Example #1
0
def add_mixed_hmv(
    pt1, pt2: Optimized_Point3D[Optimized_Field]
) -> Optimized_Point3D[Optimized_Field]:
    x1, y1, z1 = pt1
    x2, y2, z2 = pt2
    assert z2 == FQ2.one()
    T1 = z1 * z1
    T2 = T1 * z1
    T1 = T1 * x2
    T2 = T2 * y2
    T1 = T1 - x1
    T2 = T2 - y1
    if T1 == FQ2.zero():
        if T2 == FQ2.zero():
            return double(pt1)
        return inf
    z3 = z1 * T1
    T3 = T1 * T1
    T4 = T3 * T1
    T3 = T3 * x1
    T1 = 2 * T3
    x3 = T2 * T2
    x3 = x3 - T1
    x3 = x3 - T4
    T3 = T3 - x3
    T3 = T3 * T2
    T4 = T4 * y1
    y3 = T3 - T4
    return (x3, y3, z3)
Example #2
0
def normalize(
    pt: Optimized_Point3D[Optimized_Field],
) -> Optimized_Point3D[Optimized_Field]:
    x1, y1, z1 = pt
    z = z1.inv()
    z2 = z * z
    x3 = x1 * z2
    y3 = y1 * z2 * z
    return (x3, y3, FQ2.one())
Example #3
0
 def _try_sqrt_in_fp2(a: FQ2) -> FQ2:
     a1 = a**P_MINUS3_OVER4
     alpha = a1 * a1 * a
     x0 = a1 * a
     if alpha == FQ2([-1, 0]):
         return FQ2((x0.coeffs[1], x0.coeffs[0]))
     alpha = alpha + FQ2.one()
     alpha = alpha**P_MINUS1_OVER2
     return alpha * x0
Example #4
0
def pubkey_to_g2(pub: Pubkey) -> G2Point:
    g2 = (
        FQ2([big_endian_to_int(pub[:32]),
             big_endian_to_int(pub[32:64])]),
        FQ2([big_endian_to_int(pub[64:96]),
             big_endian_to_int(pub[96:])]),
        FQ2.one(),
    )
    assert is_valid_g2_point(g2)
    return g2
Example #5
0
def map_to_g2(raw_hash: FQ2) -> G2Point:
    one = FQ2.one()
    x = raw_hash
    while True:
        y = x * x * x + b2
        y = sqrt(y)
        if y is not None:
            break
        x += one
    h = multiply((x, y, one), COFACTOR_G2)
    assert is_on_curve(h, b2)
    return h
Example #6
0
def signature_to_G2(signature: Signature) -> G2Point:
    g2 = (
        FQ2([
            big_endian_to_int(signature[:32]),
            big_endian_to_int(signature[32:64])
        ]),
        FQ2([
            big_endian_to_int(signature[64:96]),
            big_endian_to_int(signature[96:])
        ]),
        FQ2.one(),
    )
    assert is_g2_on_curve(g2)
    return g2
Example #7
0
def _normalize(p1) -> Optimized_Point3D[Optimized_Field]:
    x, y = normalize(p1)
    return (x, y, FQ2.one())
Example #8
0
def sign(msg: Message, priv: PrivateKey) -> Signature:
    x, y = normalize(multiply(hash_to_g2(msg), priv))
    g2 = (x, y, FQ2.one())
    return G2_to_signature(g2)
Example #9
0
from py_ecc.optimized_bn128 import FQ2, b2 as B
from py_ecc.typing import Optimized_Field, Optimized_Point3D

inf = (FQ2.zero(), FQ2.one(), FQ2.zero())


def double(
    pt: Optimized_Point3D[Optimized_Field],
) -> Optimized_Point3D[Optimized_Field]:
    x, y, z = pt
    A = x * x
    B = y * y
    C = B * B
    t = x + B
    D = 2 * (t * t - A - C)
    E = 3 * A
    F = E * E
    x3 = F - 2 * D
    y3 = E * (D - x3) - 8 * C
    z3 = 2 * z * y
    return (x3, y3, z3)


def add(
    pt1, pt2: Optimized_Point3D[Optimized_Field]
) -> Optimized_Point3D[Optimized_Field]:
    x1, y1, z1 = pt1
    x2, y2, z2 = pt2
    Z1Z1 = z1 * z1
    Z2Z2 = z2 * z2
    U1 = x1 * Z2Z2
Example #10
0
File: bls.py Project: kilic/sol-bls
def priv_to_pub(priv: PrivateKey) -> Pubkey:
    x, y = normalize(multiply(G2, priv))
    g2 = (x, y, FQ2.one())
    return g2_to_pubkey(g2)
Example #11
0
def _normalize(p1):
    x, y = normalize(p1)
    return (x, y, FQ2.one())