if (turn+1) % 2 == 0: print 'finished turn', turn, time.time() - turn_start_t ##### create prob maps for player in [0,1]: winner[:, player] = arch.sess.run(arch.winner, feed_dict={arch.moving_player: player}) tree_probs = pu.return_probs_map() ############################# # train random.shuffle(inds_total) for batch in range(np.int(N_TURNS_FRAC_TRAIN*N_TURNS)): inds = inds_total[batch*gv.BATCH_SZ + np.arange(gv.BATCH_SZ)] board2, tree_probs2 = pu.rotate_reflect_imgs(board[inds], tree_probs[inds]) # rotate and reflect board randomly train_dict = {arch.imgs: board2, arch.pol_target: tree_probs2, arch.val_target: winner.ravel()[inds]} val_mean_sq_err_tmp, pol_cross_entrop_err_tmp, val_pearsonr_tmp = arch.sess.run(bp_eval_nodes, feed_dict=train_dict)[1:] # update logs val_mean_sq_err += val_mean_sq_err_tmp pol_cross_entrop_err += pol_cross_entrop_err_tmp val_pearsonr += val_pearsonr_tmp global_batch += 1 err_denom += 1
############################# # train tree_probs_r = tree_probs.reshape((BUFFER_SZ, gv.map_szt)) valid_entries = np.prod(np.isnan(tree_probs_r) == False, 1) * np.nansum( tree_probs_r, 1) # remove examples with nans or no probabilties inds_valid = np.nonzero(valid_entries)[0] print len(inds_valid), 'out of', BUFFER_SZ, 'valid training examples' random.shuffle(inds_valid) for batch in range(N_TURNS): inds = inds_valid[batch * gv.BATCH_SZ + np.arange(gv.BATCH_SZ)] board2, tree_probs2 = pu.rotate_reflect_imgs( board[inds], tree_probs.reshape( (BUFFER_SZ, gv.map_szt))[inds]) # rotate and reflect board randomly train_dict = { arch.imgs: board2, arch.pol_target: tree_probs2, arch.val_target: winner.ravel()[inds] } val_mean_sq_err_tmp, pol_cross_entrop_err_tmp, val_pearsonr_tmp = arch.sess.run( bp_eval_nodes, feed_dict=train_dict)[1:] # update logs val_mean_sq_err += val_mean_sq_err_tmp pol_cross_entrop_err += pol_cross_entrop_err_tmp
def worker(i_WORKER_ID): global WORKER_ID, weights_current, weights_eval_current, weights_eval32_current, val_mean_sq_err, pol_cross_entrop_err, val_pearsonr global board, winner, tree_probs, save_d, bp_eval_nodes, t_start, run_time, save_nm WORKER_ID = i_WORKER_ID err_denom = 0 val_pearsonr = 0 val_mean_sq_err = 0 pol_cross_entrop_err = 0 t_start = datetime.now() run_time = datetime.now() - datetime.now() #### restore save_d = np.load(sdir + save_nm, allow_pickle=True).item() for key in save_vars + state_vars + training_ex_vars: if (key == 'save_nm') or (key in shared_nms): continue exec('global ' + key) exec('%s = save_d["%s"]' % (key, key)) EPS_ORIG = EPS #EPS = 2e-3 ###################################################### < overrides previous backprop step sizes ############# init / load model DEVICE = '/gpu:%i' % WORKER_ID arch.init_model(DEVICE, N_FILTERS, FILTER_SZS, STRIDES, N_FC1, EPS, MOMENTUM, LSQ_LAMBDA, LSQ_REG_LAMBDA, POL_CROSS_ENTROP_LAMBDA, VAL_LAMBDA, VALR_LAMBDA, L2_LAMBDA) bp_eval_nodes = [ arch.train_step, arch.val_mean_sq_err, arch.pol_cross_entrop_err, arch.val_pearsonr ] # ops for trainable weights weights_current = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='main') weights_eval_current = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='eval/') weights_eval32_current = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope='eval32') if new_model == False: print 'restore nm %s' % save_nm arch.saver.restore(arch.sess, sdir + save_nm) if WORKER_ID == MASTER_WORKER: set_all_shared_to_loaded() else: #### sync model weights if WORKER_ID == MASTER_WORKER: set_all_to_eval32_and_get() else: while set_weights() == False: # wait for weights to be set continue ###### shared variables board = np.frombuffer(s_board.get_obj(), 'float16').reshape( (BUFFER_SZ, gv.n_rows, gv.n_cols, gv.n_input_channels)) winner = np.frombuffer(s_winner.get_obj(), 'int8').reshape( (N_BATCH_SETS_TOTAL, N_TURNS, 2, gv.BATCH_SZ)) tree_probs = np.frombuffer(s_tree_probs.get_obj(), 'float32').reshape( (BUFFER_SZ, gv.map_szt)) ######## local variables # BUFFER_SZ = N_BATCH_SETS * N_TURNS * 2 * gv.BATCH_SZ L_BUFFER_SZ = N_TURNS * 2 * gv.BATCH_SZ board_local = np.zeros( (L_BUFFER_SZ, gv.n_rows, gv.n_cols, gv.n_input_channels), dtype='float16') winner_local = np.zeros((N_TURNS, 2, gv.BATCH_SZ), dtype='int8') tree_probs_local = np.zeros((L_BUFFER_SZ, gv.map_szt), dtype='float32') if EPS_ORIG != EPS: #save_nm += 'EPS_%2.4f.npy' % EPS save_d['EPS'] = EPS print 'saving to', save_nm ### sound if WORKER_ID == MASTER_WORKER: pygame.init() pygame.mixer.music.load('/home/tapa/gtr-nylon22.mp3') ###### while True: #### generate training batches with `main` model arch.sess.run(arch.init_state) pu.init_tree() turn_start_t = time.time() buffer_loc_local = 0 for turn in range(N_TURNS): ### make move for player in [0, 1]: set_weights() run_sim(turn, player) # using `main` model inds = buffer_loc_local + np.arange( gv.BATCH_SZ) # inds to save training vars at board_local[inds], valid_mv_map, pol = arch.sess.run( [arch.imgs, arch.valid_mv_map, arch.pol['main']], feed_dict=ret_d(player)) # generate batch and valid moves ######### pu.add_valid_mvs(player, valid_mv_map) # register valid moves in tree visit_count_map = pu.choose_moves( player, np.array(pol, dtype='single'), CPUCT)[-1] # get number of times each node was visited tree_probs_local[inds] = visit_count_map / visit_count_map.sum( 1)[:, np.newaxis] to_coords = arch.sess.run( [arch.tree_prob_visit_coord, arch.tree_prob_move_unit], feed_dict={ arch.moving_player: player, arch.visit_count_map: visit_count_map })[0] # make move in proportion to visit counts pu.register_mv(player, np.array( to_coords, dtype='int32')) # register move in tree ############### buffer_loc_local += gv.BATCH_SZ pu.prune_tree(0) if (turn + 1) % 2 == 0: print 'finished turn %i (%i sec) GPU %i batch_sets_created %i (total %i)' % ( turn, time.time() - turn_start_t, WORKER_ID, batch_sets_created.value, batch_sets_created_total.value) ##### create prob maps for player in [0, 1]: winner_local[:, player] = arch.sess.run( arch.winner, feed_dict={arch.moving_player: player}) #### set shared buffers with training variables we just generated from self-play with buffer_lock: board[buffer_loc.value:buffer_loc.value + buffer_loc_local] = board_local tree_probs[buffer_loc.value:buffer_loc.value + buffer_loc_local] = tree_probs_local winner[batch_set.value] = winner_local buffer_loc.value += buffer_loc_local batch_sets_created.value += 1 batch_sets_created_total.value += 1 batch_set.value += 1 # save checkpoint if buffer_loc.value >= BUFFER_SZ or batch_set.value >= N_BATCH_SETS_TOTAL: buffer_loc.value = 0 batch_set.value = 0 # save batch only batch_d = {} for key in ['tree_probs', 'winner', 'board']: exec( 'batch_d["%s"] = copy.deepcopy(np.array(s_%s.get_obj()))' % (key, key)) batch_save_nm = sdir + save_nm + '_batches' + str( batch_sets_created_total.value) np.save(batch_save_nm, batch_d) print 'saved', batch_save_nm batch_d = {} ################ train/eval/test if WORKER_ID == MASTER_WORKER and batch_sets_created.value >= N_BATCH_SETS_BLOCK and batch_sets_created_total.value >= N_BATCH_SETS_MIN: ########### train with buffer_lock: if batch_sets_created_total.value < ( N_BATCH_SETS_MIN + N_BATCH_SETS_BLOCK ): # don't overtrain on the initial set batch_sets_created.value = N_BATCH_SETS_BLOCK if batch_sets_created.value >= N_BATCH_SETS_TOTAL: # if for some reason master worker gets delayed batch_sets_created.value = N_BATCH_SETS_BLOCK board_c = np.array(board, dtype='single') winner_rc = np.array(winner.ravel(), dtype='single') valid_entries = np.prod( np.isnan(tree_probs) == False, 1) * np.nansum( tree_probs, 1) # remove examples with nans or no probabilties inds_valid = np.nonzero(valid_entries)[0] print len( inds_valid), 'out of', BUFFER_SZ, 'valid training examples' for rep in range(N_REP_TRAIN): random.shuffle(inds_valid) for batch in range(N_TURNS * batch_sets_created.value): inds = inds_valid[batch * gv.BATCH_SZ + np.arange(gv.BATCH_SZ)] board2, tree_probs2 = pu.rotate_reflect_imgs( board_c[inds], tree_probs[inds] ) # rotate and reflect board randomly train_dict = { arch.imgs32: board2, arch.pol_target: tree_probs2, arch.val_target: winner_rc[inds] } val_mean_sq_err_tmp, pol_cross_entrop_err_tmp, val_pearsonr_tmp = \ arch.sess.run(bp_eval_nodes, feed_dict=train_dict)[1:] # update logs val_mean_sq_err += val_mean_sq_err_tmp pol_cross_entrop_err += pol_cross_entrop_err_tmp val_pearsonr += val_pearsonr_tmp global_batch += 1 err_denom += 1 batch_sets_created.value = 0 ############### `eval` against prior version of self (`main`) set_eval16_to_eval32_start_eval( ) # update `eval` tf and shared copies to follow backprop (`eval32`) eval_model() # run match(es) with eval_stats_lock: print '-------------------' model_outperforms, self_eval_perc = print_eval_stats() print '------------------' if model_outperforms: # update `eval` AND `main` both tf and shared copies to follow backprop set_all_to_eval32_and_get() ##### network evaluation against random player and GNU Go global_batch_evald = global_batch global_batch_saved = global_batch t_eval = time.time() print 'evaluating nn' d = ret_d(0) ################## monitor training progress: # test `eval` against GNU Go and a player that makes only random moves for nm, N_GMS_L in zip(['nn', 'tree'], [[N_EVAL_NN_GNU_GMS, N_EVAL_NN_GMS], [N_EVAL_TREE_GMS, N_EVAL_TREE_GNU_GMS]]): for gnu, N_GMS in zip([True, False], N_GMS_L): if N_GMS == 0: continue key = '%s%s' % (nm, '' + gnu * '_gnu') t_key = time.time() boards[key] = np.zeros((N_TURNS, ) + gv.INPUTS_SHAPE[:-1], dtype='int8') n_mvs = 0. win_eval = 0. score_eval = 0. n_captures_eval = np.zeros(2, dtype='single') for gm in range(N_GMS): arch.sess.run(arch.init_state) pu.init_tree() # init gnu state if gnu: gt.init_board(arch.sess.run(arch.gm_vars['board'])) for turn in range(N_TURNS): board_tmp = arch.sess.run(arch.gm_vars['board']) #### search / make move if nm == 'tree': run_sim(turn) assert False else: # prob choose first move, deterministically choose remainder if turn == 0: to_coords = arch.sess.run([ arch. nn_prob_to_coords_valid_mvs['eval'], arch. nn_prob_move_unit_valid_mvs['eval'] ], feed_dict=d)[0] else: to_coords = arch.sess.run([ arch.nn_max_prob_to_coords_valid_mvs[ 'eval'], arch. nn_max_prob_move_unit_valid_mvs['eval'] ], feed_dict=d)[0] board_tmp2 = arch.sess.run(arch.gm_vars['board']) n_mvs += board_tmp.sum() - board_tmp2.sum() # move opposing player if gnu: gt.move_nn(to_coords) # mv gnugo ai_to_coords = gt.move_ai() arch.sess.run( arch.imgs, feed_dict={arch.moving_player: 1}) arch.sess.run( arch.nn_max_move_unit['eval'], feed_dict={ arch.moving_player: 1, arch.nn_max_to_coords['eval']: ai_to_coords }) else: arch.sess.run(arch.imgs, feed_dict=ret_d(1)) arch.sess.run(arch.move_random_ai, feed_dict=ret_d(1)) boards[key][turn] = arch.sess.run( arch.gm_vars['board']) if nm == 'tree': pu.prune_tree(0) # turn # save stats win_tmp, score_tmp, n_captures_tmp = arch.sess.run( [arch.winner, arch.score, arch.n_captures], feed_dict={arch.moving_player: 0}) scores[key] = copy.deepcopy(score_tmp) win_eval += win_tmp.mean() score_eval += score_tmp.mean() n_captures_eval += n_captures_tmp.mean(1) # gm # log log['win_' + key].append((win_eval / (2 * np.single(N_GMS))) + .5) log['n_captures_' + key].append(n_captures_eval[0] / np.single(N_GMS)) log['n_captures_opp_' + key].append(n_captures_eval[1] / np.single(N_GMS)) log['score_' + key].append(score_eval / np.single(N_GMS)) log['n_mvs_' + key].append( n_mvs / np.single(N_GMS * N_TURNS * gv.BATCH_SZ)) log['boards_' + key].append(boards[key][-1]) print key, 'eval time', time.time() - t_key # gnu # nm log['eval_batch'].append(global_batch) print 'eval time', time.time() - t_eval # eval ####################### end network evaluation pol, pol_pre = arch.sess.run( [arch.pol['eval'], arch.pol_pre['eval']], feed_dict={arch.moving_player: 0}) ##### log log['val_mean_sq_err'].append(val_mean_sq_err / err_denom) log['pol_cross_entrop'].append(pol_cross_entrop_err / err_denom) log['val_pearsonr'].append(val_pearsonr / err_denom) log['opt_batch'].append(global_batch) log['pol_max_pre'].append(np.median(pol_pre.max(1))) log['pol_max'].append(np.median(pol.max(1))) log['self_eval_win_rate'].append( np.single(eval_games_won.value) / (eval_batch_sets_played.value * gv.BATCH_SZ)) log['model_promoted'].append(model_outperforms) log['self_eval_perc'].append(self_eval_perc) val_mean_sq_err = 0 pol_cross_entrop_err = 0 val_pearsonr = 0 err_denom = 0 ########## print run_time += datetime.now() - t_start if (save_counter % 20) == 0: print print Style.BRIGHT + Fore.GREEN + save_nm, Fore.WHITE + 'EPS', EPS, 'start', str(start_time).split('.')[0], 'run time', \ str(run_time).split('.')[0] print save_counter += 1 print_str = '%i' % global_batch for key in print_logs: print_str += ' %s ' % key if isinstance(log[key], int): print_str += str(log[key][-1]) else: print_str += '%1.4f' % log[key][-1] print_str += ' %4.1f' % (datetime.now() - t_start).total_seconds() print print_str t_start = datetime.now() # play sound if os.path.isfile('/home/tapa/play_sound.txt'): pygame.mixer.music.play() ############# save if WORKER_ID == MASTER_WORKER: with buffer_lock: # update state vars #shared_nms = ['buffer_loc', 'batch_sets_created', 'batch_set', 's_board', 's_winner', 's_tree_probs', 'weights_changed', 'buffer_lock', 'weights_lock', 'save_nm', 'new_model', 'weights'] for key in state_vars + training_ex_vars: if key in [ 'buffer_loc', 'batch_sets_created', 'batch_sets_created_total', 'batch_set', 'eval_games_won', 'eval_batch_sets_played' ]: exec('save_d["%s"] = %s.value' % (key, key)) elif key in ['tree_probs', 'winner', 'board']: exec( 'save_d["%s"] = copy.deepcopy(np.array(s_%s.get_obj()))' % (key, key)) else: exec('save_d["%s"] = %s' % (key, key)) save_nms = [save_nm] if (datetime.now() - save_t).seconds > CHKP_FREQ: save_nms += [save_nm + str(datetime.now())] save_t = datetime.now() for nm in save_nms: np.save(sdir + nm, save_d) arch.saver.save(arch.sess, sdir + nm) print sdir + nm, 'saved'