Example #1
0
def test_gaussian_multiple_populations_crossval_kde(db_path, sampler):
    sigma_x = 1
    sigma_y = 0.5
    y_observed = 2

    def model(args):
        return {"y": st.norm(args['x'], sigma_y).rvs()}

    models = [model]
    models = list(map(FunctionModel, models))
    nr_populations = 4
    population_size = ConstantPopulationSize(600)
    parameter_given_model_prior_distribution = [
        Distribution(x=st.norm(0, sigma_x))
    ]
    parameter_perturbation_kernels = [
        GridSearchCV(
            MultivariateNormalTransition(),
            {"scaling": np.logspace(-1, 1.5, 5)},
        )
    ]
    abc = ABCSMC(
        models,
        parameter_given_model_prior_distribution,
        MinMaxDistance(measures_to_use=["y"]),
        population_size,
        transitions=parameter_perturbation_kernels,
        eps=MedianEpsilon(0.2),
        sampler=sampler,
    )
    abc.new(db_path, {"y": y_observed})

    minimum_epsilon = -1

    abc.do_not_stop_when_only_single_model_alive()
    history = abc.run(minimum_epsilon, max_nr_populations=nr_populations)
    posterior_x, posterior_weight = history.get_distribution(0, None)
    posterior_x = posterior_x["x"].values
    sort_indices = np.argsort(posterior_x)
    f_empirical = sp.interpolate.interp1d(
        np.hstack((-200, posterior_x[sort_indices], 200)),
        np.hstack((0, np.cumsum(posterior_weight[sort_indices]), 1)),
    )

    sigma_x_given_y = 1 / np.sqrt(1 / sigma_x**2 + 1 / sigma_y**2)
    mu_x_given_y = sigma_x_given_y**2 * y_observed / sigma_y**2
    expected_posterior_x = st.norm(mu_x_given_y, sigma_x_given_y)
    x = np.linspace(-8, 8)
    max_distribution_difference = np.absolute(
        f_empirical(x) - expected_posterior_x.cdf(x)).max()
    assert max_distribution_difference < 0.052
    assert history.max_t == nr_populations - 1
    mean_emp, std_emp = mean_and_std(posterior_x, posterior_weight)
    assert abs(mean_emp - mu_x_given_y) < 0.07
    assert abs(std_emp - sigma_x_given_y) < 0.12
Example #2
0
def test_gaussian_single_population(db_path, sampler):
    sigma_prior = 1
    sigma_ground_truth = 1
    observed_data = 1

    def model(args):
        return {"y": st.norm(args['x'], sigma_ground_truth).rvs()}

    models = [model]
    models = list(map(FunctionModel, models))
    nr_populations = 1
    population_size = ConstantPopulationSize(600)
    parameter_given_model_prior_distribution = [
        Distribution(x=RV("norm", 0, sigma_prior))
    ]
    abc = ABCSMC(
        models,
        parameter_given_model_prior_distribution,
        MinMaxDistance(measures_to_use=["y"]),
        population_size,
        eps=MedianEpsilon(0.1),
        sampler=sampler,
    )
    abc.new(db_path, {"y": observed_data})

    minimum_epsilon = -1

    abc.do_not_stop_when_only_single_model_alive()
    history = abc.run(minimum_epsilon, max_nr_populations=nr_populations)
    posterior_x, posterior_weight = history.get_distribution(0, None)
    posterior_x = posterior_x["x"].values
    sort_indices = np.argsort(posterior_x)
    f_empirical = sp.interpolate.interp1d(
        np.hstack((-200, posterior_x[sort_indices], 200)),
        np.hstack((0, np.cumsum(posterior_weight[sort_indices]), 1)),
    )

    sigma_x_given_y = 1 / np.sqrt(1 / sigma_prior**2 +
                                  1 / sigma_ground_truth**2)
    mu_x_given_y = (sigma_x_given_y**2 * observed_data / sigma_ground_truth**2)
    expected_posterior_x = st.norm(mu_x_given_y, sigma_x_given_y)
    x = np.linspace(-8, 8)
    max_distribution_difference = np.absolute(
        f_empirical(x) - expected_posterior_x.cdf(x)).max()
    assert max_distribution_difference < 0.12
    assert history.max_t == nr_populations - 1
    mean_emp, std_emp = mean_and_std(posterior_x, posterior_weight)
    assert abs(mean_emp - mu_x_given_y) < 0.07
    assert abs(std_emp - sigma_x_given_y) < 0.1
Example #3
0
def test_gaussian_multiple_populations_adpative_population_size(
        db_path, sampler):
    sigma_x = 1
    sigma_y = .5
    y_observed = 2

    def model(args):
        return {"y": st.norm(args['x'], sigma_y).rvs()}

    models = [model]
    models = list(map(SimpleModel, models))
    nr_populations = 4
    population_size = AdaptivePopulationSize(600)
    parameter_given_model_prior_distribution = [
        Distribution(x=st.norm(0, sigma_x))
    ]
    abc = ABCSMC(models,
                 parameter_given_model_prior_distribution,
                 MinMaxDistanceFunction(measures_to_use=["y"]),
                 population_size,
                 eps=MedianEpsilon(.2),
                 sampler=sampler)
    abc.new(db_path, {"y": y_observed})

    minimum_epsilon = -1

    abc.do_not_stop_when_only_single_model_alive()
    history = abc.run(minimum_epsilon, max_nr_populations=nr_populations)
    posterior_x, posterior_weight = history.get_distribution(0, None)
    posterior_x = posterior_x["x"].as_matrix()
    sort_indices = sp.argsort(posterior_x)
    f_empirical = sp.interpolate.interp1d(
        sp.hstack((-200, posterior_x[sort_indices], 200)),
        sp.hstack((0, sp.cumsum(posterior_weight[sort_indices]), 1)))

    sigma_x_given_y = 1 / sp.sqrt(1 / sigma_x**2 + 1 / sigma_y**2)
    mu_x_given_y = sigma_x_given_y**2 * y_observed / sigma_y**2
    expected_posterior_x = st.norm(mu_x_given_y, sigma_x_given_y)
    x = sp.linspace(-8, 8)
    max_distribution_difference = sp.absolute(
        f_empirical(x) - expected_posterior_x.cdf(x)).max()
    assert max_distribution_difference < 0.15
    assert history.max_t == nr_populations - 1
    mean_emp, std_emp = mean_and_std(posterior_x, posterior_weight)
    assert abs(mean_emp - mu_x_given_y) < .07
    assert abs(std_emp - sigma_x_given_y) < .12
Example #4
0
def test_two_competing_gaussians_single_population(db_path, sampler,
                                                   transition):
    sigma_x = 0.5
    sigma_y = 0.5
    y_observed = 1

    def model(args):
        return {"y": st.norm(args['x'], sigma_y).rvs()}

    models = [model, model]
    models = list(map(FunctionModel, models))
    population_size = ConstantPopulationSize(500)
    mu_x_1, mu_x_2 = 0, 1
    parameter_given_model_prior_distribution = [
        Distribution(x=st.norm(mu_x_1, sigma_x)),
        Distribution(x=st.norm(mu_x_2, sigma_x)),
    ]
    abc = ABCSMC(
        models,
        parameter_given_model_prior_distribution,
        MinMaxDistance(measures_to_use=["y"]),
        population_size,
        transitions=[transition(), transition()],
        eps=MedianEpsilon(0.02),
        sampler=sampler,
    )
    abc.new(db_path, {"y": y_observed})

    minimum_epsilon = -1
    nr_populations = 1
    abc.do_not_stop_when_only_single_model_alive()
    history = abc.run(minimum_epsilon, max_nr_populations=1)
    mp = history.get_model_probabilities(history.max_t)

    def p_y_given_model(mu_x_model):
        return st.norm(mu_x_model,
                       np.sqrt(sigma_y**2 + sigma_x**2)).pdf(y_observed)

    p1_expected_unnormalized = p_y_given_model(mu_x_1)
    p2_expected_unnormalized = p_y_given_model(mu_x_2)
    p1_expected = p1_expected_unnormalized / (p1_expected_unnormalized +
                                              p2_expected_unnormalized)
    p2_expected = p2_expected_unnormalized / (p1_expected_unnormalized +
                                              p2_expected_unnormalized)
    assert history.max_t == nr_populations - 1
    assert abs(mp.p[0] - p1_expected) + abs(mp.p[1] - p2_expected) < 0.07
Example #5
0
def test_continuous_non_gaussian(db_path, sampler):
    def model(args):
        return {"result": sp.rand() * args['u']}

    models = [model]
    models = list(map(SimpleModel, models))
    population_size = ConstantPopulationSize(250)
    parameter_given_model_prior_distribution = [Distribution(u=RV("uniform", 0,
                                                                  1))]
    abc = ABCSMC(models, parameter_given_model_prior_distribution,
                 MinMaxDistanceFunction(measures_to_use=["result"]),
                 population_size,
                 eps=MedianEpsilon(.2),
                 sampler=sampler)
    d_observed = .5
    abc.new(db_path, {"result": d_observed})
    abc.do_not_stop_when_only_single_model_alive()

    minimum_epsilon = -1
    history = abc.run(minimum_epsilon, max_nr_populations=2)
    posterior_x, posterior_weight = history.get_distribution(0, None)
    posterior_x = posterior_x["u"].values
    sort_indices = sp.argsort(posterior_x)
    f_empirical = sp.interpolate.interp1d(sp.hstack((-200,
                                                     posterior_x[sort_indices],
                                                     200)),
                                          sp.hstack((0,
                                                     sp.cumsum(
                                                         posterior_weight[
                                                             sort_indices]),
                                                     1)))

    @sp.vectorize
    def f_expected(u):
        return (sp.log(u)-sp.log(d_observed)) / (- sp.log(d_observed)) * \
               (u > d_observed)

    x = sp.linspace(0.1, 1)
    max_distribution_difference = sp.absolute(f_empirical(x) -
                                              f_expected(x)).max()
    assert max_distribution_difference < 0.12