Example #1
0
class WorkSession:
    def __init__(self):
        # Import model
        self.fs = DEFAULT_FS
        self.buffer_seconds = DEFAULT_SECONDS
        self.started = False

    def start(self):
        print("started work session :D ")
        self.timestamp = datetime.now()
        self.model = torch.load(
            "../data_analysis/models/model_t_combined_continuous_filtered_3class.pickle"
        )
        self.focus_logger = FocusLogger(fs=self.fs)
        self.eeg_sampler = EEGSampler(fs=self.fs,
                                      buffer_seconds=self.buffer_seconds,
                                      update_seconds=DEFAULT_UPDATE_SECONDS,
                                      channels=DEFAULT_CHANNELS,
                                      binning=DEFAULT_BINNING,
                                      live=True,
                                      model=self.model,
                                      to_clean=True,
                                      three_class=True,
                                      focus_logger=self.focus_logger)
        if LIVE_DATA:
            self.board = OpenBCICyton()
            self.eeg_thread = threading.Thread(
                target=self.board.start_stream,
                args=(self.eeg_sampler.push_data_sample, ))
            self.eeg_thread.start()
        self.started = True

    def end(self):
        print("ended work session")
        self.duration = datetime.utcfromtimestamp(
            (datetime.now() -
             self.timestamp).total_seconds()).strftime('%H:%M:%S')

        if LIVE_DATA:
            self.board.stop_stream()
        self.started = False

    def getTotalAvg(self):
        return self.focus_logger.getTotalAvg()

    def getTimestamp(self):
        return self.timestamp

    def getDuration(self):
        if self.started:
            self.duration = datetime.utcfromtimestamp(
                (datetime.now() -
                 self.timestamp).total_seconds()).strftime('%H:%M:%S')
        return self.duration

    def getEEGBufferData(self):
        return self.eeg_sampler.getBuffer()

    def getAveragedFocusBufferData(self):
        return self.eeg_sampler.getAveragedFocus()
Example #2
0
class EEGRecorder:
    def __init__(self, live, output_filename, channels=DEFAULT_CHANNELS):
        self.fs = DEFAULT_FS
        self.output_filename = output_filename
        self.started = False
        self.live = live
        self.channels = channels
        atexit.register(self.end)

    ############################
    ## STREAM CONTROL METHODS ##
    ############################
    def start(self):
        print("start recording called")
        if self.live:
            from pyOpenBCI import OpenBCICyton
            print("LIVE: started eeg recording")
            header = ["timestamp"] + self.channels
            self.csv_writer = CSVWriter(self.output_filename,
                                        column_headers=header)
            self.board = OpenBCICyton()
            self.eeg_thread = threading.Thread(
                target=self.board.start_stream,
                args=(self.record_data_sample, ))
            self.eeg_thread.start()
            self.started = True

    def end(self):
        print("end recording called")
        if self.started:
            print("LIVE: ended eeg recording")
            if self.live:
                self.board.stop_stream()
            self.started = False

    ####################
    ## HELPER METHODS ##
    ####################
    def record_data_sample(self, sample):
        # Get timestamp
        now = time.time()

        # Get the scaled channel data
        if self.live:
            raw_eeg_data = np.array(sample.channels_data) * SCALE_FACTOR_EEG
        else:
            raw_eeg_data = np.array(sample)

        # Record to CSV
        row_data = [now]
        row_data.extend(raw_eeg_data[self.channels])
        self.csv_writer.writerow(row_data)
Example #3
0
class EEGRecorder:
    def __init__(self):
        self.__board = None
        self.__outlet_eeg = None
        self.__outlet_aux = None
        self.__createEEGStream()

    def __createEEGStream(self):
        info_eeg = StreamInfo(name='OpenBCI EEG',
                              type='EEG',
                              channel_count=8,
                              nominal_srate=250,
                              channel_format='float32',
                              source_id='eeg_thread')
        info_aux = StreamInfo(name='OpenBCI AUX',
                              type='AUX',
                              channel_count=3,
                              nominal_srate=250,
                              channel_format='float32',
                              source_id='aux_thread')

        self.__outlet_eeg = StreamOutlet(info_eeg)
        self.__outlet_aux = StreamOutlet(info_aux)
        # append some meta-data
        # info.desc().append_child_value("manufacturer", "OpenBCI")
        # channels = info.desc().append_child("channels")
        # for c in ["Fp1", "Fp2", "FPz", "A1"]:
        #     channels.append_child("channel")\
        #         .append_child_value("name", c)\
        #         .append_child_value("unit", "microvolts")\
        #         .append_child_value("type", "EEG")

        # next make an outlet; we set the transmission chunk size to 32 samples and
        # the outgoing buffer size to 360 seconds (max.)
        # outlet = StreamOutlet(info, 32, 360)

    def __lsl_streamers(self, sample):
        self.__outlet_eeg.push_sample(
            np.array(sample.channels_data) * SCALE_FACTOR_EEG)
        self.__outlet_aux.push_sample(
            np.array(sample.aux_data) * SCALE_FACTOR_AUX)

    def runSession(self):
        self.__createEEGStream()
        # eeg_thread = threading.Thread(target=self.__board.start_stream, args=(self.__lsl_streamers,))
        # eeg_thread.start()
        try:
            self.__board = OpenBCICyton()
            self.__board.start_stream(self.__lsl_streamers)
        except (KeyboardInterrupt, SystemExit):
            self.__board.stop_stream()
            sys.exit()
Example #4
0
def main():
    TIMEOUT = 60

    #Set (daisy = True) to stream 16 ch
    board = OpenBCICyton(daisy=True)

    signal.signal(signal.SIGALRM, signal_handler)
    signal.alarm(TIMEOUT)
    try:
        board.start_stream(print_raw)
    except Exception as e:
        print("timed out")
        board.stop_stream()
        sys.exit(0)
Example #5
0
class EEGSampler:
    """ Holds a buffer of EEG data and accepts a single data sample as input to append to the buffer
    """
    def __init__(self, live, fs=DEFAULT_FS, buffer_seconds=DEFAULT_SECONDS, update_seconds=DEFAULT_UPDATE_SECONDS, prediction_seconds=DEFAULT_PREDICTION_WINDOW_SECONDS, channels=DEFAULT_CHANNELS, model=None, to_clean=True):
        self.fs = fs
        self.buffer_seconds = buffer_seconds
        self.prediction_seconds = prediction_seconds
        self.timepoints_to_chop = 300 # How many timepoints to disregard from the most recent (this sets back the lag of prediction)
        if to_clean: 
            if prediction_seconds * fs > (buffer_seconds * fs - self.timepoints_to_chop): 
                print("Warning: prediction window may contain edge artifacts because it is larger than 500 timepoints less than the buffer size")
                self.timepoints_to_chop = (buffer_seconds * fs - prediction_seconds * fs) // 2 # Take the middle half to reduce edge artifacts
        self.channels = channels # These are the channels we want
        
        self.live = live
        self.model = model
        if model is not None: 
            self.classes = list(self.model.model.classes_)
            self.index_of_left = self.classes.index(1)
            print("classes", self.classes)

        # If generating artificial data, this will cap the # of seconds we get artificial data to prevent while(true) runaways
        self.seconds_to_gather_artificial_data = 600 
        
        self.buffer = np.zeros((fs * buffer_seconds, len(channels)))
        self.raw_buffer = np.zeros((fs * buffer_seconds, len(channels)))
        self.dc_removed_buffer = np.zeros((fs * buffer_seconds, len(channels)))
        
        self.pred_values = np.zeros((fs * buffer_seconds))
        self.pred_values_average = np.zeros((fs * buffer_seconds))
        self.update_seconds = update_seconds
        self.last_updated = time.time()
        self.mean = np.zeros(len(channels))
        self.count_samples = 0
        self.to_clean = to_clean
        self.started = False
        atexit.register(self.end)
    
    ############################
    ## STREAM CONTROL METHODS ##
    ############################
    def setModel(self, model):
        '''
            Allows for the model to be updated
        '''
        self.model = model
        self.classes = list(self.model.model.classes_)
        self.index_of_left = self.classes.index(1)
        print("classes", self.classes)

    def startStream(self) :
        print("start streaming called")
        if not self.started:
            self.started = True

            if self.live: 
                from pyOpenBCI import OpenBCICyton
                print("LIVE: started eeg streaming")
                self.board = OpenBCICyton()
                self.eeg_thread = threading.Thread(target=self.board.start_stream, args=(self.push_data_sample,))
            else :
                print("FAKE DATA: started")
                self.eeg_thread = threading.Thread(target=self.__generate_artificial_data, args=(self.push_data_sample,))
            self.eeg_thread.start()

    def end(self): 
        print("end stream called")
        if self.started: 
            self.started = False
            if self.live: 
                print("LIVE: ended eeg streaming")
                self.board.stop_stream()
            else :
                print("FAKE DATA: ended")
    
    ########################
    ## BUFFER GET METHODS ##
    ########################
    
    def getBuffer(self):
        return self.buffer
        
    def getPredictionValue(self):  
        return self.pred_values[0]
    def getPredictionValues(self):  
        return self.pred_values

    def getPredictionValueAverage(self):  
        return self.pred_values_average[0]
    def getPredictionValueAverages(self):  
        return self.pred_values_average

    
    ############################
    ## PRIVATE HELPER METHODS ##
    ############################
    def __generate_artificial_data(self, callback) : 
        limit_counter = 0 # This will prevent this thread from continuing to produce values on while forever
        while self.started and (limit_counter < (600 * self.fs)): # TODO: remove 
            fake_sample = np.random.rand(8) * 300 # Cyton has 8 channels by default, so we generate a value for each. 
            callback(fake_sample)
            time.sleep(0.004) # Sample at 250 Hz 
            limit_counter += 1
        
    def __filter_eeg(self):
        # Bandpass + 60 Hz Notch
        for i, chan in enumerate(self.channels):
            self.buffer[:self.count_samples, i] = filterEEG(self.dc_removed_buffer[:self.count_samples, i], self.fs, (0.5, 50))

    def __update_prediction_buffer(self):
        # Take a 4 second window timepoints_to_chop timepoints away from the end of the buffer to reduce edge effects
        data = np.transpose(self.buffer[self.timepoints_to_chop : self.prediction_seconds * self.fs + self.timepoints_to_chop])
        
        prediction = self.model.predict_proba(np.array([data]))[0]
        print("prediction: ", prediction)
        prediction = prediction[self.index_of_left]
        self.pred_values[0] = prediction 
        
        self.pred_values_average = np.roll(self.pred_values_average, 1, 0) 
        # Update average values
        self.pred_values_average[0] = np.mean(self.pred_values[:self.fs])

    
    ###########################
    ## CALLBACK FOR NEW DATA ##
    ###########################
    def push_data_sample(self, sample):
        # Count the number of samples up till the full buffer (this is for mean calculation)
        if self.count_samples < self.fs * self.buffer_seconds: 
            self.count_samples += 1
        
        # Get the scaled channel data
        if self.live: 
            raw_eeg_data = np.array(sample.channels_data)[self.channels] * SCALE_FACTOR_EEG
        else :
            raw_eeg_data = np.array(sample)[self.channels]
        
        # Roll and prepend the buffer with the new data
        self.raw_buffer = np.roll(self.raw_buffer, 1, 0)
        self.buffer = np.roll(self.buffer, 1, 0)
        self.dc_removed_buffer = np.roll(self.dc_removed_buffer, 1, 0)
        self.pred_values = np.roll(self.pred_values, 1, 0)
        self.pred_values_average = np.roll(self.pred_values_average, 1, 0)
        for i, chan in enumerate(self.channels):
            self.raw_buffer[0, i] = raw_eeg_data[i]
            if self.to_clean:  
                self.dc_removed_buffer[0, i] = self.raw_buffer[0,i] - self.mean[i]
                self.buffer[0, i] = self.dc_removed_buffer[0, i]
            else : 
                self.dc_removed_buffer[0, i] = self.raw_buffer[0, i] 
                self.buffer[0, i] = self.raw_buffer[0, i] 
            self.pred_values[0] = self.pred_values[1]
            self.pred_values_average[0] = np.mean(self.pred_values[:self.fs])
        
        # Calculate the new mean if the update time has passed
        now = time.time()
        if (now - self.last_updated) > self.update_seconds :
            self.last_updated = now

            # Only predict once we've reached the number of samples we need in the buffer
            if (self.count_samples > self.prediction_seconds * self.fs + self.timepoints_to_chop): 
                if (self.to_clean):
                    self.__filter_eeg()
                if (self.model is not None):
                    self.__update_prediction_buffer()
Example #6
0
class FrameGesto1(wx.Frame):
    def __init__(self, parent):
        wx.Frame.__init__(self,
                          parent,
                          id=wx.ID_ANY,
                          title=u"Captura de señales para el gesto 1",
                          pos=wx.DefaultPosition,
                          size=wx.Size(1400, 1000),
                          style=wx.DEFAULT_FRAME_STYLE | wx.TAB_TRAVERSAL)

        self.SetSizeHintsSz(wx.DefaultSize, wx.DefaultSize)
        bSizer4 = wx.BoxSizer(wx.VERTICAL)
        self.panel = wx.Panel(self)
        sizer = wx.BoxSizer(wx.VERTICAL)

        self.panel.SetSizer(sizer)
        self.m_staticText2 = wx.StaticText(
            self, wx.ID_ANY, u"Captura de señales para el primer gesto \n",
            wx.DefaultPosition, wx.Size(700, -1), 0)
        self.m_staticText2.Wrap(-1)
        self.m_staticText2.SetFont(
            wx.Font(34, 70, 90, 90, False, wx.EmptyString))

        bSizer4.Add(self.m_staticText2, 0, wx.ALIGN_CENTER_HORIZONTAL, 10)

        bSizer49 = wx.BoxSizer(wx.VERTICAL)

        bSizer50 = wx.BoxSizer(wx.HORIZONTAL)

        bSizer50.SetMinSize(wx.Size(700, 50))
        self.m_staticText30 = wx.StaticText(
            self, wx.ID_ANY,
            u"Para iniciar el experimento por favor observe \n ",
            wx.DefaultPosition, wx.Size(1000, -1), 0)
        self.m_staticText30.Wrap(-1)
        self.m_staticText30.SetFont(
            wx.Font(17, 70, 90, 90, False, wx.EmptyString))

        bSizer50.Add(self.m_staticText30, 0, wx.ALL, 5)

        bSizer52 = wx.BoxSizer(wx.VERTICAL)

        bSizer52.SetMinSize(wx.Size(90, -1))
        self.m_button32 = wx.Button(self, wx.ID_ANY, u"Inicio",
                                    wx.Point(-1, -1), wx.Size(150, -1), 0)
        self.m_button32.SetFont(wx.Font(25, 70, 90, 90, False, wx.EmptyString))

        bSizer52.Add(self.m_button32, 0, wx.TOP, 10)

        bSizer50.Add(bSizer52, 1, 0, 5)

        self.m_animCtrl1 = AnimationCtrl(self,
                                         pos=(40, 40),
                                         size=(14, 14),
                                         name="AnimationCtrl")
        self.m_animCtrl1.LoadFile(
            r"C:\Users\crist\OneDrive\Escritorio\Universidad\LASER\Tesis\Open_BCI_and_MYO_UD\GUI_Adquisicion/manos.gif"
        )
        self.m_animCtrl1.Play()
        self.m_animCtrl1.SetMinSize(wx.Size(200, -1))

        bSizer50.Add(self.m_animCtrl1, 0, wx.ALIGN_CENTER, 5)

        bSizer49.Add(bSizer50, 1, 0, 5)

        bSizer51 = wx.BoxSizer(wx.VERTICAL)
        bSizer57 = wx.BoxSizer(wx.HORIZONTAL)

        # grafica EMG
        self.figureEMG = plt.figure(figsize=(1, 6), dpi=60)
        self.axes = [
            self.figureEMG.add_subplot('81' + str(i)) for i in range(1, 9)
        ]
        self.n = 512
        [(ax.set_ylim(ymin=-200, ymax=200)) for ax in self.axes]
        global graphs
        self.graphs = [
            ax.plot(np.arange(self.n), np.zeros(self.n))[0] for ax in self.axes
        ]
        plt.ion()
        self.canvEMG = FigureCanvas(self, wx.ID_ANY, self.figureEMG)
        bSizer57.Add(self.canvEMG, 1, wx.TOP | wx.LEFT | wx.EXPAND)

        # grafica EEG
        self.figureEEG = plt.figure(figsize=(1, 6), dpi=60)
        self.axesEEG = [
            self.figureEEG.add_subplot('81' + str(i)) for i in range(1, 9)
        ]
        [(ax.set_ylim([-150000, 150000])) for ax in self.axesEEG]
        self.m = 100
        self.graphsEEG = [
            ax.plot(np.arange(self.m), np.zeros(self.m))[0]
            for ax in self.axesEEG
        ]
        plt.ion()
        self.canvasEEG = FigureCanvas(self, -1, self.figureEEG)
        bSizer57.Add(self.canvasEEG, 1, wx.TOP | wx.LEFT | wx.EXPAND)

        bSizer51.Add(bSizer57, 1, wx.EXPAND, 5)

        bSizer49.Add(bSizer51, 1, wx.EXPAND, 5)

        bSizer53 = wx.BoxSizer(wx.HORIZONTAL)

        self.m_staticText31 = wx.StaticText(self, wx.ID_ANY,
                                            u"Señal EMG", wx.DefaultPosition,
                                            wx.Size(700, 30), 0)
        self.m_staticText31.Wrap(-1)
        self.m_staticText31.SetFont(
            wx.Font(18, 70, 90, 90, False, wx.EmptyString))

        bSizer53.Add(self.m_staticText31, 0, wx.LEFT, 5)

        self.m_staticText32 = wx.StaticText(self, wx.ID_ANY,
                                            u"Señal EEG", wx.DefaultPosition,
                                            wx.Size(-1, 30), 0)
        self.m_staticText32.Wrap(-1)
        self.m_staticText32.SetFont(
            wx.Font(18, 70, 90, 90, False, wx.EmptyString))

        bSizer53.Add(self.m_staticText32, 0, 0, 5)

        bSizer49.Add(bSizer53, 1, 0, 5)

        bSizer8 = wx.BoxSizer(wx.HORIZONTAL)

        self.m_staticText33 = wx.StaticText(self, wx.ID_ANY,
                                            u"Tiempo:", wx.DefaultPosition,
                                            wx.Size(550, -1), 0)
        self.m_staticText33.Wrap(-1)
        self.m_staticText33.SetFont(
            wx.Font(18, 70, 90, 90, False, wx.EmptyString))
        bSizer8.Add(self.m_staticText33, 0, wx.ALL, 5)
        pos = wx.DefaultPosition
        size = wx.Size(1, 11)
        style = gizmos.LED_ALIGN_CENTER
        self.led = gizmos.LEDNumberCtrl(self, -1, pos, size, style)
        self.led.SetBackgroundColour("white")
        self.led.SetForegroundColour("black")
        bSizerTimmer = wx.BoxSizer(wx.VERTICAL)
        bSizerTimmer.Add(self.led, 1, wx.TOP | wx.LEFT | wx.EXPAND)
        bSizer49.Add(bSizerTimmer, 1, wx.EXPAND, 5)

        self.button_siguiente = wx.Button(self, wx.ID_ANY,
                                          u"Aceptar", wx.DefaultPosition,
                                          wx.Size(150, -1), 0)
        self.button_siguiente.SetFont(
            wx.Font(18, 70, 90, 90, False, wx.EmptyString))

        bSizer8.Add(self.button_siguiente, 0, wx.ALL, 5)

        self.button_salir = wx.Button(self, wx.ID_ANY, u"Salir",
                                      wx.DefaultPosition, wx.Size(150, -1), 0)
        self.button_salir.SetFont(
            wx.Font(18, 70, 90, 90, False, wx.EmptyString))

        bSizer8.Add(self.button_salir, 0, wx.ALL, 5)

        bSizer49.Add(bSizer8, 0, wx.TOP, 1)

        bSizer4.Add(bSizer49, 1, wx.EXPAND, 5)

        self.SetSizer(bSizer4)
        self.Layout()

        self.Centre(wx.BOTH)

        # Connect Events
        self.m_button32.Bind(wx.EVT_BUTTON, self.OnClickInicio)
        self.button_siguiente.Bind(wx.EVT_BUTTON, self.OnClickConcentimiento)
        self.button_salir.Bind(wx.EVT_BUTTON, self.OnClickSalir)
        # Arrancar conexion myo
        self.conexionMYO()

        def hiloMYOConexion(arg):
            hiloConexionMYO = threading.currentThread()
            while getattr(hiloConexionMYO, "do_run", True):
                print("working on %s" % arg)
                self.mainMYO()
            print("Stopping as you wish.")

        self.hiloConexionMYO = threading.Thread(target=hiloMYOConexion,
                                                args=("PLOT_EMG_MYO", ))
        self.hiloConexionMYO.setDaemon(True)
        self.hiloConexionMYO.start()
        # Arranca conexion UltraCortex
        self.datosEEG = []
        self.start_board()

        def hiloPlotUltracortex(arg):
            hiloPlotUltracortex = threading.currentThread()
            while getattr(hiloPlotUltracortex, "do_run", True):
                print("working on %s" % arg)
                time.sleep(3)
                self.mainplotUltracortex()
            print("Stopping as you wish.")

        self.hiloPlotUltracortex = threading.Thread(
            target=hiloPlotUltracortex, args=("PLOT_EEG_ULTRACORTEX", ))
        self.hiloPlotUltracortex.setDaemon(True)
        self.hiloPlotUltracortex.start()

    def __del__(self):
        pass


# Virtual event handlers, overide them in your derived class

    def OnClickInicio(self, event):
        self.GetSegundos(None)

    def OnClickConcentimiento(self, event):
        event.Skip()

    def OnClickSalir(self, event):
        self.Close()
        sys.exit()

    def GetSegundos(self, e):
        global segundos
        self.board.stop_stream()
        self.stopconexioUltracortexPlot = True
        self.hiloPlotUltracortex.do_run = False
        self.hiloPlotUltracortex.join()
        self.stopconexion = True
        self.hiloConexionMYO.do_run = False
        self.hiloConexionMYO.join()
        dlg = wx.TextEntryDialog(self.panel,
                                 'Ingrese los segundos a grabar el gesto:',
                                 "Captura del gesto",
                                 "",
                                 style=wx.OK)
        dlg.ShowModal()
        segundos = int(dlg.GetValue())

        def hiloRunTimmer(arg):
            hiloRunTimmer = threading.currentThread()
            while getattr(hiloRunTimmer, "do_run", True):
                print("working on %s" % arg)
                self.led.SetValue("00:00")
                self.OnTimer(None, e=segundos)
            print("Stopping as you wish.")

        self.hiloRunTimmer = threading.Thread(target=hiloRunTimmer,
                                              args=("RUN_Timmer", ))
        self.hiloRunTimmer.setDaemon(True)
        self.hiloRunTimmer.start()

        def hiloMYOSaved(arg):
            hiloMYOSaved = threading.currentThread()
            while getattr(hiloMYOSaved, "do_run", True):
                print("working on %s" % arg)
                self.mainSavedMYO()
            print("Stopping as you wish.")

        self.hiloMYOSaved = threading.Thread(target=hiloMYOSaved,
                                             args=("Saved_EMG_MYO", ))
        self.hiloMYOSaved.setDaemon(True)
        self.hiloMYOSaved.start()

        def hiloUltracortesConexion(arg):
            hiloUltracortesConexion = threading.currentThread()
            while getattr(hiloUltracortesConexion, "do_run", True):
                print("working on %s" % arg)
                self.mainULTRACORTEX()
            print("Stopping as you wish.")

        self.hiloUltracortesConexion = threading.Thread(
            target=hiloUltracortesConexion, args=("SAVE_EEG_ULTRACORTEX", ))
        self.hiloUltracortesConexion.setDaemon(True)
        self.hiloUltracortesConexion.start()

        dlg.Destroy()

    def OnTimer(self, event, e):
        print("OnTimmer Inicia")
        global i
        global c
        c = e
        if (i < c):
            i += 1
            time.sleep(1)
            self.TimerGo(None)

        else:
            print("Termino Timer")
            self.board.stop_stream()
            self.stopconexioUltracortex = True
            self.hiloUltracortesConexion.do_run = False
            self.hiloUltracortesConexion.join()
            self.hiloRunTimmer.do_run = False
            self.stopsaved = True
            self.hiloMYOSaved.do_run = False
            self.hiloMYOSaved.join()

    def TimerGo(self, event):
        global s
        global m
        global t
        global c
        s = int(s)
        m = int(m)
        if (s < 59):
            s += 1
        elif (s == 59):
            s = 0
            if (m < 59):
                m += 1
            elif (m == 59):
                m = 0
        if (int(s) < 10):
            s = str(0) + str(s)
        if (int(s) > 9):
            s = str(s)
        t = str(m) + ":" + str(s)
        self.led.SetValue(t)
        self.OnTimer(None, c)

    def conexionMYO(self):
        print("Realizando Conexión MYO")
        myo.init()
        self.hub = myo.Hub()
        self.listener = EmgCollector(512)
        self.stopconexion = False
        self.stopsaved = False
        print("Conexión MYO Establecida")
        self.Crear_carpetaMYO()

    def mainMYO(self):
        global data_total
        data_total = []
        with self.hub.run_in_background(self.listener.on_event):
            while True:
                self.plotMYO()
                time.sleep(0.1)
                if (self.stopconexion == True):
                    break

    def mainSavedMYO(self):
        global fila
        fila = 0
        with self.hub.run_in_background(self.listener.on_event):
            while True:
                self.SaveMYO()
                time.sleep(2.56)
                if (self.stopsaved == True):
                    break

    def plotMYO(self):
        global graphs
        emg_data = self.listener.get_emg_data()
        emg_data = np.array([x[1] for x in emg_data]).T
        for g, data in zip(self.graphs, emg_data):
            if len(data) < self.n:
                data = np.concatenate([np.zeros(self.n - len(data)), data])
            g.set_ydata(data)
        #plt.draw()

    def SaveMYO(self):
        global fila
        global data_total
        numMuestras = 512
        emg_data = self.listener.get_emg_data()
        emg_data = [x[1] for x in emg_data]
        with open(os.path.join(carpetaEMG, "datos %d.csv" % j),
                  'a') as fp:  # Guardar datos en el archivo csv
            for h in range(0, 512):
                for i in range(0, 8):
                    fp.write(str(emg_data[h][i]) + ";")
                fp.write("\n")

    ###########################################################################
    # Ultracortex
    def start_board(self):
        global fila
        fila = 0
        self.board = OpenBCICyton(port='COM8', daisy=False)
        self.stopconexioUltracortex = False
        self.stopconexioUltracortexPlot = False
        self.Crear_carpetaEEG()

    def mainULTRACORTEX(self):
        while (self.stopconexioUltracortex == False):
            self.board.start_stream(self.save_data)

        print("entro if")
        self.board.stop_stream()

    def mainplotUltracortex(self):
        while (self.stopconexioUltracortexPlot == False):
            time.sleep(0.1)
            self.board.start_stream(self.plot_eeg)
        print("entro if")
        self.board.stop_stream()

    def plot_eeg(self, sample):
        global datosEEG, bp_a, bp_b
        global graphsEEG
        self.datosEEG.append(
            [i * (SCALE_FACTOR) for i in sample.channels_data])
        datosEEGplot = np.array(self.datosEEG).T
        # for o in range (8):
        #    datosEEGplot[o] = signal.lfilter(bp_b, bp_a, datosEEGplot[o])
        for g, data in zip(self.graphsEEG, datosEEGplot):
            if len(data) < self.m:
                data = np.concatenate([np.zeros(self.m - len(data)), data])
            else:
                data = np.array(data[(len(data) - self.m):])
            # dy = (max(data) - min(data))*0.7
            # [(ax.set_ylim([min(data)-dy, max(data)+dy])) for ax in self.axesEEG]
            g.set_ydata(data)
        #plt.draw()>:V
        self.board.stop_stream()

    def save_data(self, sample):
        global fila
        global datosEEG, bp_a, bp_b
        self.datosEEG.append(
            [i * (SCALE_FACTOR) for i in sample.channels_data])
        datosEEGplot = np.array(self.datosEEG).T
        with open(os.path.join(carpetaEEG, "datos %d.csv" % j),
                  'a') as fp:  # Guardar datos en el archivo csv
            for i in range(0, 8):
                fp.write(str(self.datosEEG[fila][i]) + ";")
            fp.write("\n")
            fila += 1

    def Crear_carpetaEEG(self):
        global carpetaEEG
        global j
        global fila
        fila = 0
        Archivo = True
        j = 1
        Tipo = "PruebaUltracortex"
        carpetaEEG = f"Base_Datos_{Tipo}"  #Creacion de carpetas para guarda archivos si no existe
        if not os.path.exists(carpetaEEG):
            os.mkdir(carpetaEEG)

        while (Archivo == True
               ):  # Se crea un archivo csv en caso de que no exista
            if os.path.isfile(carpetaEEG + "/datos %d.csv" % j):
                print('El archivo existe.')
                j += 1
            else:
                with open(os.path.join(carpetaEEG, "datos %d.csv" % j),
                          'w') as fp:
                    [fp.write('CH%d ;' % i) for i in range(1, 9)]
                    fp.write("\n")
                    print("Archivo Creado")
                    Archivo = False

    def Crear_carpetaMYO(self):
        global carpetaEMG
        global j
        global fila
        fila = 0
        Archivo = True
        j = 1
        Tipo = "PruebaMYO"
        carpetaEMG = f"Base_Datos_{Tipo}"  #Creacion de carpetas para guarda archivos si no existe
        if not os.path.exists(carpetaEMG):
            os.mkdir(carpetaEMG)

        while (Archivo == True
               ):  # Se crea un archivo csv en caso de que no exista
            if os.path.isfile(carpetaEMG + "/datos %d.csv" % j):
                print('El archivo existe.')
                j += 1
            else:
                with open(os.path.join(carpetaEMG, "datos %d.csv" % j),
                          'w') as fp:
                    [fp.write('CH%d ;' % i) for i in range(1, 9)]
                    fp.write("\n")
                    print("Archivo Creado")
                    Archivo = False
Example #7
0
        else:
            sys.exit(
                'Currently the Ganglion Python repo only works with Linux OS.')
    else:
        board = OpenBCIWiFi()

    valid_commands = '012345678!@#$%^&*qwertyuiQWERTYUI[]pdbsvnN;-=xXDzZASFGHJKLajbs?c<>'

    while True:
        command = input('--> ')
        if str(command).lower() in ['start', 'stream']:
            print('Starting Board Stream')
            stream_thread = threading.Thread(target=board.start_stream,
                                             args=(callback, ),
                                             daemon=True)
            stream_thread.start()

        elif str(command).lower() in ['stop']:
            board.stop_stream()

        elif str(command).lower() in ['exit']:
            sys.exit()

        elif all(c in valid_commands for c in command):
            try:
                board.write_command(command)
            except:
                raise
        else:
            print('Not a valid command')
Example #8
0
class OpenBCI(object):
    def __init__(self,
                 port=None,
                 daisy=None,
                 chunk_size=250,
                 method=1,
                 path=None,
                 createSession=True):
        '''
			Initialize all the variables
		'''
        self.port = port
        self.daisy = daisy
        self.chunk_size = chunk_size
        self.method = method  # Read data continously or in chunks of chunk_size
        print("Starting creating streamer....")
        self.streamer = BCI(self.port, self.daisy)
        self.uVolts_per_count = (4.5) / 24 / (
            2**23 - 1
        ) * 1000000  # scalar factor to convert raw data into real world signal data

        #Saving data and naming conventions
        self.homeFolder = os.getcwd()
        self.sessionFolder = self.homeFolder + "/SessionData"
        self.sessionId = time.strftime("SESSION_%Y%m%d_%H%M%S")
        if (path == None):
            self.currentSession = self.sessionFolder + "/" + self.sessionId
        else:
            self.currentSession = self.sessionFolder + "/" + path
        print("Building Session Folders....")
        if (createSession == True):
            self.makeSessionFolder()

    def makeSessionFolder(self):
        if (os.path.isdir(self.sessionFolder) == False):
            os.mkdir(self.sessionFolder)
        if (os.path.isdir(self.currentSession) == False):
            os.mkdir(self.currentSession)

    def read_chunk(self,
                   n_chunks=1,
                   verbose=False,
                   data_only=True,
                   exit_after=False,
                   save_data=False):
        '''
			- Each chunk is defined by "chunk_size".
			- "n_chunks" defines how many chunks of data you want.
			- "data_only" is to say whether you want only the numeric
			  signal data or you want the entire sample points.
			- "exit_after" is for if you want to close the stream after 
			  reading the data.
			- "save_data" if you want to save the raw data some where

			Create a numpy array if the user is requesting for data only
			Use lists if you entire object of the sample.

			The output of this function is an array of shape:
				(n_chunks,chunk_size,n_channels)
		'''
        if (data_only == True):
            t = 0
            data = np.zeros(shape=(1, self.chunk_size, 8))
            for i in range(n_chunks):
                if verbose:
                    print("Reading Chunk: %d " % (i + 1))
                sample = self.streamer.start_stream_ext(
                    method=self.method,
                    chunk_size=self.chunk_size,
                    data_only=data_only)
                sample = np.expand_dims(np.asarray(sample), 0)
                data = np.append(data, sample, 0)
            data = data[1:]
            data = data * self.uVolts_per_count
            if (exit_after == True):
                self.streamer.stop_stream()
            if (save_data == True):
                t = time.strftime("%Y%m%d_%H%M%S")
                np.save(self.currentSession + "/RawData_" + t, data)

            #return (data.transpose(0,2,1),self.currentSession,t)
            return data.transpose(0, 2, 1)
        else:
            data = []
            for i in range(n_chunks):
                print("Reading Chunk: %d " % (i + 1))
                sample = self.streamer.start_stream_ext(
                    method=self.method,
                    chunk_size=self.chunk_size,
                    data_only=data_only)
                data.append(sample)
            if (exit_after == True):
                self.streamer.stop_stream()
            if (save_data == True):
                t = time.strftime("%Y%m%d_%H%M%D")
                with open(self.currentSession + "/RawData_" + t + ".pickle",
                          'w') as f:
                    pickle.dump(data, f)
            return data