def gauss_seidel(A, x, b, iterations=1, sweep='forward'): """Perform Gauss-Seidel iteration on the linear system Ax=b Parameters ---------- A : {csr_matrix, bsr_matrix} Sparse NxN matrix x : ndarray Approximate solution (length N) b : ndarray Right-hand side (length N) iterations : int Number of iterations to perform sweep : {'forward','backward','symmetric'} Direction of sweep Returns ------- Nothing, x will be modified in place. Examples -------- >>> ## Use Gauss-Seidel as a Stand-Alone Solver >>> from pyamg.relaxation import * >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((10,10), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> gauss_seidel(A, x0, b, iterations=10) >>> print norm(b-A*x0) 4.00733716236 >>> # >>> ## Use Gauss-Seidel as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('gauss_seidel', {'sweep':'symmetric'}), ... postsmoother=('gauss_seidel', {'sweep':'symmetric'})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A,x,b = make_system(A, x, b, formats=['csr','bsr']) if sweep == 'forward': row_start,row_stop,row_step = 0,len(x),1 elif sweep == 'backward': row_start,row_stop,row_step = len(x)-1,-1,-1 elif sweep == 'symmetric': for iter in xrange(iterations): gauss_seidel(A, x, b, iterations=1, sweep='forward') gauss_seidel(A, x, b, iterations=1, sweep='backward') return else: raise ValueError("valid sweep directions are 'forward', 'backward', and 'symmetric'") if sparse.isspmatrix_csr(A): for iter in xrange(iterations): amg_core.gauss_seidel(A.indptr, A.indices, A.data, x, b, row_start, row_stop, row_step) else: R,C = A.blocksize if R != C: raise ValueError('BSR blocks must be square') row_start = row_start / R row_stop = row_stop / R for iter in xrange(iterations): amg_core.bsr_gauss_seidel(A.indptr, A.indices, numpy.ravel(A.data), x, b, row_start, row_stop, row_step, R)
def gauss_seidel(A, x, b, iterations=1, sweep='forward'): """Perform Gauss-Seidel iteration on the linear system Ax=b Parameters ---------- A : {csr_matrix, bsr_matrix} Sparse NxN matrix x : ndarray Approximate solution (length N) b : ndarray Right-hand side (length N) iterations : int Number of iterations to perform sweep : {'forward','backward','symmetric'} Direction of sweep Returns ------- Nothing, x will be modified in place. Examples -------- >>> ## Use Gauss-Seidel as a Stand-Alone Solver >>> from pyamg.relaxation import * >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((10,10), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> gauss_seidel(A, x0, b, iterations=10) >>> print norm(b-A*x0) 4.00733716236 >>> # >>> ## Use Gauss-Seidel as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('gauss_seidel', {'sweep':'symmetric'}), ... postsmoother=('gauss_seidel', {'sweep':'symmetric'})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A, x, b = make_system(A, x, b, formats=['csr', 'bsr']) if sweep == 'forward': row_start, row_stop, row_step = 0, len(x), 1 elif sweep == 'backward': row_start, row_stop, row_step = len(x) - 1, -1, -1 elif sweep == 'symmetric': for iter in xrange(iterations): gauss_seidel(A, x, b, iterations=1, sweep='forward') gauss_seidel(A, x, b, iterations=1, sweep='backward') return else: raise ValueError( "valid sweep directions are 'forward', 'backward', and 'symmetric'" ) if sparse.isspmatrix_csr(A): for iter in xrange(iterations): amg_core.gauss_seidel(A.indptr, A.indices, A.data, x, b, row_start, row_stop, row_step) else: R, C = A.blocksize if R != C: raise ValueError('BSR blocks must be square') row_start = row_start / R row_stop = row_stop / R for iter in xrange(iterations): amg_core.bsr_gauss_seidel(A.indptr, A.indices, numpy.ravel(A.data), x, b, row_start, row_stop, row_step, R)