Example #1
0
def naiv_pred():
    flag = int(request.args.get('flag'))
    li = []
    te = pd.read_csv("test.csv")
    if (flag):
        li.append(request.args.get('customerID'))
        li.append(request.args.get('Gender'))
        li.append(request.args.get('SeniorCitizen'))
        li.append(request.args.get('Partner'))
        li.append(request.args.get('Dependents'))
        li.append(request.args.get('tenure'))
        li.append(request.args.get('PhoneService'))
        li.append(request.args.get('MultipleLines'))
        li.append(request.args.get('InternetService'))
        li.append(request.args.get('OnlineSecurity'))
        li.append(request.args.get('OnlineBackup'))
        li.append(request.args.get('DeviceProtection'))
        li.append(request.args.get('TechSupport'))
        li.append(request.args.get('StreamingTV'))
        li.append(request.args.get('StreamingMovies'))
        li.append(request.args.get('Contract'))
        li.append(request.args.get('PaperlessBilling'))
        li.append(request.args.get('BaymentMrthod'))
        li.append(request.args.get('MonthlyCharges'))
        li.append(request.args.get('TotalCharges'))
        dic = {}
        c = 0
        for i in X.columns:
            dic[i] = [li[c]]
            c += 1
        te = pd.DataFrame(data=dic)
    te_c = prep.cleaning(te.copy())["data"]
    te["Churn"] = df["d"]["Churn"].inverse_transform(clf_naiv.get_pred(te_c))
    data = {"pred": te.head(500).to_json()}
    return jsonify(data)
Example #2
0
def prp():
    df = prep.cleaning(pd.read_csv("dataset.csv"))["data"]
    data = {"data": df.head(500).to_json()}
    return jsonify(data)
Example #3
0
import py_files.prep as prep
import py_files.LR as LR
import py_files.LOGR as LOGR
import py_files.RF as RF
import py_files.KNN as KNN
import py_files.SVM as SVM
import py_files.Dtree as Dtree
import py_files.naiv as naiv
import pandas as pd
import json
from flask import Flask, jsonify, request, render_template
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

df = prep.cleaning(pd.read_csv("dataset.csv"))  #load the dataset

lda = LDA(n_components=8)  #select 8 feature
X = df["data"].drop("Churn", axis=1)
Y = df["data"]["Churn"]
lda.fit(X, Y)  #fit the data to select the best feature

clf_log = LOGR.LR(df["data"].copy(), "Churn",
                  lda)  #intiate object from logisticRegression Class
clf_KNN = KNN.KNN(df["data"].copy(), "Churn",
                  lda)  #intiate object from K-NN Class
clf_RF = RF.RF(df["data"].copy(), "Churn",
               lda)  #intiate object from RandomForest Class
clf_SVM = SVM.SV(df["data"].copy(), "Churn",
                 lda)  #intiate object from SVM Class
clf_Dt = Dtree.DT(df["data"].copy(), "Churn",
                  lda)  #intiate object from Decision Tree Class
clf_naiv = naiv.RF(df["data"].copy(), "Churn",