def _set_memory_and_cores(self): """ Checks hardware limitations such as memory, # cpus and sets the recommended datachunk sizes and the number of cores to be used by analysis methods. """ if self._parallel: self._maxCpus = max(1, psutil.cpu_count() - 2) else: self._maxCpus = 1 if self._maxCpus == 1: self._parallel = False self._maxMemoryMB = get_available_memory() / 1024**2 # in Mb self._maxDataChunk = int(self._maxMemoryMB / self._maxCpus) # Now calculate the number of positions that can be stored in memory in one go. mb_per_position = self.h5_main.dtype.itemsize * self.h5_main.shape[ 1] / 1024.0**2 # TODO: The size of the chunk should be determined by BOTH the computation time and memory restrictions self._max_pos_per_read = int( np.floor(self._maxDataChunk / mb_per_position)) if self._verbose: print('Allowed to read {} pixels per chunk'.format( self._max_pos_per_read))
def _set_memory_and_cores(self, cores=None, mem=None): """ Checks hardware limitations such as memory, # cpus and sets the recommended datachunk sizes and the number of cores to be used by analysis methods. Parameters ---------- cores : uint, optional Default - 1 How many cores to use for the computation mem : uint, optional Default - 1024 The amount a memory in Mb to use in the computation """ min_free_cores = 1 + int(psutil.cpu_count() > 4) if cores is None: self._cores = max(1, psutil.cpu_count() - min_free_cores) else: if not isinstance(cores, int): raise TypeError( 'cores should be an integer but got: {}'.format(cores)) cores = int(abs(cores)) self._cores = max(1, min(psutil.cpu_count(), cores)) _max_mem_mb = get_available_memory() / 1E6 # in MB if mem is None: mem = _max_mem_mb else: if not isinstance(mem, int): raise TypeError('mem must be a whole number') mem = abs(mem) self._max_mem_mb = min(_max_mem_mb, mem) max_data_chunk = self._max_mem_mb / self._cores # Now calculate the number of positions that can be stored in memory in one go. mb_per_position = self.h5_main.dtype.itemsize * self.h5_main.shape[ 1] / 1e6 self._max_pos_per_read = int(np.floor(max_data_chunk / mb_per_position)) if self.verbose and self.mpi_rank == 0: # expected to be the same for all ranks so just use this. print('Allowed to read {} pixels per chunk'.format( self._max_pos_per_read)) print('Allowed to use up to', str(self._cores), 'cores and', str(self._max_mem_mb), 'MB of memory')
def rebuild_svd(h5_main, components=None, cores=None, max_RAM_mb=1024): """ Rebuild the Image from the SVD results on the windows Optionally, only use components less than n_comp. Parameters ---------- h5_main : hdf5 Dataset dataset which SVD was performed on components : {int, iterable of int, slice} optional Defines which components to keep Default - None, all components kept Input Types integer : Components less than the input will be kept length 2 iterable of integers : Integers define start and stop of component slice to retain other iterable of integers or slice : Selection of component indices to retain cores : int, optional How many cores should be used to rebuild Default - None, all but 2 cores will be used, min 1 max_RAM_mb : int, optional Maximum ammount of memory to use when rebuilding, in Mb. Default - 1024Mb Returns ------- rebuilt_data : HDF5 Dataset the rebuilt dataset """ comp_slice, num_comps = get_component_slice( components, total_components=h5_main.shape[1]) if isinstance(comp_slice, np.ndarray): comp_slice = list(comp_slice) dset_name = h5_main.name.split('/')[-1] # Ensuring that at least one core is available for use / 2 cores are available for other use max_cores = max(1, cpu_count() - 2) # print('max_cores',max_cores) if cores is not None: cores = min(round(abs(cores)), max_cores) else: cores = max_cores max_memory = min(max_RAM_mb * 1024**2, 0.75 * get_available_memory()) if cores != 1: max_memory = int(max_memory / 2) ''' Get the handles for the SVD results ''' try: h5_svd_group = find_results_groups(h5_main, 'SVD')[-1] h5_S = h5_svd_group['S'] h5_U = h5_svd_group['U'] h5_V = h5_svd_group['V'] except KeyError: raise KeyError( 'SVD Results for {dset} were not found.'.format(dset=dset_name)) except: raise func, is_complex, is_compound, n_features, type_mult = check_dtype(h5_V) ''' Calculate the size of a single batch that will fit in the available memory ''' n_comps = h5_S[comp_slice].size mem_per_pix = (h5_U.dtype.itemsize + h5_V.dtype.itemsize * h5_V.shape[1]) * n_comps fixed_mem = h5_main.size * h5_main.dtype.itemsize if cores is None: free_mem = max_memory - fixed_mem else: free_mem = max_memory * 2 - fixed_mem batch_size = int(round(float(free_mem) / mem_per_pix)) batch_slices = gen_batches(h5_U.shape[0], batch_size) print('Reconstructing in batches of {} positions.'.format(batch_size)) print('Batchs should be {} Mb each.'.format(mem_per_pix * batch_size / 1024.0**2)) ''' Loop over all batches. ''' ds_V = np.dot(np.diag(h5_S[comp_slice]), func(h5_V[comp_slice, :])) rebuild = np.zeros((h5_main.shape[0], ds_V.shape[1])) for ibatch, batch in enumerate(batch_slices): rebuild[batch, :] += np.dot(h5_U[batch, comp_slice], ds_V) rebuild = stack_real_to_target_dtype(rebuild, h5_V.dtype) print( 'Completed reconstruction of data from SVD results. Writing to file.') ''' Create the Group and dataset to hold the rebuild data ''' rebuilt_grp = create_indexed_group(h5_svd_group, 'Rebuilt_Data') h5_rebuilt = write_main_dataset(rebuilt_grp, rebuild, 'Rebuilt_Data', get_attr(h5_main, 'quantity'), get_attr(h5_main, 'units'), None, None, h5_pos_inds=h5_main.h5_pos_inds, h5_pos_vals=h5_main.h5_pos_vals, h5_spec_inds=h5_main.h5_spec_inds, h5_spec_vals=h5_main.h5_spec_vals, chunks=h5_main.chunks, compression=h5_main.compression) if isinstance(comp_slice, slice): rebuilt_grp.attrs['components_used'] = '{}-{}'.format( comp_slice.start, comp_slice.stop) else: rebuilt_grp.attrs['components_used'] = components copy_attributes(h5_main, h5_rebuilt, skip_refs=False) h5_main.file.flush() print('Done writing reconstructed data to file.') return h5_rebuilt
def test_get_available_memory_rerouting(self): if sys.version_info.major == 3: with self.assertWarns(FutureWarning): _ = io_utils.get_available_memory() self.assertEqual(comp_utils.get_available_memory(), io_utils.get_available_memory())
def compute(self, override=False, *args, **kwargs): """ Creates placeholders for the results, applies the unit computation to chunks of the dataset Parameters ---------- override : bool, optional. default = False By default, compute will simply return duplicate results to avoid recomputing or resume computation on a group with partial results. Set to True to force fresh computation. args : list arguments to the mapped function in the correct order kwargs : dictionary keyword arguments to the mapped function Returns ------- h5_results_grp : h5py.Group object Group containing all the results """ class SimpleFIFO(object): """ Simple class that maintains a moving average of some numbers. """ def __init__(self, length=5): """ Create a SimpleFIFO object Parameters ---------- length : unsigned integer Number of values that need to be maintained for the moving average """ self.__queue = list() if not isinstance(length, int): raise TypeError('length must be a positive integer') if length <= 0: raise ValueError('length must be a positive integer') self.__max_length = length self.__count = 0 def put(self, item): """ Adds the item to the internal queue. If the size of the queue exceeds its capacity, the oldest item is removed. Parameters ---------- item : float or int Any real valued number """ if (not isinstance(item, Number)) or isinstance(item, complex): raise TypeError( 'Provided item: {} is not a Number'.format(item)) self.__queue.append(item) self.__count += 1 if len(self.__queue) > self.__max_length: _ = self.__queue.pop(0) def get_mean(self): """ Returns the average of the elements within the queue Returns ------- avg : number.Number Mean of all elements within the queue """ return np.mean(self.__queue) def get_cycles(self): """ Returns the number of items that have been added to the queue in total Returns ------- count : int number of items that have been added to the queue in total """ return self.__count if not override: if len(self.duplicate_h5_groups) > 0: if self.mpi_rank == 0: print('Returned previously computed results at ' + self.duplicate_h5_groups[-1].name) return self.duplicate_h5_groups[-1] elif len(self.partial_h5_groups) > 0: if self.mpi_rank == 0: print('Resuming computation in group: ' + self.partial_h5_groups[-1].name) self.use_partial_computation() resuming = False if self.h5_results_grp is None: # starting fresh if self.verbose and self.mpi_rank == 0: print('Creating HDF5 group and datasets to hold results') self._create_results_datasets() else: # resuming from previous checkpoint resuming = True self._get_existing_datasets() self.__create_compute_status_dataset() if resuming and self.mpi_rank == 0: percent_complete = int( 100 * len(np.where(self._h5_status_dset[()] == 0)[0]) / self._h5_status_dset.shape[0]) print('Resuming computation. {}% completed already'.format( percent_complete)) self.__assign_job_indices() # Not sure if this is necessary but I don't think it would hurt either if self.mpi_comm is not None: self.mpi_comm.barrier() compute_times = SimpleFIFO(5) write_times = SimpleFIFO(5) orig_rank_start = self.__start_pos if self.mpi_rank == 0 and self.mpi_size == 1: if self.__resume_implemented: print( '\tThis class (likely) supports interruption and resuming of computations!\n' '\tIf you are operating in a python console, press Ctrl+C or Cmd+C to abort\n' '\tIf you are in a Jupyter notebook, click on "Kernel">>"Interrupt"\n' '\tIf you are operating on a cluster and your job gets killed, re-run the job to resume\n' ) else: print( '\tThis class does NOT support interruption and resuming of computations.\n' '\tIn order to enable this feature, simply implement the _get_existing_datasets() function' ) if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank: {} - with nothing loaded has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) self._read_data_chunk() if self.mpi_comm is not None: self.mpi_comm.barrier() if self.verbose and self.mpi_rank == self.__socket_master_rank: print('Rank: {} - with only raw data loaded has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) while self.data is not None: num_jobs_in_batch = self.__end_pos - self.__start_pos t_start_1 = tm.time() self._unit_computation(*args, **kwargs) comp_time = np.round(tm.time() - t_start_1, decimals=2) # in seconds time_per_pix = comp_time / num_jobs_in_batch compute_times.put(time_per_pix) if self.verbose: print( 'Rank {} - computed chunk in {} or {} per pixel. Average: {} per pixel' '.'.format(self.mpi_rank, format_time(comp_time), format_time(time_per_pix), format_time(compute_times.get_mean()))) # Ranks can become memory starved. Check memory usage - raw data + results in memory at this point if self.verbose and self.mpi_rank == self.__socket_master_rank: print( 'Rank: {} - now holding onto raw data + results has {} free memory' ''.format(self.mpi_rank, format_size(get_available_memory()))) t_start_2 = tm.time() self._write_results_chunk() # NOW, update the positions. Users are NOT allowed to touch start and end pos self.__start_pos = self.__end_pos # Leaving in this provision that will allow restarting of processes if self.mpi_size == 1: self.h5_results_grp.attrs['last_pixel'] = self.__end_pos # Child classes don't even have to worry about flushing. Process will do it. self.h5_main.file.flush() dump_time = np.round(tm.time() - t_start_2, decimals=2) write_times.put(dump_time / num_jobs_in_batch) if self.verbose: print('Rank {} - wrote its {} pixel chunk in {}'.format( self.mpi_rank, num_jobs_in_batch, format_time(dump_time))) time_remaining = (self.__rank_end_pos - self.__end_pos) * \ (compute_times.get_mean() + write_times.get_mean()) if self.verbose or self.mpi_rank == 0: percent_complete = int(100 * (self.__end_pos - orig_rank_start) / (self.__rank_end_pos - orig_rank_start)) print('Rank {} - {}% complete. Time remaining: {}'.format( self.mpi_rank, percent_complete, format_time(time_remaining))) # All ranks should mark the pixels for this batch as completed. 'last_pixel' attribute will be updated later # Setting each section to 1 independently for section in to_ranges(self.__pixels_in_batch): self._h5_status_dset[section[0]:section[1] + 1] = 1 self._read_data_chunk() if self.verbose: print('Rank {} - Finished computing all jobs!'.format( self.mpi_rank)) if self.mpi_comm is not None: self.mpi_comm.barrier() if self.mpi_rank == 0: print('Finished processing the entire dataset!') # Update the legacy 'last_pixel' attribute here: if self.mpi_rank == 0: self.h5_results_grp.attrs['last_pixel'] = self.h5_main.shape[0] return self.h5_results_grp
def _set_memory_and_cores(self, cores=None, mem=None): """ Checks hardware limitations such as memory, # cpus and sets the recommended datachunk sizes and the number of cores to be used by analysis methods. This function can work with clusters with heterogeneous memory sizes (e.g. CADES SHPC Condo). Parameters ---------- cores : uint, optional Default - 1 How many cores to use for the computation mem : uint, optional Default - 1024 The amount a memory in Mb to use in the computation """ if MPI is None: min_free_cores = 1 + int(psutil.cpu_count() > 4) if cores is None: self._cores = max(1, psutil.cpu_count() - min_free_cores) else: if not isinstance(cores, int): raise TypeError( 'cores should be an integer but got: {}'.format(cores)) cores = int(abs(cores)) self._cores = max(1, min(psutil.cpu_count(), cores)) self.__socket_master_rank = 0 self.__ranks_on_socket = 1 else: # user-provided input cores will simply be ignored in an effort to use the entire CPU ranks_by_socket = group_ranks_by_socket(verbose=self.verbose) self.__socket_master_rank = ranks_by_socket[self.mpi_rank] # which ranks in this socket? ranks_on_this_socket = np.where( ranks_by_socket == self.__socket_master_rank)[0] # how many in this socket? self.__ranks_on_socket = ranks_on_this_socket.size # Force usage of all available memory mem = None self._cores = 1 # Disabling the following line since mpi4py and joblib didn't play well for Bayesian Inference # self._cores = self.__cores_per_rank = psutil.cpu_count() // self.__ranks_on_socket # TODO: Convert all to bytes! _max_mem_mb = get_available_memory() / 1024**2 # in MB if mem is None: mem = _max_mem_mb else: if not isinstance(mem, int): raise TypeError('mem must be a whole number') mem = abs(mem) self._max_mem_mb = min(_max_mem_mb, mem) # Remember that multiple processes (either via MPI or joblib) will share this socket max_data_chunk = self._max_mem_mb / (self._cores * self.__ranks_on_socket) # Now calculate the number of positions OF RAW DATA ONLY that can be stored in memory in one go PER RANK mb_per_position = self.h5_main.dtype.itemsize * self.h5_main.shape[ 1] / 1024**2 self._max_pos_per_read = int(np.floor(max_data_chunk / mb_per_position)) if self.verbose and self.mpi_rank == self.__socket_master_rank: # expected to be the same for all ranks so just use this. print( 'Rank {} - on socket with {} logical cores and {} avail. RAM shared by {} ranks each given {} cores' '.'.format(self.__socket_master_rank, psutil.cpu_count(), format_size(_max_mem_mb * 1024**2, 2), self.__ranks_on_socket, self._cores)) print('Allowed to read {} pixels per chunk'.format( self._max_pos_per_read))