def jacobi_ne(A, x, b, iterations=1, omega=1.0): """Perform Jacobi iterations on the linear system A A.H x = A.H b (Also known as Cimmino relaxation) Parameters ---------- A : csr_matrix Sparse NxN matrix x : ndarray Approximate solution (length N) b : ndarray Right-hand side (length N) iterations : int Number of iterations to perform omega : scalar Damping parameter Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Brandt, Ta'asan. "Multigrid Method For Nearly Singular And Slightly Indefinite Problems." 1985. NASA Technical Report Numbers: ICASE-85-57; NAS 1.26:178026; NASA-CR-178026; .. [2] Kaczmarz. Angenaeherte Aufloesung von Systemen Linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A 35, 355-57. 1937 .. [3] Cimmino. La ricerca scientifica ser. II 1. Pubbliz. dell'Inst. pre le Appl. del Calculo 34, 326-333, 1938. Examples -------- >>> ## Use NE Jacobi as a Stand-Alone Solver >>> from pyamg.relaxation import jacobi_ne >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((50,50), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> jacobi_ne(A, x0, b, iterations=10, omega=2.0/3.0) >>> print norm(b-A*x0) 49.3886046066 >>> # >>> ## Use NE Jacobi as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0}), ... postsmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A,x,b = make_system(A, x, b, formats=['csr']) sweep = slice(None) (row_start,row_stop,row_step) = sweep.indices(A.shape[0]) temp = numpy.zeros_like(x) # Dinv for A*A.H Dinv = get_diagonal(A, norm_eq=2, inv=True) # Create uniform type, and convert possibly complex scalars to length 1 arrays [omega] = type_prep(A.dtype, [omega]) for i in range(iterations): delta = (numpy.ravel(b - A*x)*numpy.ravel(Dinv)).astype(A.dtype) amg_core.jacobi_ne(A.indptr, A.indices, A.data, x, b, delta, temp, row_start, row_stop, row_step, omega)
def jacobi_ne(A, x, b, iterations=1, omega=1.0): """Perform Jacobi iterations on the linear system A A.H x = A.H b (Also known as Cimmino relaxation) Parameters ---------- A : csr_matrix Sparse NxN matrix x : ndarray Approximate solution (length N) b : ndarray Right-hand side (length N) iterations : int Number of iterations to perform omega : scalar Damping parameter Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Brandt, Ta'asan. "Multigrid Method For Nearly Singular And Slightly Indefinite Problems." 1985. NASA Technical Report Numbers: ICASE-85-57; NAS 1.26:178026; NASA-CR-178026; .. [2] Kaczmarz. Angenaeherte Aufloesung von Systemen Linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A 35, 355-57. 1937 .. [3] Cimmino. La ricerca scientifica ser. II 1. Pubbliz. dell'Inst. pre le Appl. del Calculo 34, 326-333, 1938. Examples -------- >>> ## Use NE Jacobi as a Stand-Alone Solver >>> from pyamg.relaxation import jacobi_ne >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((50,50), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> jacobi_ne(A, x0, b, iterations=10, omega=2.0/3.0) >>> print norm(b-A*x0) 49.3886046066 >>> # >>> ## Use NE Jacobi as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0}), ... postsmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A, x, b = make_system(A, x, b, formats=['csr']) sweep = slice(None) (row_start, row_stop, row_step) = sweep.indices(A.shape[0]) temp = numpy.zeros_like(x) # Dinv for A*A.H Dinv = get_diagonal(A, norm_eq=2, inv=True) # Create uniform type, and convert possibly complex scalars to length 1 arrays [omega] = type_prep(A.dtype, [omega]) for i in range(iterations): delta = (numpy.ravel(b - A * x) * numpy.ravel(Dinv)).astype(A.dtype) amg_core.jacobi_ne(A.indptr, A.indices, A.data, x, b, delta, temp, row_start, row_stop, row_step, omega)