Example #1
0
class RBF:
    """ Radial Basis Function """
    def __init__(self, kernel='cubic', tail='linear'):
        self.kernel = kernel
        self.tail = tail
        self.name = 'rbf'
        self.model = None

    def fit(self, train_data, train_label):
        if self.kernel == 'cubic':
            kernel = CubicKernel
        elif self.kernel == 'tps':
            kernel = TPSKernel
        else:
            raise NotImplementedError("unknown RBF kernel")

        if self.tail == 'linear':
            tail = LinearTail
        elif self.tail == 'constant':
            tail = ConstantTail
        else:
            raise NotImplementedError("unknown RBF tail")

        self.model = RBFInterpolant(dim=train_data.shape[1],
                                    kernel=kernel(),
                                    tail=tail(train_data.shape[1]))

        for i in range(len(train_data)):
            self.model.add_points(train_data[i, :], train_label[i])

    def predict(self, test_data):
        assert self.model is not None, "RBF model does not exist, call fit to obtain rbf model first"
        return self.model.predict(test_data)
def init():
    print("\nInitializing run...")

    rbf = RBFInterpolant(
        dim=ackley.dim, kernel=CubicKernel(),
        tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(
        dim=ackley.dim, num_pts=2*(ackley.dim+1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(
        max_evals=max_evals, opt_prob=ackley, exp_design=slhd,
        surrogate=rbf, asynchronous=True, batch_size=num_threads)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Wrap controller in checkpoint object
    controller = CheckpointController(controller, fname=fname)
    result = controller.run()
    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0], max_line_width=np.inf,
                     precision=5, suppress_small=True)))
    def start(self, max_evals):
        """Starts a new pySOT run."""
        self.history = []
        self.proposals = []

        # Symmetric Latin hypercube design
        des_pts = max([self.batch_size, 2 * (self.opt.dim + 1)])
        slhd = SymmetricLatinHypercube(dim=self.opt.dim, num_pts=des_pts)

        # Warped RBF interpolant
        rbf = RBFInterpolant(
            dim=self.opt.dim,
            lb=self.opt.lb,
            ub=self.opt.ub,
            kernel=CubicKernel(),
            tail=LinearTail(self.opt.dim),
            eta=1e-4,
        )

        # Optimization strategy
        self.strategy = SRBFStrategy(
            max_evals=self.max_evals,
            opt_prob=self.opt,
            exp_design=slhd,
            surrogate=rbf,
            asynchronous=True,
            batch_size=1,
            use_restarts=True,
        )
def init():
    print("\nInitializing run...")
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = SerialController(ackley.eval)
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=ackley,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True)

    print("Number of workers: 1")
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Wrap controller in checkpoint object
    controller = CheckpointController(controller, fname=fname)
    result = controller.run()
    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
Example #5
0
def test_srbf_async():
    max_evals = 200
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=ackley,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True,
                                       batch_size=None)

    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)
    controller.run()

    check_strategy(controller)
Example #6
0
def example_sop():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_simple.log"):
        os.remove("./logfiles/example_simple.log")
    logging.basicConfig(filename="./logfiles/example_simple.log",
                        level=logging.INFO)

    print("\nNumber of threads: 8")
    print("Maximum number of evaluations: 500")
    print("Sampling method: CandidateDYCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    num_threads = 8
    max_evals = 500

    ackley = Ackley(dim=10)
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SOPStrategy(
        max_evals=max_evals,
        opt_prob=ackley,
        exp_design=slhd,
        surrogate=rbf,
        asynchronous=False,
        ncenters=num_threads,
        batch_size=num_threads,
    )

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
Example #7
0
def example_extra_vals():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_extra_vals.log"):
        os.remove("./logfiles/example_extra_vals.log")
    logging.basicConfig(filename="./logfiles/example_extra_vals.log",
                        level=logging.INFO)

    num_threads = 4
    max_evals = 500

    ackley = Ackley(dim=10)
    num_extra = 10
    extra = np.random.uniform(ackley.lb, ackley.ub, (num_extra, ackley.dim))
    extra_vals = np.nan * np.ones((num_extra, 1))
    for i in range(num_extra):  # Evaluate every second point
        if i % 2 == 0:
            extra_vals[i] = ackley.eval(extra[i, :])

    rbf = RBFInterpolant(dim=ackley.dim, kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim, num_pts=2*(ackley.dim+1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(
        max_evals=max_evals, opt_prob=ackley, exp_design=slhd,
        surrogate=rbf, asynchronous=True, batch_size=num_threads,
        extra_points=extra, extra_vals=extra_vals)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Append the known function values to the POAP database since
    # POAP won't evaluate these points
    for i in range(len(extra_vals)):
        if not np.isnan(extra_vals[i]):
            record = EvalRecord(
                params=(np.ravel(extra[i, :]),), status='completed')
            record.value = extra_vals[i]
            record.feasible = True
            controller.fevals.append(record)

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0], max_line_width=np.inf,
                     precision=5, suppress_small=True)))
Example #8
0
def test_unit_box():
    ackley = Ackley(dim=1)
    np.random.seed(0)
    x = np.random.rand(30, 1)
    fX = np.expand_dims([ackley.eval(y) for y in x], axis=1)

    xx = np.expand_dims(np.linspace(0, 1, 100), axis=1)

    # RBF with internal scaling to unit hypercube
    rbf1 = SurrogateUnitBox(RBFInterpolant(dim=1, eta=1e-6),
                            lb=np.array([0.0]),
                            ub=np.array([1.0]))
    rbf1.add_points(x, fX)

    # Normal RBF
    rbf2 = RBFInterpolant(dim=1, eta=1e-6)
    rbf2.add_points(x, fX)

    assert (np.max(np.abs(rbf1.predict(xx) - rbf2.predict(xx))) < 1e-10)
    assert (np.max(
        np.abs(rbf1.predict_deriv(x[0, :]) - rbf2.predict_deriv(x[0, :]))) <
            1e-10)
    assert (np.max(np.abs(rbf1.X - rbf2.X)) < 1e-10)
    assert (np.max(np.abs(rbf1.fX - rbf2.fX)) < 1e-10)

    rbf1.reset()
    assert (rbf1.num_pts == 0 and rbf1.dim == 1)
    assert (rbf1.X.size == 0 and rbf1.fX.size == 0)
Example #9
0
def test_capped():
    def ff(x):
        return (6 * x - 2)**2 * np.sin(12 * x - 4)

    np.random.seed(0)
    x = np.random.rand(30, 1)
    fX = ff(x)

    xx = np.expand_dims(np.linspace(0, 1, 100), axis=1)

    # RBF with capping adapter
    rbf1 = SurrogateCapped(RBFInterpolant(dim=1, eta=1e-6))
    rbf1.add_points(x, fX)

    # RBF fitted to capped value
    fX_capped = fX.copy()
    fX_capped[fX > np.median(fX)] = np.median(fX)
    rbf2 = RBFInterpolant(dim=1, eta=1e-6)
    rbf2.add_points(x, fX_capped)

    assert (np.max(np.abs(rbf1.predict(xx) - rbf2.predict(xx))) < 1e-10)
    assert (np.max(
        np.abs(rbf1.predict_deriv(x[0, :]) - rbf2.predict_deriv(x[0, :]))) <
            1e-10)

    rbf1.reset()
    assert (rbf1.num_pts == 0 and rbf1.dim == 1)
    assert (rbf1.X.size == 0 and rbf1.fX.size == 0)
Example #10
0
def example_subprocess_files():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_subprocess_files.log"):
        os.remove("./logfiles/example_subprocess_files.log")
    logging.basicConfig(filename="./logfiles/example_subprocess_files.log",
                        level=logging.INFO)

    print("\nNumber of threads: 4")
    print("Maximum number of evaluations: 200")
    print("Sampling method: Candidate DYCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    assert os.path.isfile(path), "You need to build sphere_ext_files"

    num_threads = 4
    max_evals = 200

    sphere = Sphere(dim=10)
    rbf = RBFInterpolant(dim=sphere.dim,
                         kernel=TPSKernel(),
                         tail=LinearTail(sphere.dim))
    slhd = SymmetricLatinHypercube(dim=sphere.dim,
                                   num_pts=2 * (sphere.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=sphere,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=False,
                                       batch_size=num_threads)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for i in range(num_threads):
        worker = CppSim(controller)
        worker.my_filename = str(i) + ".txt"
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
def example_matlab_engine():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_matlab_engine.log"):
        os.remove("./logfiles/example_matlab_engine.log")
    logging.basicConfig(filename="./logfiles/example_matlab_engine.log",
                        level=logging.INFO)

    num_threads = 4
    max_evals = 500

    ackley = Ackley(dim=10)
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Use the serial controller (uses only one thread)
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=ackley,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True,
                                       batch_size=num_threads)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Launch the threads
    for _ in range(num_threads):
        try:
            worker = MatlabWorker(controller)
            worker.matlab = matlab.engine.start_matlab()
            controller.launch_worker(worker)
        except Exception as e:
            print("\nERROR: Failed to initialize a MATLAB session.\n")
            print(str(e))
            return

    # Run the optimization strategy
    result = controller.run()

    # Print the final result
    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
Example #12
0
    def fit(self, train_data, train_label):
        if self.kernel == 'cubic':
            kernel = CubicKernel
        elif self.kernel == 'tps':
            kernel = TPSKernel
        else:
            raise NotImplementedError("unknown RBF kernel")

        if self.tail == 'linear':
            tail = LinearTail
        elif self.tail == 'constant':
            tail = ConstantTail
        else:
            raise NotImplementedError("unknown RBF tail")

        self.model = RBFInterpolant(dim=train_data.shape[1],
                                    kernel=kernel(),
                                    tail=tail(train_data.shape[1]))

        for i in range(len(train_data)):
            self.model.add_points(train_data[i, :], train_label[i])
def example_subprocess_partial_info():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_subprocess_partial_info.log"):
        os.remove("./logfiles/example_subprocess_partial_info.log")
    logging.basicConfig(
        filename="./logfiles/example_subprocess_partial_info.log",
        level=logging.INFO)

    assert os.path.isfile(path), "You need to build sumfun_ext"

    num_threads = 4
    max_evals = 200

    sumfun = SumfunExt(dim=10)
    rbf = RBFInterpolant(dim=sumfun.dim,
                         lb=sumfun.lb,
                         ub=sumfun.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(sumfun.dim))
    slhd = SymmetricLatinHypercube(dim=sumfun.dim,
                                   num_pts=2 * (sumfun.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=sumfun,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True,
                                       batch_size=num_threads)

    print("Number of threads: {}".format(num_threads))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        controller.launch_worker(CppSim(controller))

    # Run the optimization strategy
    result = controller.run()

    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
Example #14
0
def main_master(num_workers):
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/test_subprocess_mpi.log"):
        os.remove("./logfiles/test_subprocess_mpi.log")
    logging.basicConfig(filename="./logfiles/test_subprocess_mpi.log",
                        level=logging.INFO)

    print("\nTesting the POAP MPI controller with {0} workers".format(
        num_workers))
    print("Maximum number of evaluations: 200")
    print("Search strategy: Candidate DYCORS")
    print("Experimental design: Symmetric Latin Hypercube")
    print("Surrogate: Cubic RBF")

    assert os.path.isfile(path), "You need to build sphere_ext"

    max_evals = 200

    sphere = Sphere(dim=10)
    rbf = RBFInterpolant(dim=sphere.dim,
                         kernel=CubicKernel(),
                         tail=LinearTail(sphere.dim))
    slhd = SymmetricLatinHypercube(dim=sphere.dim,
                                   num_pts=2 * (sphere.dim + 1))

    # Create a strategy and a controller
    strategy = SRBFStrategy(max_evals=max_evals,
                            opt_prob=sphere,
                            exp_design=slhd,
                            surrogate=rbf,
                            asynchronous=True,
                            batch_size=num_workers)
    controller = MPIController(strategy)

    print("Number of threads: {}".format(num_workers))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    # Run the optimization strategy
    result = controller.run()
    print('Best value found: {0}'.format(result.value))
    print('Best solution found: {0}\n'.format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
Example #15
0
def test_srbf_serial():
    max_evals = 200
    rbf = RBFInterpolant(
        dim=ackley.dim, kernel=CubicKernel(),
        tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(
        dim=ackley.dim, num_pts=2*(ackley.dim+1))

    # Create a strategy and a controller
    controller = SerialController(ackley.eval)
    controller.strategy = SRBFStrategy(
        max_evals=max_evals, opt_prob=ackley, exp_design=slhd,
        surrogate=rbf, asynchronous=True)
    controller.run()

    check_strategy(controller)
Example #16
0
def init_serial():
    rbf = RBFInterpolant(dim=ackley.dim,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = SerialController(ackley.eval)
    controller.strategy = DYCORSStrategy(max_evals=max_evals,
                                         opt_prob=ackley,
                                         exp_design=slhd,
                                         surrogate=rbf,
                                         asynchronous=True)

    # Wrap controller in checkpoint object
    controller = CheckpointController(controller, fname=fname)
    controller.run()
Example #17
0
def main_master(opt_prob, num_workers):
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/mpiexample_mpi.log"):
        os.remove("./logfiles/mpiexample_mpi.log")
    logging.basicConfig(filename="./logfiles/mpiexample_mpi.log",
                        level=logging.INFO)

    max_evals = 500

    rbf = RBFInterpolant(dim=opt_prob.dim,
                         lb=opt_prob.lb,
                         ub=opt_prob.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(opt_prob.dim))
    slhd = SymmetricLatinHypercube(dim=opt_prob.dim,
                                   num_pts=2 * (opt_prob.dim + 1))

    # Create a strategy and a controller
    strategy = SRBFStrategy(
        max_evals=max_evals,
        opt_prob=opt_prob,
        exp_design=slhd,
        surrogate=rbf,
        asynchronous=True,
        batch_size=num_workers,
    )
    controller = MPIController(strategy)

    print("Number of workers: {}".format(num_workers))
    print("Maximum number of evaluations: {}".format(max_evals))
    print("Strategy: {}".format(controller.strategy.__class__.__name__))
    print("Experimental design: {}".format(slhd.__class__.__name__))
    print("Surrogate: {}".format(rbf.__class__.__name__))

    result = controller.run()
    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
Example #18
0
def test_example_simple():
    if not os.path.exists("./logfiles"):
        os.makedirs("logfiles")
    if os.path.exists("./logfiles/example_simple.log"):
        os.remove("./logfiles/example_simple.log")
    logging.basicConfig(filename="./logfiles/example_simple.log",
                        level=logging.INFO)

    num_threads = 2
    max_evals = 50

    ackley = Ackley(dim=10)
    rbf = RBFInterpolant(dim=ackley.dim,
                         lb=ackley.lb,
                         ub=ackley.ub,
                         kernel=CubicKernel(),
                         tail=LinearTail(ackley.dim))
    slhd = SymmetricLatinHypercube(dim=ackley.dim,
                                   num_pts=2 * (ackley.dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=ackley,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True)

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, ackley.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()

    print("Best value found: {0}".format(result.value))
    print("Best solution found: {0}\n".format(
        np.array_str(result.params[0],
                     max_line_width=np.inf,
                     precision=5,
                     suppress_small=True)))
Example #19
0
def pysot_cube(objective, scale, n_trials, n_dim, with_count=False):

    if False:
        if not os.path.exists("./logfiles"):
            os.makedirs("logfiles")
        if os.path.exists("./logfiles/example_simple.log"):
            os.remove("./logfiles/example_simple.log")
        logging.basicConfig(filename="./logfiles/example_simple.log",
                            level=logging.INFO)

    num_threads = 2
    max_evals = n_trials
    gp = GenericProblem(dim=n_dim, objective=objective, scale=scale)
    rbf = RBFInterpolant(dim=n_dim,
                         lb=np.array([-scale] * n_dim),
                         ub=np.array([scale] * n_dim),
                         kernel=CubicKernel(),
                         tail=LinearTail(n_dim))
    slhd = SymmetricLatinHypercube(dim=n_dim, num_pts=2 * (n_dim + 1))

    # Create a strategy and a controller
    controller = ThreadController()
    controller.strategy = SRBFStrategy(max_evals=max_evals,
                                       opt_prob=gp,
                                       exp_design=slhd,
                                       surrogate=rbf,
                                       asynchronous=True)

    # Launch the threads and give them access to the objective function
    for _ in range(num_threads):
        worker = BasicWorkerThread(controller, gp.eval)
        controller.launch_worker(worker)

    # Run the optimization strategy
    result = controller.run()
    return (result.value, gp.feval_count) if with_count else result.value
Example #20
0
    def pysot_cube(objective,
                   n_trials,
                   n_dim,
                   with_count=False,
                   method=None,
                   design=None):
        """ Minimize
        :param objective:
        :param n_trials:
        :param n_dim:
        :param with_count:
        :return:
        """
        logging.getLogger('pySOT').setLevel(logging.ERROR)

        num_threads = 1
        asynchronous = True

        max_evals = n_trials
        gp = GenericProblem(dim=n_dim, objective=objective)

        if design == 'latin':
            exp_design = LatinHypercube(dim=n_dim, num_pts=2 * (n_dim + 1))
        elif design == 'symmetric':
            exp_design = SymmetricLatinHypercube(dim=n_dim,
                                                 num_pts=2 * (n_dim + 1))
        elif design == 'factorial':
            exp_design = TwoFactorial(dim=n_dim)
        else:
            raise ValueError('design should be latin, symmetric or factorial')

        # Create a strategy and a controller
        #  SRBFStrategy, EIStrategy, DYCORSStrategy,RandomStrategy, LCBStrategy
        controller = ThreadController()
        if method.lower() == 'srbf':
            surrogate = RBFInterpolant(dim=n_dim,
                                       lb=np.array([0.0] * n_dim),
                                       ub=np.array([1.0] * n_dim),
                                       kernel=CubicKernel(),
                                       tail=LinearTail(n_dim))
            controller.strategy = SRBFStrategy(max_evals=max_evals,
                                               opt_prob=gp,
                                               exp_design=exp_design,
                                               surrogate=surrogate,
                                               asynchronous=asynchronous)
        elif method.lower() == 'ei':
            surrogate = GPRegressor(dim=n_dim,
                                    lb=np.array([0.0] * n_dim),
                                    ub=np.array([1.0] * n_dim))
            controller.strategy = EIStrategy(max_evals=max_evals,
                                             opt_prob=gp,
                                             exp_design=exp_design,
                                             surrogate=surrogate,
                                             asynchronous=asynchronous)
        elif method.lower() == 'dycors':
            surrogate = RBFInterpolant(dim=n_dim,
                                       lb=np.array([0.0] * n_dim),
                                       ub=np.array([1.0] * n_dim),
                                       kernel=CubicKernel(),
                                       tail=LinearTail(n_dim))
            controller.strategy = DYCORSStrategy(max_evals=max_evals,
                                                 opt_prob=gp,
                                                 exp_design=exp_design,
                                                 surrogate=surrogate,
                                                 asynchronous=asynchronous)
        elif method.lower() == 'lcb':
            surrogate = GPRegressor(dim=n_dim,
                                    lb=np.array([0.0] * n_dim),
                                    ub=np.array([1.0] * n_dim))
            controller.strategy = LCBStrategy(max_evals=max_evals,
                                              opt_prob=gp,
                                              exp_design=exp_design,
                                              surrogate=surrogate,
                                              asynchronous=asynchronous)
        elif method.lower() == 'random':
            controller.strategy = RandomStrategy(max_evals=max_evals,
                                                 opt_prob=gp)
        else:
            raise ValueError("Didn't recognize method passed to pysot")

        # Launch the threads and give them access to the objective function
        for _ in range(num_threads):
            worker = BasicWorkerThread(controller, gp.eval)
            controller.launch_worker(worker)

        # Run the optimization strategy
        result = controller.run()
        best_x = result.params[0].tolist()
        return (result.value, best_x,
                gp.feval_count) if with_count else (result.value, best_x)
Example #21
0
def test_rbf():
    X = make_grid(30)  # Make uniform grid with 30 x 30 points
    rbf = RBFInterpolant(dim=2, lb=np.zeros(2), ub=np.ones(2), eta=1e-6)
    assert isinstance(rbf, Surrogate)
    fX = f(X)
    rbf.add_points(X, fX)

    # Derivative at random points
    np.random.seed(0)
    Xs = np.random.rand(10, 2)
    fhx = rbf.predict(Xs)
    dfhx = rbf.predict_deriv(Xs)
    fx = f(Xs)
    dfx = df(Xs)
    assert np.max(np.abs(fx - fhx)) < 1e-4
    assert la.norm(dfx - dfhx) < 1e-2

    # Derivative at previous points
    dfhx = rbf.predict_deriv(X[0, :])
    assert la.norm(df(np.atleast_2d(X[0, :])) - dfhx) < 1e-1

    # Reset the surrogate
    rbf.reset()
    assert rbf.num_pts == 0 and rbf.dim == 2

    # Now add 100 points at a time and test reallocation + LU
    for i in range(9):
        rbf.add_points(X[i * 100:(i + 1) * 100, :], fX[i * 100:(i + 1) * 100])
        rbf.predict(Xs)  # Force fit

    # Derivative at random points
    np.random.seed(0)
    Xs = np.random.rand(10, 2)
    fhx = rbf.predict(Xs)
    dfhx = rbf.predict_deriv(Xs)
    fx = f(Xs)
    dfx = df(Xs)
    assert np.max(np.abs(fx - fhx)) < 1e-4
    assert la.norm(dfx - dfhx) < 1e-2

    # Derivative at previous points
    dfhx = rbf.predict_deriv(X[0, :])
    assert la.norm(df(np.atleast_2d(X[0, :])) - dfhx) < 1e-1
Example #22
0
File: pysot.py Project: evhub/bbopt
    def setup_backend(
        self,
        params,
        strategy="SRBF",
        surrogate="RBF",
        design=None,
    ):
        self.opt_problem = BBoptOptimizationProblem(params)

        design_kwargs = dict(dim=self.opt_problem.dim)
        _coconut_case_match_to_1 = design
        _coconut_case_match_check_1 = False
        if _coconut_case_match_to_1 is None:
            _coconut_case_match_check_1 = True
        if _coconut_case_match_check_1:
            self.exp_design = EmptyExperimentalDesign(**design_kwargs)
        if not _coconut_case_match_check_1:
            if _coconut_case_match_to_1 == "latin_hypercube":
                _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                self.exp_design = LatinHypercube(num_pts=2 *
                                                 (self.opt_problem.dim + 1),
                                                 **design_kwargs)
        if not _coconut_case_match_check_1:
            if _coconut_case_match_to_1 == "symmetric_latin_hypercube":
                _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                self.exp_design = SymmetricLatinHypercube(
                    num_pts=2 * (self.opt_problem.dim + 1), **design_kwargs)
        if not _coconut_case_match_check_1:
            if _coconut_case_match_to_1 == "two_factorial":
                _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                self.exp_design = TwoFactorial(**design_kwargs)
        if not _coconut_case_match_check_1:
            _coconut_match_set_name_design_cls = _coconut_sentinel
            _coconut_match_set_name_design_cls = _coconut_case_match_to_1
            _coconut_case_match_check_1 = True
            if _coconut_case_match_check_1:
                if _coconut_match_set_name_design_cls is not _coconut_sentinel:
                    design_cls = _coconut_case_match_to_1
            if _coconut_case_match_check_1 and not (callable(design_cls)):
                _coconut_case_match_check_1 = False
            if _coconut_case_match_check_1:
                self.exp_design = design_cls(**design_kwargs)
        if not _coconut_case_match_check_1:
            raise TypeError(
                "unknown experimental design {_coconut_format_0!r}".format(
                    _coconut_format_0=(design)))

        surrogate_kwargs = dict(dim=self.opt_problem.dim,
                                lb=self.opt_problem.lb,
                                ub=self.opt_problem.ub)
        _coconut_case_match_to_2 = surrogate
        _coconut_case_match_check_2 = False
        if _coconut_case_match_to_2 == "RBF":
            _coconut_case_match_check_2 = True
        if _coconut_case_match_check_2:
            self.surrogate = RBFInterpolant(
                kernel=LinearKernel() if design is None else CubicKernel(),
                tail=ConstantTail(self.opt_problem.dim)
                if design is None else LinearTail(self.opt_problem.dim),
                **surrogate_kwargs)
        if not _coconut_case_match_check_2:
            if _coconut_case_match_to_2 == "GP":
                _coconut_case_match_check_2 = True
            if _coconut_case_match_check_2:
                self.surrogate = GPRegressor(**surrogate_kwargs)
        if not _coconut_case_match_check_2:
            _coconut_match_set_name_surrogate_cls = _coconut_sentinel
            _coconut_match_set_name_surrogate_cls = _coconut_case_match_to_2
            _coconut_case_match_check_2 = True
            if _coconut_case_match_check_2:
                if _coconut_match_set_name_surrogate_cls is not _coconut_sentinel:
                    surrogate_cls = _coconut_case_match_to_2
            if _coconut_case_match_check_2 and not (callable(surrogate_cls)):
                _coconut_case_match_check_2 = False
            if _coconut_case_match_check_2:
                self.surrogate = surrogate_cls(**surrogate_kwargs)
        if not _coconut_case_match_check_2:
            raise TypeError("unknown surrogate {_coconut_format_0!r}".format(
                _coconut_format_0=(surrogate)))

        strategy_kwargs = dict(max_evals=sys.maxsize,
                               opt_prob=self.opt_problem,
                               exp_design=self.exp_design,
                               surrogate=self.surrogate,
                               asynchronous=True,
                               batch_size=1)
        _coconut_case_match_to_3 = strategy
        _coconut_case_match_check_3 = False
        if _coconut_case_match_to_3 == "SRBF":
            _coconut_case_match_check_3 = True
        if _coconut_case_match_check_3:
            self.strategy = SRBFStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            if _coconut_case_match_to_3 == "EI":
                _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                self.strategy = EIStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            if _coconut_case_match_to_3 == "DYCORS":
                _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                self.strategy = DYCORSStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            if _coconut_case_match_to_3 == "LCB":
                _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                self.strategy = LCBStrategy(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            _coconut_match_set_name_strategy_cls = _coconut_sentinel
            _coconut_match_set_name_strategy_cls = _coconut_case_match_to_3
            _coconut_case_match_check_3 = True
            if _coconut_case_match_check_3:
                if _coconut_match_set_name_strategy_cls is not _coconut_sentinel:
                    strategy_cls = _coconut_case_match_to_3
            if _coconut_case_match_check_3 and not (callable(strategy_cls)):
                _coconut_case_match_check_3 = False
            if _coconut_case_match_check_3:
                self.strategy = strategy_cls(**strategy_kwargs)
        if not _coconut_case_match_check_3:
            raise TypeError("unknown strategy {_coconut_format_0!r}".format(
                _coconut_format_0=(strategy)))
Example #23
0
def test_capped():
    def ff(x):
        return (6 * x - 2)**2 * np.sin(12 * x - 4)

    np.random.seed(0)
    x = np.random.rand(30, 1)
    fX = ff(x)

    xx = np.expand_dims(np.linspace(0, 1, 100), axis=1)

    # RBF with capping adapter
    rbf1 = RBFInterpolant(dim=1,
                          lb=np.zeros(1),
                          ub=np.ones(1),
                          output_transformation=median_capping,
                          eta=1e-6)
    rbf1.add_points(x, fX)

    # RBF fitted to capped value
    fX_capped = fX.copy()
    fX_capped[fX > np.median(fX)] = np.median(fX)
    rbf2 = RBFInterpolant(dim=1, lb=np.zeros(1), ub=np.ones(1), eta=1e-6)
    rbf2.add_points(x, fX_capped)

    assert np.max(np.abs(rbf1.predict(xx) - rbf2.predict(xx))) < 1e-10
    assert np.max(
        np.abs(rbf1.predict_deriv(x[0, :]) -
               rbf2.predict_deriv(x[0, :]))) < 1e-10

    rbf1.reset()
    assert rbf1.num_pts == 0 and rbf1.dim == 1
    assert rbf1.X.size == 0 and rbf1.fX.size == 0
Example #24
0
    def fit(self, X, y=None, **kwargs):
        """Run training with cross validation.

        :param X: training data
        :param **: parameters to be passed to GridSearchCV
        """

        # wrap for pySOT
        class Target(OptimizationProblem):
            def __init__(self, outer):
                self.outer = outer
                param_def = outer.param_def
                self.lb = np.array([param['lb'] for param in param_def])
                self.ub = np.array([param['ub'] for param in param_def])
                self.dim = len(param_def)
                self.int_var = np.array([
                    idx for idx, param in enumerate(param_def)
                    if param['integer']
                ])
                self.cont_var = np.array([
                    idx for idx, param in enumerate(param_def)
                    if idx not in self.int_var
                ])

            def eval_(self, x):
                print('Eval {0} ...'.format(x))
                param_def = self.outer.param_def
                outer = self.outer
                # prepare parameters grid for gridsearchcv
                param_grid = ({
                    param['name']:
                    [int(x[idx]) if param['integer'] else x[idx]]
                    for idx, param in enumerate(param_def)
                })
                # create gridsearchcv to evaluate the cv
                gs = GridSearchCV(outer.estimator,
                                  param_grid,
                                  refit=False,
                                  **outer.kwargs)
                # never refit during iteration, refit at the end
                gs.fit(X, y=y, **kwargs)
                gs_score = gs.best_score_
                # gridsearchcv score is better when greater
                if not outer.best_score_ or gs_score > outer.best_score_:
                    outer.best_score_ = gs_score
                    outer.best_params_ = gs.best_params_
                # also record history
                outer.params_history_.append(x)
                outer.score_history_.append(gs_score)
                print('Eval {0} => {1}'.format(x, gs_score))
                # pySOT score is the lower the better, so return the negated
                return -gs_score

        # pySOT routine
        # TODO: make this configurable
        target = Target(self)
        rbf = SurrogateUnitBox(RBFInterpolant(dim=target.dim,
                                              kernel=CubicKernel(),
                                              tail=LinearTail(target.dim)),
                               lb=target.lb,
                               ub=target.ub)
        slhd = SymmetricLatinHypercube(dim=target.dim,
                                       num_pts=2 * (target.dim + 1))

        # Create a strategy and a controller
        controller = SerialController(objective=target.eval_)
        controller.strategy = SRBFStrategy(max_evals=self.n_iter,
                                           batch_size=1,
                                           opt_prob=target,
                                           exp_design=slhd,
                                           surrogate=rbf,
                                           asynchronous=False)

        print('Maximum number of evaluations: {0}'.format(self.n_iter))
        print('Strategy: {0}'.format(controller.strategy.__class__.__name__))
        print('Experimental design: {0}'.format(slhd.__class__.__name__))
        print('Surrogate: {0}'.format(rbf.__class__.__name__))

        # Run the optimization strategy
        result = controller.run()

        print('Best value found: {0}'.format(result.value))
        print('Best solution found: {0}\n'.format(
            np.array_str(result.params[0],
                         max_line_width=np.inf,
                         precision=5,
                         suppress_small=True)))