Example #1
0
    saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, "./log/model.ckpt")

    for i in range(len(R_surf)):
        # for Rs in R_surf[:10]:
        Rl = R_surf[i] - R_Cu
        dl = np.sqrt(np.sum(Rl**2, axis=-1))

        dl[dl > Router] = 0

        coord = np.zeros((np.sum(dl > 0), 3))
        coord = Rl[dl > 0]
        coord = np.concatenate((np.zeros((1, 3)), coord), axis=0)

        feat = pyu.getFeat(len(coord), coord, featParams["n2b"],
                           featParams["n3b"])

        feedDict = {tf_feat: pyf.scaleFeat(featParams, feat)}

        Ei[i] = sess.run(L3, feed_dict=feedDict)

        print("{}/{}".format(i, len(R_surf)), Ei[i])

    # pyu.saveXYZ([coord], ["Cu"], "test.xyz")

Ei = Ei - 0.5

idx = np.zeros(len(Ei))
for k in range(3):
    idx[np.abs(R_surf[:, k]) < 2] = 1
dC1O1 = np.mean(dC1O1)
dC0H = np.mean(dC0H)
aOCH = np.mean(aOCH)*np.pi/180

randomIdx = np.random.permutation(len(R_surf))[:nCase]

Rs = R_surf[randomIdx]

for iCase in range(nCase):
    print(iCase)
    d_sq = np.sum((Rs[iCase] - R_Cu)**2,axis=1)
    Rcluster = R_Cu[d_sq < Rcut**2]
    RNN = R_Cu[(d_sq < Rcut2**2) & (d_sq != 0)]
    Rcluster2 = np.concatenate([(Rs[iCase])[np.newaxis,:],R_Cu[(d_sq < Rcut3**2) & (d_sq !=0)]],axis=0)
    
    feat=pyu.getFeat(len(Rcluster2), Rcluster2-Rs[iCase],featParams['n2b'],featParams['n3b'])
    E0 = pyf.getE(feat[np.newaxis,:], featParams, nnParams)[0]
    print(E0)
    if E0 < -0.5:
        R_surfNN = pyu.getSurfNN(RNN, Rcluster, Rnb=Rcut2, chunkSize=100)
        R_surf = pyu.getSurfVector(R_surfNN, Rcluster, Rnb=Rcut4, angleCutoff=angleCutoff)
            
        feat = np.zeros([len(R_surf), featParams['nFeat']])
        for iNN in range(len(R_surf)):
    #        print(R_surf[iNN] - Rs[iCase])
            diNN_sq = np.sum((R_surf[iNN] - Rcluster)**2,axis=1)
            RiNN = np.zeros((np.sum(diNN_sq < Rcut3**2), 3))
            RiNN[1:] = Rcluster[(diNN_sq != 0.0 ) & (diNN_sq < Rcut3**2)]-R_surf[iNN]
    #        pyu.saveXYZ([RiNN], ['Cu'], 'CuOCCOH_poscar/Cu'+str(iNN)+'.xyz')
            feat[iNN] = pyu.getFeat(len(RiNN), RiNN,featParams['n2b'],featParams['n3b'])