def require(self): out = [ExtractInfoTask(self.graphs), GraphIndexTask()] for g in self.graphs: out.append(Optional(ExtractKernelBagTask(g, self.h, self.D))) return out
def require(self): task = [] if self.h > 0: task.append(WLCollectorTask(self.graphs, self.h - 1, self.D)) for g in self.graphs: task.append(Optional(PrepareKernelTask(g, self.h, self.D))) return task
def require(self): return [ Optional( DatasetLabelTask(p, self.svcomp_name, self.directory, self.csv) ) for p in self.paths ]
def require(self): return [ Optional( PescoGraphTask(graph) ) for graph in self.paths ]
def require(self): param_grid = {'h': self.h_Set, 'D': self.D_Set} out = [] for params in ParameterGrid(param_grid): out.append( Optional( CGridTask(self.graphs, self.train_index, params['h'], params['D']))) return out
def require(self): loo = KFold(self.folds.value, shuffle=True, random_state=random.randint(0, 100)) out = [] for train_index, _ in loo.split(np.arange(len(self.graphs))): out.append( Optional( hDGridTask(self.graphs, train_index.tolist(), self.h_Set, self.D_Set))) return out
def require(self): index = np.array(self._index()) loo = KFold(self.k.value, shuffle=True, random_state=self.random_state.value) return [ Optional(BagClassifierEvalutionTask( self.clf_type, self.clf_params, self.h, self.D, self.scores, train_index.tolist(), test_index.tolist(), self.category, self.task_type, self.kernel )) for train_index, test_index in loo.split(index) ]
def require(self): t = [] for category in self.categories.value: t.append(Optional(CategoryLookupTask(category))) return t
def require(self): return [ Optional(MongoWLTask(g, self.h, self.maxDepth)) for g in self.graphs ]