Example #1
0
    def u_exact(self, t):
        """
        Routine to compute the exact/initial trajectory at time t

        Args:
            t (float): current time
        Returns:
            dtype_u: exact/initial position and velocity
        """
        assert t == 0.0, 'error, u_exact only works for the initial time t0=0'
        me = particles(self.init)

        me.pos.values[:, 0] = [0.0, 0.0, 0.0]
        me.pos.values[:, 1] = [-3.5025653, -3.8169847, -1.5507963]
        me.pos.values[:, 2] = [9.0755314, -3.0458353, -1.6483708]
        me.pos.values[:, 3] = [8.3101420, -16.2901086, -7.2521278]
        me.pos.values[:, 4] = [11.4707666, -25.7294829, -10.8169456]
        me.pos.values[:, 5] = [-15.5387357, -25.2225594, -3.1902382]

        me.vel.values[:, 0] = [0.0, 0.0, 0.0]
        me.vel.values[:, 1] = [0.00565429, -0.00412490, -0.00190589]
        me.vel.values[:, 2] = [0.00168318, 0.00483525, 0.00192462]
        me.vel.values[:, 3] = [0.00354178, 0.00137102, 0.00055029]
        me.vel.values[:, 4] = [0.00288930, 0.00114527, 0.00039677]
        me.vel.values[:, 5] = [0.00276725, -0.0017072, -0.00136504]

        me.m[0] = 1.00000597682  # Sun
        me.m[1] = 0.000954786104043  # Jupiter
        me.m[2] = 0.000285583733151  # Saturn
        me.m[3] = 0.0000437273164546  # Uranus
        me.m[4] = 0.0000517759138449  # Neptune
        me.m[5] = 1.0 / 130000000.0  # Pluto

        return me
Example #2
0
    def u_init(self):
        """
        Routine to compute the starting values for the particles

        Returns:
            dtype_u: particle set filled with initial data
        """

        u0 = self.params.u0
        N = self.params.nparts

        u = particles((3, N))

        if u0[2][0] is not 1 or u0[3][0] is not 1:
            raise ProblemError('so far only q = m = 1 is implemented')

        # set first particle to u0
        u.pos.values[0, 0] = u0[0][0]
        u.pos.values[1, 0] = u0[0][1]
        u.pos.values[2, 0] = u0[0][2]
        u.vel.values[0, 0] = u0[1][0]
        u.vel.values[1, 0] = u0[1][1]
        u.vel.values[2, 0] = u0[1][2]

        u.q[0] = u0[2][0]
        u.m[0] = u0[3][0]

        # initialize random seed
        np.random.seed(N)

        comx = u.pos.values[0, 0]
        comy = u.pos.values[1, 0]
        comz = u.pos.values[2, 0]

        for n in range(1, N):
            # draw 3 random variables in [-1,1] to shift positions
            r = np.random.random_sample(3) - 1
            u.pos.values[0, n] = r[0] + u0[0][0]
            u.pos.values[1, n] = r[1] + u0[0][1]
            u.pos.values[2, n] = r[2] + u0[0][2]

            # draw 3 random variables in [-5,5] to shift velocities
            r = np.random.random_sample(3) - 5
            u.vel.values[0, n] = r[0] + u0[1][0]
            u.vel.values[1, n] = r[1] + u0[1][1]
            u.vel.values[2, n] = r[2] + u0[1][2]

            u.q[n] = u0[2][0]
            u.m[n] = u0[3][0]

            # gather positions to check center
            comx += u.pos.values[0, n]
            comy += u.pos.values[1, n]
            comz += u.pos.values[2, n]

        # print('Center of positions:',comx/N,comy/N,comz/N)

        return u
Example #3
0
    def u_exact(self, t):
        """
        Routine to compute the exact trajectory at time t (only for single-particle setup)

        Args:
            t (float): current time
        Returns:
            dtype_u: particle type containing the exact position and velocity
        """

        # some abbreviations
        wE = self.params.omega_E
        wB = self.params.omega_B
        N = self.params.nparts
        u0 = self.params.u0

        if N != 1:
            raise ProblemError('u_exact is only valid for a single particle')

        u = particles((3, 1))

        wbar = np.sqrt(2) * wE

        # position and velocity in z direction is easy to compute
        u.pos.values[2, 0] = u0[0][2] * np.cos(
            wbar * t) + u0[1][2] / wbar * np.sin(wbar * t)
        u.vel.values[2, 0] = -u0[0][2] * wbar * np.sin(
            wbar * t) + u0[1][2] * np.cos(wbar * t)

        # define temp. variables to compute complex position
        Op = 1 / 2 * (wB + np.sqrt(wB**2 - 4 * wE**2))
        Om = 1 / 2 * (wB - np.sqrt(wB**2 - 4 * wE**2))
        Rm = (Op * u0[0][0] + u0[1][1]) / (Op - Om)
        Rp = u0[0][0] - Rm
        Im = (Op * u0[0][1] - u0[1][0]) / (Op - Om)
        Ip = u0[0][1] - Im

        # compute position in complex notation
        w = np.complex(Rp, Ip) * np.exp(-np.complex(0, Op * t)) + np.complex(
            Rm, Im) * np.exp(-np.complex(0, Om * t))
        # compute velocity as time derivative of the position
        dw = -1j * Op * np.complex(Rp, Ip) * \
            np.exp(-np.complex(0, Op * t)) - 1j * Om * np.complex(Rm, Im) * np.exp(-np.complex(0, Om * t))

        # get the appropriate real and imaginary parts
        u.pos.values[0, 0] = w.real
        u.vel.values[0, 0] = dw.real
        u.pos.values[1, 0] = w.imag
        u.vel.values[1, 0] = dw.imag

        return u
Example #4
0
    def u_exact(self, t):
        """
        Routine to compute the exact/initial trajectory at time t

        Args:
            t (float): current time
        Returns:
            dtype_u: exact/initial position and velocity
        """
        assert t == 0.0, 'error, u_exact only works for the initial time t0=0'
        me = particles(self.init)

        # initial positions and velocities taken from
        # https://www.aanda.org/articles/aa/full/2002/08/aa1405/aa1405.right.html
        me.pos.values[:, 0] = [0.0, 0.0, 0.0]
        me.pos.values[:, 1] = [-2.503321047836E-01,	+1.873217481656E-01, +1.260230112145E-01]
        me.pos.values[:, 2] = [+1.747780055994E-02,	-6.624210296743E-01, -2.991203277122E-01]
        me.pos.values[:, 3] = [-9.091916173950E-01,	+3.592925969244E-01, +1.557729610506E-01]
        me.pos.values[:, 4] = [+1.203018828754E+00,	+7.270712989688E-01, +3.009561427569E-01]
        me.pos.values[:, 5] = [+3.733076999471E+00,	+3.052424824299E+00, +1.217426663570E+00]
        me.pos.values[:, 6] = [+6.164433062913E+00, +6.366775402981E+00, +2.364531109847E+00]
        me.pos.values[:, 7] = [+1.457964661868E+01,	-1.236891078519E+01, -5.623617280033E+00]
        me.pos.values[:, 8] = [+1.695491139909E+01,	-2.288713988623E+01, -9.789921035251E+00]
        me.pos.values[:, 9] = [-9.707098450131E+00, -2.804098175319E+01, -5.823808919246E+00]

        me.vel.values[:, 0] = [0.0, 0.0, 0.0]
        me.vel.values[:, 1] = [-2.438808424736E-02, -1.850224608274E-02, -7.353811537540E-03]
        me.vel.values[:, 2] = [+2.008547034175E-02, +8.365454832702E-04, -8.947888514893E-04]
        me.vel.values[:, 3] = [-7.085843239142E-03,	-1.455634327653E-02, -6.310912842359E-03]
        me.vel.values[:, 4] = [-7.124453943885E-03,	+1.166307407692E-02, +5.542098698449E-03]
        me.vel.values[:, 5] = [-5.086540617947E-03,	+5.493643783389E-03, +2.478685100749E-03]
        me.vel.values[:, 6] = [-4.426823593779E-03, +3.394060157503E-03, +1.592261423092E-03]
        me.vel.values[:, 7] = [+2.647505630327E-03, +2.487457379099E-03, +1.052000252243E-03]
        me.vel.values[:, 8] = [+2.568651772461E-03,	+1.681832388267E-03, +6.245613982833E-04]
        me.vel.values[:, 9] = [+3.034112963576E-03,	-1.111317562971E-03, -1.261841468083E-03]

        # masses relative to the sun taken from
        # https://en.wikipedia.org/wiki/Planetary_mass#Values_from_the_DE405_ephemeris
        me.m[0] = 1.0                   # Sun
        me.m[1] = 0.1660100 * 1E-06     # Mercury
        me.m[2] = 2.4478383 * 1E-06     # Venus
        me.m[3] = 3.0404326 * 1E-06    # Earth+Moon
        me.m[4] = 0.3227151 * 1E-06    # Mars
        me.m[5] = 954.79194 * 1E-06    # Jupiter
        me.m[6] = 285.88600 * 1E-06     # Saturn
        me.m[7] = 43.662440 * 1E-06    # Uranus
        me.m[8] = 51.513890 * 1E-06    # Neptune
        me.m[9] = 0.0073960 * 1E-06     # Pluto

        return me
Example #5
0
    def u_exact(self, t):
        """
        Routine to compute the exact trajectory at time t

        Args:
            t (float): current time
        Returns:
            dtype_u: exact position and velocity
        """

        me = particles(1)
        me.pos.values[:] = self.params.amp * np.cos(np.sqrt(self.params.k) * t + self.params.phase)
        me.vel.values[:] = -self.params.amp * np.sqrt(self.params.k) * np.sin(np.sqrt(self.params.k) * t +
                                                                              self.params.phase)
        return me
    def restrict(self, F):
        """
        Dummy restriction routine

        Args:
            F: the fine level data
        """

        if isinstance(F, particles):
            G = particles(F)
        elif isinstance(F, fields):
            G = fields(F)
        else:
            raise TransferError("Unknown type of fine data, got %s" % type(F))
        return G
    def prolong(self, G):
        """
        Dummy prolongation routine

        Args:
            G: the coarse level data
        """

        if isinstance(G, particles):
            F = particles(G)
        elif isinstance(G, fields):
            F = fields(G)
        else:
            raise TransferError("Unknown type of coarse data, got %s" %
                                type(G))
        return F
Example #8
0
    def u_exact(self, t):
        """
        Routine to compute the exact/initial trajectory at time t

        Args:
            t (float): current time
        Returns:
            dtype_u: exact/initial position and velocity
        """
        assert t == 0.0, 'error, u_exact only works for the initial time t0=0'

        me = particles(self.init)

        for n in range(self.params.npart):
            me.pos.values[n] = np.sin(self.params.k * np.pi * n /
                                      (self.params.npart - 1))
            me.vel.values[n] = 0.0

        return me
Example #9
0
    def u_exact(self, t):
        """
        Routine to compute the exact/initial trajectory at time t

        Args:
            t (float): current time
        Returns:
            dtype_u: exact/initial position and velocity
        """
        assert t == 0.0, 'error, u_exact only works for the initial time t0=0'
        me = particles(2)

        q1 = 0.0
        q2 = 0.2
        p2 = 0.2
        U0 = 0.5 * (q1 * q1 + q2 * q2) + q1 * q1 * q2 - q2 * q2 * q2 / 3.0
        H0 = 0.125

        me.pos.values[0] = q1
        me.pos.values[1] = q2
        me.vel.values[0] = np.sqrt(2.0 * (H0 - U0) - p2 * p2)
        me.vel.values[1] = p2
        return me
Example #10
0
    def u_init(self):
        """
        Initialization routine for the single particle

        Returns:
            particle type
        """

        u0 = self.params.u0
        # some abbreviations
        u = particles((3, 1))

        u.pos.values[0, 0] = u0[0][0]
        u.pos.values[1, 0] = u0[0][1]
        u.pos.values[2, 0] = u0[0][2]

        u.vel.values[0, 0] = u0[1][0]
        u.vel.values[1, 0] = u0[1][1]
        u.vel.values[2, 0] = u0[1][2]

        u.q[:] = u0[2][0]
        u.m[:] = u0[3][0]

        return u
Example #11
0
def check_datatypes_particles(init):
    from pySDC.implementations.datatype_classes.particles import particles
    from pySDC.implementations.datatype_classes.particles import acceleration

    p1 = particles(init)
    p2 = particles(p1)
    p5 = particles(init)

    p1.pos.values[:] = 1.0
    p2.pos.values[:] = 2.0
    p1.vel.values[:] = 10.0
    p2.vel.values[:] = 20.0

    p3 = p1 + p2
    p4 = p1 - p2

    p5.pos = 0.1 * p1.vel
    p6 = p1

    p7 = abs(p1)

    a1 = acceleration(init)
    a2 = acceleration(a1)
    p8 = particles(p1)

    a1.values[:] = 100.0
    a2.values[:] = 200.0

    a3 = a1 + a2

    p8.vel = 0.1 * a1
    p8.pos = 0.1 * (0.1 * a1)

    assert isinstance(p3, type(p1))
    assert isinstance(p4, type(p1))
    assert isinstance(p5.pos, type(p1.pos))
    assert isinstance(p6, type(p1))
    assert isinstance(p7, float)
    assert isinstance(a2, type(a1))
    assert isinstance(p8.pos, type(p1.pos))
    assert isinstance(p8.vel, type(p1.vel))
    assert isinstance(0.1 * 0.1 * a1, type(p1.vel))

    assert p2 is not p1
    assert p3 is not p1
    assert p4 is not p1
    assert p5 is not p1
    assert p6 is p1
    assert a2 is not a1
    assert a3 is not a1

    assert np.shape(p3.pos.values) == np.shape(p1.pos.values)
    assert np.shape(p4.pos.values) == np.shape(p1.pos.values)
    assert np.shape(p3.vel.values) == np.shape(p1.vel.values)
    assert np.shape(p4.vel.values) == np.shape(p1.vel.values)
    assert np.shape(a2.values) == np.shape(a1.values)

    assert np.all(p3.pos.values == 3.0)
    assert np.all(p4.pos.values == -1.0)
    assert np.all(p3.vel.values == 30.0)
    assert np.all(p4.vel.values == -10.0)
    assert np.all(p5.pos.values == 1.0)
    assert p7 >= 0
    assert np.all(p8.pos.values == 1.0)
    assert np.all(p8.vel.values == 10.0)
    assert np.all(a3.values == 300.0)