')

    # reads out time used for building
    buildCPUTime = timer.elapsedTime()

    print "Running simulation"

    timer.start()  # start timer on construction
    pyNN.run(params['simtime'])
    simCPUTime = timer.elapsedTime()

    out_ON_DATA = out_ON.get_data().segments[0]
    out_OFF_DATA = out_OFF.get_data().segments[0]

    print "\nRetina Network Simulation:"
    print(params['description'])
    print "Number of Neurons : ", N**2
    print "Output rate  (ON) : ", out_ON.mean_spike_count(), \
        "spikes/neuron in ", params['simtime'], "ms"
    print "Output rate (OFF) : ", out_OFF.mean_spike_count(), \
        "spikes/neuron in ", params['simtime'], "ms"
    print "Build time        : ", buildCPUTime, "s"
    print "Simulation time   : ", simCPUTime, "s"

    return out_ON_DATA, out_OFF_DATA
Example #19
0
stimSpikes = np.arange(stimInterval, (stimNoSpikes + 0.5) * stimInterval,
                       stimInterval)
measureSpikes = stimSpikes + delayStimMeasure
stim = pynn.Population(1, pynn.SpikeSourceArray, {'spike_times': stimSpikes})
measure = pynn.Population(1, pynn.SpikeSourceArray,
                          {'spike_times': measureSpikes})

#create neuron
neuron = pynn.Population(1, pynn.IF_cond_exp)

#init and import custom NEST synapse model
pynn.nest.SetDefaults(synapseModel, synapseParams)
stdpModel = pynn.NativeSynapseDynamics(synapseModel)

#connect stimuli
connStim = pynn.OneToOneConnector(weights=stimWeight)
connMeasure = pynn.OneToOneConnector(weights=measureWeight)
pynn.Projection(stim, neuron, connStim, target='excitatory')
prj = pynn.Projection(measure,
                      neuron,
                      connMeasure,
                      synapse_dynamics=stdpModel,
                      target='excitatory')

#record spike times and membrane potential
neuron.record()
neuron.record_v()

connSTDP = pynn.nest.FindConnections(measure)
weightList = []
aCausalList = []
Example #20
0
}
sim.setup()

neuron1 = sim.Population(n, sim.IF_cond_alpha(**cell_params), label="neuron1")

neuron2 = sim.Population(n, sim.IF_cond_alpha(**cell_params), label="neuron2")

spike_times = [1000., 2000.]

spike_source = sim.Population(1, sim.SpikeSourceArray(spike_times=spike_times))

conn = sim.Projection(spike_source, neuron1[spiky:spiky + 1],
                      sim.AllToAllConnector(),
                      sim.StaticSynapse(weight=0.002, delay=1.))

n2n_conn = sim.Projection(neuron1, neuron2, sim.OneToOneConnector(),
                          sim.StaticSynapse(weight=0.002, delay=1.))

spike_source.record('spikes')
neuron1.record(('v', 'spikes'))
neuron2.record(('v', 'spikes'))

sim.run(5000.0)

#print neuron1.get_spike_counts()
from pyNN.utility.plotting import Figure, Panel
data1 = neuron1.get_data().segments[0]
data2 = neuron1.get_data().segments[0]
vm = data1.filter(name="v")[0]

Figure(Panel(vm, ylabel="Membrane potential (mV)", yticks=True),
Example #21
0
def estimate_kb(cell_params_lif):
    cell_para = copy.deepcopy(cell_params_lif)
    random.seed(0)
    p.setup(timestep=1.0, min_delay=1.0, max_delay=16.0)
    run_s = 10.
    runtime = 1000. * run_s
    max_rate = 1000.
    ee_connector = p.OneToOneConnector(weights=1.0, delays=2.0)

    pop_list = []
    pop_output = []
    pop_source = []
    x = np.arange(0., 1.01, 0.1)
    count = 0
    trail = 10

    for i in x:
        for j in range(trail):  #trails for average
            pop_output.append(p.Population(1, p.IF_curr_exp, cell_para))
            poisson_spikes = mu.poisson_generator(i * max_rate, 0, runtime)
            pop_source.append(
                p.Population(1, p.SpikeSourceArray,
                             {'spike_times': poisson_spikes}))
            p.Projection(pop_source[count],
                         pop_output[count],
                         ee_connector,
                         target='excitatory')
            pop_output[count].record()
            count += 1

    count = 0
    for i in x:
        cell_para['i_offset'] = i
        pop_list.append(p.Population(1, p.IF_curr_exp, cell_para))
        pop_list[count].record()
        count += 1
    pop_list[count - 1].record_v()

    p.run(runtime)

    rate_I = np.zeros(count)
    rate_P = np.zeros(count)
    rate_P_max = np.zeros(count)
    rate_P_min = np.ones(count) * 1000.
    for i in range(count):
        spikes = pop_list[i].getSpikes(compatible_output=True)
        rate_I[i] = len(spikes) / run_s
        for j in range(trail):
            spikes = pop_output[i * trail +
                                j].getSpikes(compatible_output=True)
            spike_num = len(spikes) / run_s
            rate_P[i] += spike_num
            if spike_num > rate_P_max[i]:
                rate_P_max[i] = spike_num
            if spike_num < rate_P_min[i]:
                rate_P_min[i] = spike_num
        rate_P[i] /= trail
    '''
    #plot_spikes(spikes, 'Current = 10. mA')
    plt.plot(x, rate_I, label='current',)
    plt.plot(x, rate_P, label='Poisson input')
    plt.fill_between(x, rate_P_min, rate_P_max, facecolor = 'green', alpha=0.3)
    '''
    x0 = np.where(rate_P > 1.)[0][0]
    x1 = 4
    k = (rate_P[x1] - rate_P[x0]) / (x[x1] - x[x0])
    '''
    plt.plot(x, k*(x-x[x0])+rate_P[x0], label='linear')
    plt.legend(loc='upper left', shadow=True)
    plt.grid('on')
    plt.show()
    '''
    p.end()
    return k, x[x0], rate_P[x0]
Example #22
0
    inp = sim.Population(
        1,
        sim.SpikeSourcePoisson(duration=simparams['duration'],
                               rate=simparams['input_rate']))

    inp.label = 'input cell'
    outp = sim.Population(1, sim.IF_curr_exp, cellparams=cellparams)
    outp.label = 'output cell'

    inp.record('spikes')
    outp.record(['v', 'spikes'])

    synapse = sim.StaticSynapse(weight=1, delay=simparams['delay'])

    connector = sim.OneToOneConnector()

    connection = sim.Projection(inp, outp, connector, synapse)

    def report_time(t):
        print("Time: {}".format(t))
        return t + simparams['dt']

    par = 'i_offset'
    for p in [0.01]:
        outp.set(**{par: p})
        cellparams[par] = p
        outp.initialize(v=cellparams['v_rest'])
        sim.run(simparams['duration'], callbacks=[report_time])
        sim.reset(annotations={par: p})
Example #23
0
    def __init__(self, sim_params=None, cell_params=None, verbose=True):
        '''
        Parameters : Stimulus, Population, Synapses, Recording, Running 
        '''

        self.verbose = verbose
        self.sim_params = sim_params
        self.cell_params = cell_params

        sim.setup()  #spike_precision='on_grid')#timestep = .1)

        N_inh = int(sim_params['nb_neurons'] *
                    sim_params['p'])  #total pop * proportion of inhib
        self.spike_source = sim.Population(
            N_inh,
            sim.SpikeSourcePoisson(rate=sim_params['input_rate'],
                                   duration=sim_params['simtime'] / 2))

        #orientation stimulus, see bottom section of notebook
        angle = 1. * np.arange(N_inh)
        rates = self.tuning_function(angle,
                                     sim_params['angle_input'] / 180. * N_inh,
                                     sim_params['b_input'], N_inh)
        rates /= rates.mean()
        rates *= sim_params['input_rate']
        for i, cell in enumerate(self.spike_source):
            cell.set_parameters(rate=rates[i])

        #neuron model selection
        if sim_params['neuron_model'] == 'IF_cond_alpha':
            model = sim.IF_cond_alpha  #LIF with nice dynamics
        else:
            model = sim.IF_cond_exp  #LIF with exp dynamics

        #populations
        E_neurons = sim.Population(
            N_inh,
            model(**cell_params),
            initial_values={
                'v':
                rnd('uniform',
                    (sim_params['v_init_min'], sim_params['v_init_max']))
            },
            label="Excitateurs")
        I_neurons = sim.Population(
            int(sim_params['nb_neurons'] - N_inh),
            model(**cell_params),
            initial_values={
                'v':
                rnd('uniform',
                    (sim_params['v_init_min'], sim_params['v_init_max']))
            },
            label="Inhibiteurs")

        #input to excitatories
        input_exc = sim.Projection(
            self.spike_source, E_neurons, sim.OneToOneConnector(),
            sim.StaticSynapse(weight=sim_params['w_input_exc'],
                              delay=sim_params['s_input_exc']))

        #loop through connections type and use associated params, can be a bit slow
        conn_types = ['exc_inh', 'inh_exc', 'exc_exc',
                      'inh_inh']  #connection types
        '''
        self.proj = self.set_synapses(conn_types = conn_types, sim_params =sim_params, 
                                      E_neurons = E_neurons, I_neurons = I_neurons, 
                                      N_inh = N_inh)
        '''
        #Multi threading support NE MARCHE PAS LAISSER LE NJOBS EN 1
        self.proj = Parallel(n_jobs=1, backend='multiprocessing')(
            delayed(self.set_synapses)(conn_type,
                                       sim_params=sim_params,
                                       E_neurons=E_neurons,
                                       I_neurons=I_neurons,
                                       N_inh=N_inh,
                                       conn_types=conn_types,
                                       verbose=verbose)
            for conn_type in range(len(conn_types)))
        if verbose: print('Done building synapses !')

        #record
        self.spike_source.record('spikes')
        E_neurons.record('spikes')
        I_neurons.record('spikes')

        #run
        if verbose: print('Running simulation..')
        sim.run(sim_params['simtime'])
        if verbose: print('Done running !')

        #get the spikes
        self.E_spikes = E_neurons  #.get_data().segments[0]
        self.I_spikes = I_neurons  #.get_data().segments[0]
        self.P_spikes = self.spike_source  #.get_data().segments[0]
Example #24
0
plt.interactive(False)
sim.setup(0.1)

neurons = sim.Population(64, sim.IF_curr_exp, {}, label="neurons")
print(neurons.celltype.recordable)

params = {
    'rate': 10000.0,  # Mean spike frequency (Hz)
    'start': 0.0,  # Start time (ms)
    'duration': 1e10  # Duration of spike sequence (ms)
}

input = sim.Population(64, sim.SpikeSourcePoisson(**params), label="input")

input_proj = sim.Projection(
    input, neurons, sim.OneToOneConnector(), receptor_type='excitatory'
)  ##https://github.com/NeuralEnsemble/PyNN/issues/273


def twoDto1D(x):
    return (8 * x[0] + x[1])


def oneDto2D(n):
    return np.array([int(n / 8.), int(n - 8 * (int(n / 8.)))])


def plot_spiketrains(segment):
    for spiketrain in segment.spiketrains:
        y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']
        plt.plot(spiketrain, y, '.')