def main(args):

    setup(timestep=0.1)

    random_image = np.random.rand(2,2)
    size = random_image.size


    input_population_arr = Population(random_image.size, SpikeSourceArray, {'spike_times': [0 for i in range(0, random_image.size)]})

    cell_params = {'tau_refrac': 2.0, 'v_thresh': -50.0, 'tau_syn_E': 2.0, 'tau_syn_I': 2.0}
    output_population = Population(1, IF_curr_alpha, cell_params, label="output")

    projection = Projection(input_population_arr, output_population, AllToAllConnector())
    projection.setWeights(1.0)

    input_population_arr.record('spikes')
    output_population.record('spikes')

    tstop = 1000.0

    run(tstop)

    output_population.write_data("simpleNetwork_output.pkl",'spikes')
    input_population_arr.write_data("simpleNetwork_input.pkl",'spikes')
    #output_population.print_v("simpleNetwork.v")
    end()
Example #2
0
def two_neuron_example(
    current=1000.0,
    time_simulation=2000.0,
    weight=0.4,
    neuron_parameters={"v_rest": -50.0, "cm": 1, "tau_m": 20.0, "tau_refrac": 5.0, "v_thresh": -40.0, "v_reset": -50.0},
):

    sim.setup(timestep=0.1, min_delay=0.1)

    pulse = sim.DCSource(amplitude=current, start=0.0, stop=time_simulation)

    pre = sim.Population(1, sim.IF_curr_exp(**neuron_parameters))

    pre.record("spikes")

    pulse.inject_into(pre)

    sim.run(time_simulation)

    # rates in Hz
    rate_pre = len(pre.get_data("spikes").segments[0].spiketrains[0]) / time_simulation * 1000.0

    sim.end()

    return rate_pre
Example #3
0
def sim_neuron(rate):
	neuron_parameters={
            'v_rest'     : -50.0,
            'cm'         : 1,
            'tau_m'      : 20.0,
            'tau_syn_E'  : 5.0,
            'tau_syn_I'  : 5.0,
            'v_reset'    : -50.0,
            'v_thresh'   : 10000000000000000000000000000000000000000000000000000000000000000000000.0,
            'e_rev_E'	 : 0.0,
            'e_rev_I'	 : -100,
	}
	time_simulation = 100000 # don't choose to small number in order to get good statistics
	weight = 0.1 # is this value allreight
	sim.setup(timestep=0.1, min_delay=0.1)
	
	pois_exc = sim.SpikeSourcePoisson(duration=time_simulation,start=0.0,rate=rate) # generate poisson rate stimulus
	pois_inh = sim.SpikeSourcePoisson(duration=time_simulation,start=0.0,rate=rate) # generate poisson rate stimulus
	exc = sim.Population(1, cellclass=pois_exc) # simulate excitatory cell
	inh = sim.Population(1, cellclass=pois_inh) # simulate inhibitory cell
	
	rec = sim.Population(1, sim.IF_cond_exp(**neuron_parameters)) # simulate receiving neuron

	sim.Projection(exc, rec, connector=sim.OneToOneConnector(),synapse_type=sim.StaticSynapse(weight=weight),receptor_type='excitatory') # connect excitatory neuron to receiver
	sim.Projection(inh, rec, connector=sim.OneToOneConnector(),synapse_type=sim.StaticSynapse(weight=weight),receptor_type='inhibitory') # connect inhibitory neuron to receiver

	rec.record('v') # record membrane potential
	rec.record('gsyn_exc') # record excitatory conductance
	rec.record('gsyn_inh') # record inhibitory conductance
	sim.run(time_simulation) # start simulation

	return rec.get_data('v').segments[0].analogsignalarrays[0], rec.get_data('gsyn_exc').segments[0].analogsignalarrays[0], rec.get_data('gsyn_inh').segments[0].analogsignalarrays[0] # return membrane potential, excitatory conductance, inhibitory conductance
Example #4
0
    def compute(self, proximal, distal=None):
        if distal is not None:
            for i, times in enumerate(distal):
                self.distal_input[i].spike_times = times

        active = []
        predictive = []

        if not (isinstance(proximal[0], list) or isinstance(proximal[0], np.ndarray)):
            proximal = [proximal]

        timestep = self.parameters.config.timestep

        for p in proximal:
            t = pynn.get_current_time()
            for c in p:
                self.proximal_input[int(c)].spike_times = np.array([t + 0.01])
            pynn.run(self.parameters.config.timestep)

            spikes_soma = self.soma.getSpikes()
            mask = (spikes_soma[:,1] >= t) & (spikes_soma[:,1] < t + timestep)
            active.append(np.unique(spikes_soma[mask,0]))

            spikes_distal = self.distal.getSpikes()
            mask = (spikes_distal[:,1] >= t) & (spikes_distal[:,1] < t + timestep)
            predictive.append(np.unique(spikes_distal[mask,0].astype(np.int16)/2))

        return (active, predictive)
Example #5
0
def run_sim(ncell):

    print "Cells: ", ncell

    setup0 = time.time()

    sim.setup(timestep=0.1)

    hh_cell_type = sim.HH_cond_exp()

    hh = sim.Population(ncell, hh_cell_type)

    pulse = sim.DCSource(amplitude=0.5, start=20.0, stop=80.0)
    pulse.inject_into(hh)

    hh.record('v')

    setup1 = time.time()

    t0 = time.time()

    sim.run(100.0)

    v = hh.get_data()

    sim.end()

    t1 = time.time()

    setup_total = setup1 - setup0
    run_total = t1 - t0
    print "Setup: ", setup_total
    print "Run: ", run_total
    print "Total sim time: ", setup_total + run_total
    return run_total
Example #6
0
    def run(self, spiketimes):
        assert spiketimes.shape[0] == self.n_spike_source, 'spiketimes length should be equal to input neurons'
        start = time.clock()
        sim.reset()
        end = time.clock()
        print "reset uses %f s." % (end - start)
        for i in range(self.n_spike_source):
            spiketime = np.array(spiketimes[i], dtype=float)
            if spiketimes[i].any():
                self.spike_source[i].spike_times = spiketime

        sim.initialize(self.hidden_neurons, V_m=0)
        sim.initialize(self.output_neurons, V_m=0.)
        sim.run(self.sim_time)

        spiketrains = self.output_neurons.get_data(clear=True).segments[0].spiketrains

        # vtrace = self.hidden_neurons.get_data(clear=True).segments[0].filter(name='V_m')[0]
        # plt.figure()
        # plt.plot(vtrace.times, vtrace)
        # plt.show()

        hidden_spiketrains = self.hidden_neurons.get_data(clear=True).segments[0].spiketrains
        spike_cnts = 0
        for spiketrain in hidden_spiketrains:
            spike_cnts += len(list(np.array(spiketrain)))
        self.hidden_spike_cnts.append(spike_cnts)
        print 'hidden spikes: ', spike_cnts

        spiketimes_out = []
        for spiketrain in spiketrains:
            spiketimes_out.append(list(np.array(spiketrain)))


        return np.array(spiketimes_out)
Example #7
0
    def compute(self, proximal, distal=None):
        if distal is not None:
            for i, times in enumerate(distal):
                self.distal_input[i].spike_times = times

        active = []
        predictive = []

        if not (isinstance(proximal[0], list)
                or isinstance(proximal[0], np.ndarray)):
            proximal = [proximal]

        timestep = self.parameters.config.timestep

        for p in proximal:
            t = pynn.get_current_time()
            for c in p:
                self.proximal_input[int(c)].spike_times = np.array([t + 0.01])
            pynn.run(self.parameters.config.timestep)

            spikes_soma = self.soma.getSpikes()
            mask = (spikes_soma[:, 1] >= t) & (spikes_soma[:, 1] <
                                               t + timestep)
            active.append(np.unique(spikes_soma[mask, 0]))

            spikes_distal = self.distal.getSpikes()
            mask = (spikes_distal[:, 1] >= t) & (spikes_distal[:, 1] <
                                                 t + timestep)
            predictive.append(
                np.unique(spikes_distal[mask, 0].astype(np.int16) / 2))

        return (active, predictive)
def main():
    # setup timestep of simulation and minimum and maximum synaptic delays
    setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay)
    
    # create a spike sources
    retinaLeft = createSpikeSource("Retina Left")
    retinaRight = createSpikeSource("Retina Right")
    
    # create network and attach the spike sources 
    network = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
    
    # run simulation for time in milliseconds
    print "Simulation started..."
    run(simulationTime)
    print "Simulation ended."
    # plot results 
    from itertools import repeat
    numberOfLayersToPlot = 4
    layers = zip(repeat(network, numberOfLayersToPlot), range(1, numberOfLayersToPlot+1), repeat(False, numberOfLayersToPlot))
    customLayers = [(network, 20, False),(network, 40, False),(network, 60, False),(network, 80, False)]
    for proc in range(0, numberOfLayersToPlot):
        p = Process(target=plotSimulationResults, args=customLayers[proc])
        p.start()
    
    # finalise program and simulation
    end()
Example #9
0
def run_test(w_list, cell_para, spike_source_data):
    pop_list = []
    p.setup(timestep=1.0, min_delay=1.0, max_delay=3.0)
    #input poisson layer
    input_size = w_list[0].shape[0]
    pop_in = p.Population(input_size, p.SpikeSourceArray, {'spike_times' : []})
    for j in range(input_size):
        pop_in[j].spike_times = spike_source_data[j]
    pop_list.append(pop_in)
    
    for w in w_list:        
        pos_w = np.copy(w)
        pos_w[pos_w < 0] = 0
        neg_w = np.copy(w)
        neg_w[neg_w > 0] = 0
        
        output_size = w.shape[1]
        pop_out = p.Population(output_size, p.IF_curr_exp, cell_para)
        p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = pos_w), target='excitatory')
        p.Projection(pop_in, pop_out, p.AllToAllConnector(weights = neg_w), target='inhibitory')
        pop_list.append(pop_out)
        pop_in = pop_out

    pop_out.record()
    run_time = np.ceil(np.max(spike_source_data)[0]/1000.)*1000
    p.run(run_time)
    spikes = pop_out.getSpikes(compatible_output=True)
    return spikes
Example #10
0
def scnn_test(cell_params_lif, l_cnn, w_cnn, num_test, test, max_rate,
              dur_test, silence):
    p.setup(timestep=1.0, min_delay=1.0, max_delay=3.0)
    L = l_cnn
    random.seed(0)
    input_size = L[0][1]
    pops_list = []
    pops_list.append(
        init_inputlayer(input_size, test[:num_test, :], max_rate, dur_test,
                        silence))
    print('SCNN constructing...')
    for l in range(len(w_cnn)):
        pops_list.append(
            construct_layer(cell_params_lif, pops_list[l], L[l + 1][0],
                            L[l + 1][1], w_cnn[l]))
    result = pops_list[-1][0]
    result.record(['v', 'spikes'])  # new

    print('SCNN running...')
    p.run((dur_test + silence) * num_test)
    spike_result = result.getSpikes(compatible_output=True)
    #spike_result = result.get_spike_counts(gather=True) #tuple datta
    #spike_result = result.get_data('spikes')
    p.end()

    print('analysing...')
    spike_result_count = count_spikes(spike_result, 10, num_test, dur_test,
                                      silence)
    print("spike_result_count : ", spike_result_count)
    predict = np.argmax(spike_result_count, axis=0)
    print("predict : ", predict)

    #     prob = np.exp(spike_result_count)/np.sum(np.exp(spike_result_count), axis=0)
    return predict, spike_result
Example #11
0
def test_replicate_can_replicate():
    p1 = pynn.Population(6, pynn.IF_cond_exp(i_offset=10))
    p2 = pynn.Population(6, pynn.IF_cond_exp())
    p3 = pynn.Population(6, pynn.IF_cond_exp())
    l = v.Replicate(p1, (p2, p3), v.ReLU(), weights=(1, 1))
    pynn.run(1000)
    l.store_spikes()
    expected = np.ones((2, 6))
    assert np.allclose(expected, l.get_output())
Example #12
0
def test_replicate_create():
    p1 = pynn.Population(6, pynn.IF_cond_exp())
    p2 = pynn.Population(6, pynn.IF_cond_exp())
    p3 = pynn.Population(6, pynn.IF_cond_exp())
    l = v.Replicate(p1, (p2, p3), v.ReLU(), weights=(1, 1))
    pynn.run(1000)
    l.store_spikes()
    assert l.layer1.input.shape == (6, 0)
    assert l.layer2.input.shape == (6, 0)
    assert l.get_output().shape == (2, 6)
Example #13
0
def test_ticket244():
    nest = pyNN.nest
    nest.setup(threads=4)
    p1 = nest.Population(4, nest.IF_curr_exp())
    p1.record('spikes')
    poisson_generator = nest.Population(3, nest.SpikeSourcePoisson(rate=1000.0))
    conn = nest.OneToOneConnector()
    syn = nest.StaticSynapse(weight=1.0)
    nest.Projection(poisson_generator, p1.sample(3), conn, syn, receptor_type="excitatory")
    nest.run(15)
    p1.get_data()
Example #14
0
def two_neuron_example(
        current=1000.0,
        time_simulation=2000.,
        weight=0.4,
        neuron_parameters={
            'v_rest'     : -65.0,
            'cm'         : 0.1,
            'tau_m'      : 1.0,
            'tau_refrac' : 2.0,
            'tau_syn_E'  : 10.0,
            'tau_syn_I'  : 10.0,
            'i_offset'   : 0.0,
            'v_reset'    : -65.0,
            'v_thresh'   : -50.0,
        },
    ):
    """
        Connects to neurons with corresponding parameters.

        The first is stimulated via current injection while the second receives
        the other one's spikes.
    """

    sim.setup(timestep=0.1, min_delay=0.1)

    pulse = sim.DCSource(amplitude=current, start=0.0, stop=time_simulation)

    pre = sim.Population(1, sim.IF_curr_exp(**neuron_parameters))
    post = sim.Population(1, sim.IF_curr_exp(**neuron_parameters))

    pre.record('spikes')
    post.record('spikes')

    sim.Projection(pre, post, connector=sim.OneToOneConnector(),
            synapse_type=sim.StaticSynapse(weight=weight),
            receptor_type='excitatory')

    pulse.inject_into(pre)

    sim.run(time_simulation)

    # rates in Hz
    rate_pre = len(pre.get_data('spikes').segments[0].spiketrains[0])\
            / time_simulation * 1000.

    rate_post = len(post.get_data('spikes').segments[0].spiketrains[0])\
            / time_simulation * 1000.

    sim.end()

    return rate_pre, rate_post
Example #15
0
def loop():
    for device_instance in Interfaces.DeviceMeta._instances:
        device_instance._create_device()
    print "Entered loop"
    i = 0
    
    while(True):
        sim.run(20.0)
        Observers.Observer.notify()
        Setters.Setter.notify()
        SimulatorPorts.RPCPort.execute()
        for pop_view in population_register.values():
            pass
            #print pop_view.meanSpikeCount()
            #print 'amplitude', pop_view.get_data().segments[0].filter(name='v')
            #print nest.GetStatus(map(int, [pop_view.all_cells[0]]), 'V_m')

        i += 1
    sim.end()
Example #16
0
def test_record_native_model():
    if not have_nest:
        raise SkipTest
    nest = pyNN.nest
    from pyNN.random import RandomDistribution

    init_logging(logfile=None, debug=True)

    nest.setup()

    parameters = {'tau_m': 17.0}
    n_cells = 10
    p1 = nest.Population(n_cells, nest.native_cell_type("ht_neuron")(**parameters))
    p1.initialize(V_m=-70.0, Theta=-50.0)
    p1.set(theta_eq=-51.5)
    #assert_arrays_equal(p1.get('theta_eq'), -51.5*numpy.ones((10,)))
    assert_equal(p1.get('theta_eq'), -51.5)
    print(p1.get('tau_m'))
    p1.set(tau_m=RandomDistribution('uniform', low=15.0, high=20.0))
    print(p1.get('tau_m'))

    current_source = nest.StepCurrentSource(times=[50.0, 110.0, 150.0, 210.0],
                                            amplitudes=[0.01, 0.02, -0.02, 0.01])
    p1.inject(current_source)

    p2 = nest.Population(1, nest.native_cell_type("poisson_generator")(rate=200.0))

    print("Setting up recording")
    p2.record('spikes')
    p1.record('V_m')

    connector = nest.AllToAllConnector()
    syn = nest.StaticSynapse(weight=0.001)

    prj_ampa = nest.Projection(p2, p1, connector, syn, receptor_type='AMPA')

    tstop = 250.0
    nest.run(tstop)

    vm = p1.get_data().segments[0].analogsignals[0]
    n_points = int(tstop / nest.get_time_step()) + 1
    assert_equal(vm.shape, (n_points, n_cells))
    assert vm.max() > 0.0  # should have some spikes
Example #17
0
def scnn_test(l_cnn, w_cnn, num_test, test, max_rate, dur_test, silence):
    p.setup(timestep=1.0, min_delay=1.0, max_delay=3.0)
    L = l_cnn
    random.seed(0)
    input_size = L[0][1]
    pops_list = []
    pops_list.append(init_inputlayer(input_size, test[:num_test, :], max_rate, dur_test, silence))
    for l in range(len(w_cnn)):
        pops_list.append(construct_layer(pops_list[l], L[l+1][0], L[l+1][1], w_cnn[l]))
    result = pops_list[-1][0]
    result.record()
    
    p.run((dur_test+silence)*num_test)
    spike_result = result.getSpikes(compatible_output=True)
    p.end()
    
    spike_result_count = count_spikes(spike_result, 10, num_test, dur_test, silence)
    predict = np.argmax(spike_result_count, axis=0)
#     prob = np.exp(spike_result_count)/np.sum(np.exp(spike_result_count), axis=0)
    return predict
Example #18
0
def test_record_native_model():
    nest = pyNN.nest
    from pyNN.random import RandomDistribution
    from pyNN.utility import init_logging

    init_logging(logfile=None, debug=True)
    
    nest.setup()
    
    parameters = {'Tau_m': 17.0}
    n_cells = 10
    p1 = nest.Population(n_cells, nest.native_cell_type("ht_neuron"), parameters)
    p1.initialize('V_m', -70.0)
    p1.initialize('Theta', -50.0)
    p1.set('Theta_eq', -51.5)
    assert_equal(p1.get('Theta_eq'), [-51.5]*10)
    print p1.get('Tau_m')
    p1.rset('Tau_m', RandomDistribution('uniform', [15.0, 20.0]))
    print p1.get('Tau_m')
    
    current_source = nest.StepCurrentSource({'times' : [50.0, 110.0, 150.0, 210.0],
                                            'amplitudes' : [0.01, 0.02, -0.02, 0.01]})
    p1.inject(current_source)
    
    p2 = nest.Population(1, nest.native_cell_type("poisson_generator"), {'rate': 200.0})
    
    print "Setting up recording"
    p2.record()
    p1._record('V_m')
    
    connector = nest.AllToAllConnector(weights=0.001)
    
    prj_ampa = nest.Projection(p2, p1, connector, target='AMPA')
    
    tstop = 250.0
    nest.run(tstop)
    
    n_points = int(tstop/nest.get_time_step()) + 1
    assert_equal(p1.recorders['V_m'].get().shape, (n_points*n_cells, 3))
    id, t, v = p1.recorders['V_m'].get().T
    assert v.max() > 0.0 # should have some spikes
Example #19
0
    def compute(self, data, learn=True):
        """Perform the actual computation"""

        timestep = self.parameters.config.timestep

        # run simulation
        for i, d in enumerate(data):
            t = pynn.get_current_time()
            d = d.astype(np.int32)
            activity = np.array(self.calculate_activity([d]))
            train = np.ndarray((np.sum(activity), 2))
            pos = 0
            for j in range(len(self.stimulus)):
                spikes = np.sort(
                    np.random.normal(1.0 + t, 0.01, activity[0][j]))
                train[pos:pos + activity[0][j], :] = np.vstack(
                    [np.ones(spikes.size) * j, spikes]).T
                pos += activity[0][j]
            for j, s in enumerate(self.stimulus):
                s.spike_times = train[train[:, 0] == j, 1]

            pynn.run(timestep)

            # extract spikes and calculate activity
            spikes = self.columns.getSpikes()
            mask = (spikes[:, 1] > t) & (spikes[:, 1] < t + timestep)
            active_columns = np.unique(spikes[mask, 0]).astype(np.int32)
            yield active_columns

            if learn > 0:
                # wake up, school's starting in five minutes!
                c = np.zeros(self.permanences.shape[0], dtype=np.bool)
                c[active_columns] = 1
                d = d.astype(np.bool)
                self.permanences[np.outer(c, d)] += 0.01
                self.permanences[np.outer(c, np.invert(d))] -= 0.01
                self.permanences = np.minimum(np.maximum(self.permanences, 0),
                                              1)

                if type(learn) == int:
                    learn -= 1
def main():
    # setup timestep of simulation and minimum and maximum synaptic delays
    setup(timestep=simulationTimestep, min_delay=minSynapseDelay, max_delay=maxSynapseDelay, threads=4)

    # create a spike sources
    retinaLeft = createSpikeSource("Retina Left")
    retinaRight = createSpikeSource("Retina Right")
    
    # create network and attach the spike sources 
    network = createCooperativeNetwork(retinaLeft=retinaLeft, retinaRight=retinaRight)
    
    # run simulation for time in milliseconds
    print "Simulation started..."
    run(simulationTime)
    print "Simulation ended."
    
    # plot results 
    plotSimulationResults(network, 1, False)
    
    # finalise program and simulation
    end()
def presentStimuli(pres_duration, num_pres_per_stim, num_source, num_target, bright_on_weights, bright_off_weights, bright_lat_weights, dark_on_weights, dark_off_weights, dark_lat_weights, is_repeated=False):
    """
    For presenting a stimulus to the target network. Callback is used to switch between presentation rates.
    Arguments:  num_source
                num_target
                num_pres_per_stim,
                pres_duration
    """
    num_stim = 2 # two stimuli 'bright' and 'dark'
    total_duration = num_stim * num_pres_per_stim * pres_duration

    source_on_pop = pynn.Population(num_source, pynn.SpikeSourcePoisson(), label='source_on_pop')
    source_off_pop = pynn.Population(num_source, pynn.SpikeSourcePoisson(), label='source_off_pop')
    is_bright, random_on_rates, random_off_rates = getPresentationRatesForCallback(num_stim, num_source, num_pres_per_stim, is_repeated=is_repeated)

    bright_target_pop = pynn.Population(num_target, pynn.IF_cond_exp, {'i_offset':0.11, 'tau_refrac':3.0, 'v_thresh':-51.0}, label='target_pop')
    dark_target_pop = pynn.Population(num_target, pynn.IF_cond_exp, {'i_offset':0.11, 'tau_refrac':3.0, 'v_thresh':-51.0}, label='target_pop')

    bright_on_conn = pynn.Projection(source_on_pop, bright_target_pop, connector=pynn.AllToAllConnector(), synapse_type=pynn.StaticSynapse(weight=bright_on_weights), receptor_type='excitatory')
    bright_off_conn = pynn.Projection(source_off_pop, bright_target_pop, connector=pynn.AllToAllConnector(), synapse_type=pynn.StaticSynapse(weight=bright_off_weights), receptor_type='excitatory')
    bright_lat_conn = pynn.Projection(bright_target_pop, bright_target_pop, connector=pynn.AllToAllConnector(), synapse_type=pynn.StaticSynapse(weight=bright_lat_weights), receptor_type='inhibitory')
    dark_on_conn = pynn.Projection(source_on_pop, dark_target_pop, connector=pynn.AllToAllConnector(), synapse_type=pynn.StaticSynapse(weight=dark_on_weights), receptor_type='excitatory')
    dark_off_conn = pynn.Projection(source_off_pop, dark_target_pop, connector=pynn.AllToAllConnector(), synapse_type=pynn.StaticSynapse(weight=dark_off_weights), receptor_type='excitatory')
    dark_lat_conn = pynn.Projection(dark_target_pop, dark_target_pop, connector=pynn.AllToAllConnector(), synapse_type=pynn.StaticSynapse(weight=dark_lat_weights), receptor_type='inhibitory')

    source_on_pop.record('spikes')
    source_off_pop.record('spikes')
    bright_target_pop.record(['spikes'])
    dark_target_pop.record(['spikes'])

    pynn.run(total_duration, callbacks=[PoissonWeightVariation(source_on_pop, random_on_rates, pres_duration), PoissonWeightVariation(source_off_pop, random_off_rates, pres_duration)])
    pynn.end()

    source_on_spikes = source_on_pop.get_data('spikes').segments[0].spiketrains
    source_off_spikes = source_off_pop.get_data('spikes').segments[0].spiketrains
    bright_spikes = bright_target_pop.get_data('spikes').segments[0].spiketrains
    dark_spikes = dark_target_pop.get_data('spikes').segments[0].spiketrains
    return is_bright, source_on_spikes, source_off_spikes, bright_spikes, dark_spikes
Example #22
0
    def compute(self, data, learn=True):
        """Perform the actual computation"""

        timestep = self.parameters.config.timestep

        # run simulation
        for i, d in enumerate(data):
            t = pynn.get_current_time()
            d = d.astype(np.int32)
            activity = np.array(self.calculate_activity([d]))
            train = np.ndarray((np.sum(activity), 2))
            pos = 0
            for j in range(len(self.stimulus)):
                spikes = np.sort(np.random.normal(1.0 + t, 0.01, activity[0][j]))
                train[pos:pos+activity[0][j],:] = np.vstack([np.ones(spikes.size)*j, spikes]).T
                pos += activity[0][j]
            for j, s in enumerate(self.stimulus):
                s.spike_times = train[train[:,0] == j,1]

            pynn.run(timestep)

            # extract spikes and calculate activity
            spikes = self.columns.getSpikes()
            mask = (spikes[:,1] > t) & (spikes[:,1] < t + timestep)
            active_columns = np.unique(spikes[mask,0]).astype(np.int32)
            yield active_columns

            if learn > 0:
                # wake up, school's starting in five minutes!
                c = np.zeros(self.permanences.shape[0], dtype=np.bool)
                c[active_columns] = 1
                d = d.astype(np.bool)
                self.permanences[np.outer(c, d)] += 0.01
                self.permanences[np.outer(c, np.invert(d))] -= 0.01
                self.permanences = np.minimum(np.maximum(self.permanences, 0), 1)

                if type(learn) == int:
                    learn -= 1
Example #23
0
def test_column_input():
    """
    Tests whether all neurons receive the same feedforward input from
    common proximal dendrite.
    """
    
    LOG.info('Testing column input...')
    
    # reset the simulator
    sim.reset()
    
    column = Column.Column()
    sim.run(1000)
    spikes = column.FetchSpikes()
    print('Spikes before: {}'.format(spikes))
    
    # now stream some input into the column
    column.SetFeedforwardDendrite(1000.0)
    sim.run(1000)
    spikes = column.FetchSpikes().segments[0]
    print('Spikes after: {}'.format(spikes))
    
    LOG.info('Test complete.')
Example #24
0
def test_encoder_rate_1():
    """
    Checks if encoder is properly encoding provided values.
    """

    encoder = ScalarEncoder.ScalarEncoder(
        size=10, width=1, min_val=0, max_val=10)
    encoder.encode(5.0)

    sim.run(100)

    rate = encoder.population.getSpikes()
    voltages = encoder.population.get_v().segments[0]
    
    pdb.set_trace()
    
    plot_signal(voltages, 1)
    
    # get index of maximum rate neuron
    idx_max = np.argmax(rate)
    LOG.info(rate)
    LOG.info('Max firing rate: {}'.format(idx_max))

    assert idx_max == 4  # indexing starts from zero
def _run_microcircuit(plot_filename, conf):
    import plotting
    import logging

    simulator = conf['simulator']
    # we here only need nest as simulator, simulator = 'nest'
    import pyNN.nest as sim

    # prepare simulation
    logging.basicConfig()

    # extract parameters from config file
    master_seed = conf['params_dict']['nest']['master_seed']
    layers = conf['layers']
    pops = conf['pops']
    plot_spiking_activity = conf['plot_spiking_activity']
    raster_t_min = conf['raster_t_min']
    raster_t_max = conf['raster_t_max']
    frac_to_plot = conf['frac_to_plot']
    record_corr = conf['params_dict']['nest']['record_corr']
    tau_max = conf['tau_max']

    # Numbers of neurons from which to record spikes
    n_rec = helper_functions.get_n_rec(conf)

    sim.setup(**conf['simulator_params'][simulator])

    if simulator == 'nest':
        n_vp = sim.nest.GetKernelStatus('total_num_virtual_procs')
        if sim.rank() == 0:
            print 'n_vp: ', n_vp
            print 'master_seed: ', master_seed
        sim.nest.SetKernelStatus({'print_time': False,
                                  'dict_miss_is_error': False,
                                  'grng_seed': master_seed,
                                  'rng_seeds': range(master_seed + 1,
                                                     master_seed + n_vp + 1),
                                  'data_path': conf['system_params'] \
                                                   ['output_path']})

    import network

    # result of export-files
    results = []

    # create network
    start_netw = time.time()
    n = network.Network(sim)

    # contains the GIDs of the spike detectors and voltmeters needed for
    # retrieving filenames later
    device_list = n.setup(sim, conf)

    end_netw = time.time()
    if sim.rank() == 0:
        print 'Creating the network took ', end_netw - start_netw, ' s'

    # simulate
    if sim.rank() == 0:
        print "Simulating..."
    start_sim = time.time()
    sim.run(conf['simulator_params'][simulator]['sim_duration'])
    end_sim = time.time()
    if sim.rank() == 0:
        print 'Simulation took ', end_sim - start_sim, ' s'

    # extract filename from device_list (spikedetector/voltmeter),
    # gid of neuron and thread. merge outputs from all threads
    # into a single file which is then added to the task output.
    for dev in device_list:
        label = sim.nest.GetStatus(dev)[0]['label']
        gid = sim.nest.GetStatus(dev)[0]['global_id']
        # use the file extension to distinguish between spike and voltage
        # output
        extension = sim.nest.GetStatus(dev)[0]['file_extension']
        if extension == 'gdf':  # spikes
            data = np.empty((0, 2))
        elif extension == 'dat':  # voltages
            data = np.empty((0, 3))
        for thread in xrange(conf['simulator_params']['nest']['threads']):
            filenames = glob.glob(conf['system_params']['output_path']
                                  + '%s-*%d-%d.%s' % (label, gid, thread, extension))
            assert(
                len(filenames) == 1), 'Multiple input files found. Use a clean output directory.'
            data = np.vstack([data, np.loadtxt(filenames[0])])
            # delete original files
            os.remove(filenames[0])
        order = np.argsort(data[:, 1])
        data = data[order]
        outputfile_name = 'collected_%s-%d.%s' % (label, gid, extension)
        outputfile = open(outputfile_name, 'w')
        # the outputfile should have same format as output from NEST.
        # i.e., [int, float] for spikes and [int, float, float] for voltages,
        # hence we write it line by line and assign the corresponding filetype
        if extension == 'gdf':  # spikes
            for line in data:
                outputfile.write('%d\t%.3f\n' % (line[0], line[1]))
            outputfile.close()
            filetype = 'application/vnd.juelich.nest.spike_times'

        elif extension == 'dat':  # voltages
            for line in data:
                outputfile.write(
                    '%d\t%.3f\t%.3f\n' % (line[0], line[1], line[2]))
            outputfile.close()
            filetype = 'application/vnd.juelich.nest.analogue_signal'

        res = (outputfile_name, filetype)
        results.append(res)

    if record_corr and simulator == 'nest':
        start_corr = time.time()
        if sim.nest.GetStatus(n.corr_detector, 'local')[0]:
            print 'getting count_covariance on rank ', sim.rank()
            cov_all = sim.nest.GetStatus(
                n.corr_detector, 'count_covariance')[0]
            delta_tau = sim.nest.GetStatus(n.corr_detector, 'delta_tau')[0]

            cov = {}
            for target_layer in np.sort(layers.keys()):
                for target_pop in pops:
                    target_index = conf['structure'][target_layer][target_pop]
                    cov[target_index] = {}
                    for source_layer in np.sort(layers.keys()):
                        for source_pop in pops:
                            source_index = conf['structure'][
                                source_layer][source_pop]
                            cov[target_index][source_index] = \
                                np.array(list(
                                    cov_all[target_index][source_index][::-1])
                                + list(cov_all[source_index][target_index][1:]))

            f = open(conf['system_params'][
                     'output_path'] + '/covariances.dat', 'w')
            print >>f, 'tau_max: ', tau_max
            print >>f, 'delta_tau: ', delta_tau
            print >>f, 'simtime: ', conf['simulator_params'][
                simulator]['sim_duration'], '\n'

            for target_layer in np.sort(layers.keys()):
                for target_pop in pops:
                    target_index = conf['structure'][target_layer][target_pop]
                    for source_layer in np.sort(layers.keys()):
                        for source_pop in pops:
                            source_index = conf['structure'][
                                source_layer][source_pop]
                            print >>f, target_layer, target_pop, '-', source_layer, source_pop
                            print >>f, 'n_events_target: ', sim.nest.GetStatus(
                                n.corr_detector, 'n_events')[0][target_index]
                            print >>f, 'n_events_source: ', sim.nest.GetStatus(
                                n.corr_detector, 'n_events')[0][source_index]
                            for i in xrange(len(cov[target_index][source_index])):
                                print >>f, cov[target_index][source_index][i]
                            print >>f, ''
            f.close()

            # add file covariances.dat into bundle
            res_cov = ('covariances.dat',
                       'text/plain')
            results.append(res_cov)

        end_corr = time.time()
        print "Writing covariances took ", end_corr - start_corr, " s"

    if plot_spiking_activity and sim.rank() == 0:
        plotting.plot_raster_bars(raster_t_min, raster_t_max, n_rec,
                                  frac_to_plot, n.pops,
                                  conf['system_params']['output_path'],
                                  plot_filename, conf)
        res_plot = (plot_filename, 'image/png')
        results.append(res_plot)

    sim.end()

    return results
Example #26
0
import pyNN.nest as sim

parameters = {
 u'E_L': 0.0,
 u'I_e': 0.9, # 用这个参数来表示leaky
 u'V_reset': 0.0,
 u'V_th': 0.5,
 u't_ref': .0,
}

sim.setup(timestep=01.0)
nt = sim.native_cell_type('iaf_psc_delta_xxq')
n = sim.Population(1, nt(**parameters))
s = sim.Population(1, sim.SpikeSourceArray())
s[0].spike_times = [10, 15, 20, 30, 40]
p = sim.Projection(s, n, sim.FromListConnector([(0, 0, 0.00025, 0.01)]))
# p1 = sim.Projection(n, n, sim.FromListConnector([(0, 0, 0.00025, 1.0)]))
n.record('V_m')
n.record('V_m')
sim.initialize(n, V_m=0.)
sim.run(128.0)

vtrace = n.get_data(clear=True).segments[0].filter(name='V_m')[0]
print p.get(['weight'], format='array')

plt.figure()
plt.plot(vtrace.times, vtrace, 'o')
plt.ylim([0, 0.6])
plt.show()

sim.end()
def run_retina(params):
    """Run the retina using the specified parameters."""

    tmpdir = tempfile.mkdtemp()

    print "Setting up simulation"

    pyNN.Timer.start() # start timer on construction
    pyNN.setup(timestep=params['dt'],max_delay=params['syn_delay'])
    pyNN.pynest.setDict([0],{'threads' : params['threads']})
    pyNN.setRNGseeds(params['kernelseeds'])

    N = params['N']
    phr_ON  = pyNN.Population((N,N),'dc_generator')
    phr_OFF  = pyNN.Population((N,N),'dc_generator')
    noise_ON = pyNN.Population((N,N),'noise_generator',{'mean':0.,'std':params['noise_std']})
    noise_OFF = pyNN.Population((N,N),'noise_generator',{'mean':0.,'std':params['noise_std']})

    phr_ON.set({ 'start' : params['simtime']/4, 'stop' : params['simtime']/4*3})
    phr_ON.tset('amplitude', params['amplitude'] *  params['snr'])
    phr_OFF.set({ 'start' : params['simtime']/4, 'stop' : params['simtime']/4*3})
    phr_OFF.tset('amplitude', - params['amplitude']  * params['snr'])

    # target ON and OFF populations
    out_ON = pyNN.Population((N,N) ,'iaf_sfa_neuron',params['parameters_gc'])
    out_OFF = pyNN.Population((N,N) ,'iaf_sfa_neuron',params['parameters_gc'])

    #print "Connecting the network"

    retina_proj_ON = pyNN.Projection(phr_ON, out_ON, 'oneToOne')
    retina_proj_ON.setWeights(params['weight'])
    retina_proj_OFF = pyNN.Projection(phr_OFF, out_OFF, 'oneToOne')
    retina_proj_OFF.setWeights(params['weight'])

    noise_proj_ON = pyNN.Projection(noise_ON, out_ON, 'oneToOne')
    noise_proj_ON.setWeights(params['weight'])
    noise_proj_OFF = pyNN.Projection(noise_OFF, out_OFF, 'oneToOne')
    noise_proj_OFF.setWeights(params['weight'])

    out_ON_filename=os.path.join(tmpdir,'out_on.gdf')
    out_OFF_filename=os.path.join(tmpdir,'out_off.gdf')
    out_ON.record()
    out_OFF.record()

    # reads out time used for building
    buildCPUTime= pyNN.Timer.elapsedTime()

    print "Running simulation"

    pyNN.Timer.start() # start timer on construction
    pyNN.run(params['simtime'])
    simCPUTime = pyNN.Timer.elapsedTime()

    out_ON.printSpikes(out_ON_filename)
    out_OFF.printSpikes(out_OFF_filename)

    out_ON_DATA = tmpfile2spikelist(out_ON_filename,params['dt'])
    out_OFF_DATA = tmpfile2spikelist(out_OFF_filename,params['dt'])

    print "\nRetina Network Simulation:"
    print(params['description'])
    print "Number of Neurons  : ", N**2
    print "Output rate  (ON) : ", out_ON.meanSpikeCount(), \
        "spikes/neuron in ", params['simtime'], "ms"
    print "Output rate (OFF)   : ", out_OFF.meanSpikeCount(), \
        "spikes/neuron in ",params['simtime'], "ms"
    print "Build time         : ", buildCPUTime, "s"
    print "Simulation time    : ", simCPUTime, "s"

    return out_ON_DATA,out_OFF_DATA
        'e_rev_leak': ELeak,
        'e_rev_E'   : EIs[1],
        'e_rev_I'   : EIs[2],
        'tau_syn_E' : 0.2,
        'tau_syn_I' : 2.0,
        'i_offset'  : 0.0,
}

#vs = np.linspace(-75.0, EIs[0] + 5, 3)
vs = [-80.0, -61.0, -60.0]
neurons = [sim.create(sim.HH_cond_exp(**cellparams)) for _ in vs]
for i in xrange(len(vs)):
    neurons[i].record(["v"])
    neurons[i].initialize(v=vs[i])

sim.run(tEnd)

fig = plt.figure(figsize=(cm2inch(12.4), cm2inch(7)))
ax = fig.add_subplot(111)

#cmap = plt.cm.rainbow
#cmap = colors.LinearSegmentedColormap.from_list('blues', ['#729fcf', '#3465a4',
#        '#193a6b'])
lss = ['--', ':', '-']
#colors = iter(cmap(np.linspace(0, 1, len(vs))))
colors = iter(['#204a87'] * 3)
for i in xrange(len(vs)):
    data = neurons[i].get_data()
    signal_names = [s.name for s in data.segments[0].analogsignalarrays]
    vm = data.segments[0].analogsignalarrays[signal_names.index('v')]
    ax.plot(vm.times, vm, lss[i], color=next(colors),
connSTDP = pynn.nest.FindConnections(measure)
weightList = []
aCausalList = []
aAnticausalList = []
timeGrid = np.arange(0, runtime + timeStep / 2.0, timeStep)
#run simulation step-wise to record charge on "capacitors" and discrete synaptic weight
for timeNow in timeGrid:
    weightList.append(prj.getWeights()[0])

    for i in range(len(connSTDP)): #read out "capacitors"
        if pynn.nest.GetStatus([connSTDP[i]])[0]['synapse_model'].find(synapseModel) > -1:
            aCausalList.append(pynn.nest.GetStatus([connSTDP[i]])[0]['a_causal'])
            aAnticausalList.append(pynn.nest.GetStatus([connSTDP[i]])[0]['a_acausal'])

    if not timeNow == timeGrid[-1]:
        pynn.run(timeStep)

spikes = neuron.getSpikes()
#membrane = neuron.get_v() #for debugging

print 'presynaptic spikes (static synapse)'
print stimSpikes
print 'presynaptic spikes (plastic synapse)'
print measureSpikes
print 'postsynaptic spikes'
print spikes

pynn.end()

#visualization of results
import matplotlib.pyplot as plt
def run(a_state):
    output_base = "out/"
    spike_count_filename = "gpi_spike_count.dat"

    weight_filename = conn_filename    # filename, from which the cortex - striatum connections are read

    spike_count_full_filename = output_base + spike_count_filename

    #active_state = int(sys.argv[1])
    active_state = a_state

    #Model of the basal ganglia D1 and D1 pathways. States and actions are populations coded.

    pyNN.utility.init_logging(None, debug=True)

    sim.setup(time_step)

    # cell class for all neurons in the network
    # (on HMF can be one of IF_cond_exp, EIF_cond_exp_isfa_ista)
    cellclass = sim.IF_cond_exp


    # #############
    #  POPULATIONS
    # #############
    #CORTEX input population: N states, poisson inputs

    #?assemblies of m_actions populations or dictionnary of populations?
    #STRIATUM 2 populations of M actions, D1 and D2

    #GPi/SNr 1 population of M actions, baseline firing rate driven by external poisson inputs


    cortex = [
        sim.Population(n_cortex_cells, cellclass, neuron_parameters, label="CORTEX_{}".format(i))
        for i in xrange(n_states)]

    cortex_assembly = sim.Assembly(
        *cortex,
        label="CORTEX")

    # independent Poisson input to cortex populations.
    # /active_state/ determines, which population receives
    # a different firing rate
    cortex_input = []
    for i in xrange(n_states):

        if i == active_state:
            rate = active_state_rate
        else:
            rate = inactive_state_rate

        new_input = sim.Population(
            n_cortex_cells,
            sim.SpikeSourcePoisson,
            {'rate': rate},
            label="STATE_INPUT_" + str(i))
        sim.Projection(
            new_input,
            cortex[i],
            sim.OneToOneConnector(),
            sim.StaticSynapse(weight=cortex_input_weight, delay=cortex_input_delay)
            )

        cortex_input.append(new_input)
    #print 'cortex ok'

    # striatum:
    # exciatatory populations
    striatum_d1 = [
        sim.Population(n_msns, cellclass, neuron_parameters, label="D1_{}".format(i))
        for i in xrange(m_actions)]

    # inhibitory populations
    striatum_d2 = [
        sim.Population(n_msns, cellclass, neuron_parameters, label="D2_{}".format(i))
        for i in xrange(m_actions)]

    # Striatum D2->D2 and D1->D1 lateral inhibition
    for lat_inh_source in xrange(m_actions):
        for lat_inh_target in xrange(m_actions):
            if lat_inh_source == lat_inh_target:
                continue
            sim.Projection(
                striatum_d1[lat_inh_source],
                striatum_d1[lat_inh_target],
                sim.FixedProbabilityConnector(
                    d1_lat_inh_prob),
                    sim.StaticSynapse(
                        weight=d1_lat_inh_weight,
                        delay=d1_lat_inh_delay),
                receptor_type="inhibitory",
                label="d1_lateral_inhibition_{}_{}".format(
                    lat_inh_source, lat_inh_target))
            sim.Projection(
                striatum_d2[lat_inh_source],
                striatum_d2[lat_inh_target],
                sim.FixedProbabilityConnector(
                    d2_lat_inh_prob),
                    sim.StaticSynapse(
                        weight=d2_lat_inh_weight,
                        delay=d2_lat_inh_delay),
                receptor_type="inhibitory",
                label="d2_lateral_inhibition_{}_{}".format(
                    lat_inh_source, lat_inh_target))

    striatum_assembly = sim.Assembly(
        *(striatum_d1 + striatum_d2),
        label="STRIATUM")

    #gids_cortex= []
    #gids_d1= []
    #gids_d2= []

    #for s in xrange(n_states):
    #    gids_cortex.append([gid for gid in cortex_assembly.get_population("CORTEX_"+str(s)).all()])
    #for a in xrange(m_actions):
    #    gids_d1.append([gid1 for gid1 in striatum_assembly.get_population("D1_"+str(a)).all()])
    #    gids_d2.append([gid2 for gid2 in striatum_assembly.get_population("D2_"+str(a)).all()])


    #for i in xrange(0,3):

    #    print i, 'len cortex ', len(gids_cortex[i]), 'unique ', len(np.unique(gids_cortex[i]))
    #    print i, 'len d1', len(gids_d1[i]), 'unique ', len(np.unique(gids_d1[i]))
    #    print i, 'len d2', len(gids_d2[i]), 'unique ', len(np.unique(gids_d2[i]))
    #print "striatum ok"
    
    #for i in xrange(0,3):
    #    print np.unique(gids_cortex[i])
    #    gids_cortex[i][:]-=3

    #if init:
    #    init_w(gids_cortex, gids_d1, gids_d2)

     
    # cortex - striatum connection, all-to-all using loaded weights
    cs = sim.Projection(
        cortex_assembly,
        striatum_assembly,
        #sim.AllToAllConnector(),
        #sim.StaticSynapse(
        #    weight=wd1,
        #    delay=ctx_strd1_delay))
        sim.FromFileConnector(
            weight_filename))
    gpi = [
        sim.Population(n_gpi, cellclass, neuron_parameters,
                       label="GPI_{}".format(i))
        for i in xrange(m_actions)
        ]
    gpi_assembly = sim.Assembly(
        *gpi,
        label="GPi")

    # external Poisson input to GPi
    gpi_input = sim.Population(
        m_actions * n_gpi,
        sim.SpikeSourcePoisson,
        dict(
            duration=sim_duration,
            rate=gpi_external_rate,
            start=0.),
        label="GPI_EXT_INPUT")
    sim.Projection(
        gpi_input,
        gpi_assembly,
        sim.OneToOneConnector(),
        sim.StaticSynapse(
            weight=gpi_external_weight,
            delay= gpi_external_delay))
    # striatum - gpi connections
    for i in xrange(m_actions):
        gpi_p = sim.Projection(
            striatum_d1[i],
            gpi[i],
            sim.FixedProbabilityConnector(d1_gpi_prob), 
            sim.StaticSynapse( weight=d1_gpi_weight, delay = d1_gpi_delay))

        sim.Projection(
            striatum_d2[i],
            gpi[i],
            sim.FixedProbabilityConnector(d2_gpi_prob),
            sim.StaticSynapse(weight=d2_gpi_weight, delay=d2_gpi_delay),
            #target="inhibitory")
            receptor_type="inhibitory")

    #print gpi_p.get('weight', format='list')
    cortex_assembly.record('spikes')
    striatum_assembly.record('spikes')
    gpi_assembly.record('spikes')

    #print 'sim start'
    sim.run(sim_duration)
    sim.end()
    
    label = "CORTEX_0" 
    #print 'cortex get pop', cortex_assembly.get_population(label)
    #print 'cortex describe', cortex_assembly.describe()
    #cortex_assembly.write_data("spikes")
    #cortex_assembly.get_population(label).write_data("spikes")
    #spikes = gpi_assembly  #get_data("spikes", gather=True)
   # print "getdata spikes", spikes
   # print 'spikes.segment', spikes.segments
    #print 'spikes.segments.SpikeTrains', spikes.segments.spike

    #save_spikes(cortex_assembly, output_base, "cortex.dat")
    #save_spikes(striatum_d1, output_base, "striatum_d1.dat")
    #save_spikes(striatum_d2, output_base, "striatum_d2.dat")
    #save_spikes(gpi, output_base, "gpi.dat")

    #output_rates = np.array(
    #    [len(i.getSpikes()) for i in gpi])
    #np.savetxt(spike_count_full_filename, output_rates)
    
   # for seg in cortex_assembly.segments:
   #     print("Analyzing segment %d" % seg.index)
   #     stlist = [st - st.t_start for st in seg.spiketrains]
   #     plt.figure()
   #     count, bins = np.histogram(stlist)
   #     plt.bar(bins[:-1], count, width=bins[1] - bins[0])
   #     plt.title("PSTH in segment %d" % seg.index)
    cortex_mean_spikes = np.zeros(n_states)
    gpi_mean_spikes = np.zeros(m_actions)
    d1_mean_spikes = np.zeros(m_actions)
    d2_mean_spikes = np.zeros(m_actions)
    for i in xrange(n_states):
        cortex_mean_spikes[i] = cortex_assembly.get_population("CORTEX_"+str(i)).mean_spike_count()
    for i in xrange(m_actions):
        gpi_mean_spikes[i] = gpi_assembly.get_population("GPI_"+str(i)).mean_spike_count()
        d1_mean_spikes[i] = striatum_assembly.get_population("D1_"+str(i)).mean_spike_count()
        d2_mean_spikes[i] = striatum_assembly.get_population("D2_"+str(i)).mean_spike_count()

    print 'CORTEX ', cortex_mean_spikes
    print 'D1', d1_mean_spikes
    print 'D2', d2_mean_spikes

    return gpi_mean_spikes
Example #31
0
#!/usr/bin/env python

import faulthandler
from music_wizard.pynn import XmlFactory, Factory
import music
import pyNN.nest as sim

sim.setup()
music_setup = music.Setup()
xml = music_setup.config('xml')

model_factory = Factory.PyNNProxyFactory(sim, music_setup, acc_latency=10.0)
connector_factory = Factory.PyNNConnectorFactory(sim)

##########
# Load and execute brain file
import brainfile
##########

population_dict = brainfile.__population_views
proxy_factory = XmlFactory.ProxyFactory("app2", connector_factory, model_factory, population_dict)

with open(xml, 'r') as xml_stream:
    proxys = proxy_factory.create_proxys(xml_stream.read())

for i in xrange(20):
    sim.run(20.0)
Example #32
0
 def simulate(self):
     # reset detectors before simulating the next step
     nest.nest.SetStatus(self.network.detectors.values(), 'n_events', 0)
     nest.run(self.simduration)
     nest.end()
import pyNN.nest as sim

sim.nest.Install("coronetmodule")
sim.setup()
sim.nest.SetKernelStatus({"dict_miss_is_error": False})

coronet_neuron = sim.native_cell_type("coronet_neuron")
p1 = sim.Population(10, coronet_neuron)
s1 = sim.Population(10, sim.SpikeSourcePoisson, {"rate": 20})
s2 = sim.Population(10, sim.SpikeSourcePoisson, {"rate": 20})
sim.Projection(s1, p1, sim.OneToOneConnector(weights=0.02), target="EX")
sim.Projection(s2, p1, sim.OneToOneConnector(weights=0.01), target="IN")

p1.initialize("V_m", -76.0)  # this works as expected

p1.record()
p1._record("V_m")  # ugly
sim.run(1000)
id, t, v = p1.recorders["V_m"].get().T  # ugly

import pylab as pl
import numpy as np

pl.figure()
sl = p1.getSpikes()
pl.plot(sl[:, 1], sl[:, 0], ".")
pl.figure()
id_is_0 = np.where(id == 0)
pl.plot(t[id_is_0], v[id_is_0])
pl.show()
def run_retina(params):
    """Run the retina using the specified parameters."""

    print "Setting up simulation"
    timer = Timer()
    timer.start()  # start timer on construction
    pyNN.setup(timestep=params['dt'], max_delay=params['syn_delay'], threads=params['threads'], rng_seeds=params['kernelseeds'])

    N = params['N']
    phr_ON = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
    phr_OFF = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
    noise_ON = pyNN.Population((N, N), pyNN.native_cell_type('noise_generator')(mean=0.0, std=params['noise_std']))
    noise_OFF = pyNN.Population((N, N), pyNN.native_cell_type('noise_generator')(mean=0.0, std=params['noise_std']))

    phr_ON.set(start=params['simtime']/4, stop=params['simtime']/4*3,
               amplitude=params['amplitude'] * params['snr'])
    phr_OFF.set(start=params['simtime']/4, stop=params['simtime']/4*3,
                amplitude=-params['amplitude'] * params['snr'])

    # target ON and OFF populations
    v_init = params['parameters_gc'].pop('Vinit')
    out_ON = pyNN.Population((N, N), pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(**params['parameters_gc']))
    out_OFF = pyNN.Population((N, N), pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(**params['parameters_gc']))
    out_ON.initialize(v=v_init)
    out_OFF.initialize(v=v_init)

    #print "Connecting the network"

    retina_proj_ON = pyNN.Projection(phr_ON, out_ON, pyNN.OneToOneConnector())
    retina_proj_ON.set(weight=params['weight'])
    retina_proj_OFF = pyNN.Projection(phr_OFF, out_OFF, pyNN.OneToOneConnector())
    retina_proj_OFF.set(weight=params['weight'])

    noise_proj_ON = pyNN.Projection(noise_ON, out_ON, pyNN.OneToOneConnector())
    noise_proj_ON.set(weight=params['weight'])
    noise_proj_OFF = pyNN.Projection(noise_OFF, out_OFF, pyNN.OneToOneConnector())
    noise_proj_OFF.set(weight=params['weight'])

    out_ON.record('spikes')
    out_OFF.record('spikes')

    # reads out time used for building
    buildCPUTime = timer.elapsedTime()

    print "Running simulation"

    timer.start()  # start timer on construction
    pyNN.run(params['simtime'])
    simCPUTime = timer.elapsedTime()

    out_ON_DATA = out_ON.get_data().segments[0]
    out_OFF_DATA = out_OFF.get_data().segments[0]

    print "\nRetina Network Simulation:"
    print(params['description'])
    print "Number of Neurons : ", N**2
    print "Output rate  (ON) : ", out_ON.mean_spike_count(), \
        "spikes/neuron in ", params['simtime'], "ms"
    print "Output rate (OFF) : ", out_OFF.mean_spike_count(), \
        "spikes/neuron in ", params['simtime'], "ms"
    print "Build time        : ", buildCPUTime, "s"
    print "Simulation time   : ", simCPUTime, "s"

    return out_ON_DATA, out_OFF_DATA

conn = [
    sim.Projection(input[0:1], cells, connector, target="AMPA_spikeinput"),
    sim.Projection(input[1:2], cells, connector, target="GABAa_spikeinput"),
    sim.Projection(input[2:3], cells, connector, target="GABAb_spikeinput"),
]


cells._record("iaf_V")
cells._record("AMPA_g")
cells._record("GABAa_g")
cells._record("GABAb_g")
cells.record()

sim.run(100.0)

cells.recorders["iaf_V"].write("Results/nineml_neuron.V", filter=[cells[0]])
cells.recorders["AMPA_g"].write("Results/nineml_neuron.g_exc", filter=[cells[0]])
cells.recorders["GABAa_g"].write("Results/nineml_neuron.g_gabaA", filter=[cells[0]])
cells.recorders["GABAb_g"].write("Results/nineml_neuron.g_gagaB", filter=[cells[0]])


t = cells.recorders["iaf_V"].get()[:, 1]
v = cells.recorders["iaf_V"].get()[:, 2]
gInhA = cells.recorders["GABAa_g"].get()[:, 2]
gInhB = cells.recorders["GABAb_g"].get()[:, 2]
gExc = cells.recorders["AMPA_g"].get()[:, 2]

import pylab
Example #36
0
 def test_run_0(self, ):  # see https://github.com/NeuralEnsemble/PyNN/issues/191
     sim.setup(timestep=0.123, min_delay=0.246)
     sim.run(0)
     self.assertEqual(sim.get_current_time(), 0.0)
Example #37
0
        for j in range(n_j):
            l.append((i, j, W[i, j] * w0, delay))
    con = sim.FromListConnector(l, column_names=["weight", "delay"])

    return con


connections_hid = sim.Projection(p_in, p_hid, W_to_connector(W_hid))
connections_out = sim.Projection(p_hid, p_out, W_to_connector(W_out))

# Record spikes
p_in.record("spikes")
p_hid.record("spikes")
p_out.record("spikes")

t = sim.run(T)


# Get recorded data and plot
data_block = p_hid.get_data()
print(data_block)

fig, ax_list = plt.subplots(3)

for k, p, ax in zip(range(3), [p_in, p_hid, p_out], ax_list):
    ax.scatter(p.get_data()["spikes"])
    ax.set_xlim[0, T]


plt.show()