def rho_D_inv_A(A): """ Return the (approx.) spectral radius of D^-1 * A Parameters ---------- A : {sparse-matrix} Returns ------- approximate spectral radius of diag(A)^{-1} A Examples -------- >>> from pyamg.gallery import poisson >>> from pyamg.relaxation.smoothing import rho_D_inv_A >>> from scipy.sparse import csr_matrix >>> import numpy as np >>> A = csr_matrix(np.array([[1.0,0,0],[0,2.0,0],[0,0,3.0]])) >>> print rho_D_inv_A(A) 1.0 """ if not hasattr(A, 'rho_D_inv'): D_inv = get_diagonal(A, inv=True) D_inv_A = scale_rows(A, D_inv, copy=True) A.rho_D_inv = approximate_spectral_radius(D_inv_A) return A.rho_D_inv
def rho_D_inv_A(A): """Return the (approx.) spectral radius of D^-1 * A. Parameters ---------- A : sparse-matrix Returns ------- approximate spectral radius of diag(A)^{-1} A Examples -------- >>> from pyamg.gallery import poisson >>> from pyamg.relaxation.smoothing import rho_D_inv_A >>> from scipy.sparse import csr_matrix >>> import numpy as np >>> A = csr_matrix(np.array([[1.0,0,0],[0,2.0,0],[0,0,3.0]])) >>> print rho_D_inv_A(A) 1.0 """ if not hasattr(A, 'rho_D_inv'): D_inv = get_diagonal(A, inv=True) D_inv_A = scale_rows(A, D_inv, copy=True) A.rho_D_inv = approximate_spectral_radius(D_inv_A) return A.rho_D_inv
def gauss_seidel_ne(A, x, b, iterations=1, sweep='forward', omega=1.0, Dinv=None): """Perform Gauss-Seidel iterations on the linear system A A.H x = b (Also known as Kaczmarz relaxation) Parameters ---------- A : csr_matrix Sparse NxN matrix x : { ndarray } Approximate solution (length N) b : { ndarray } Right-hand side (length N) iterations : { int } Number of iterations to perform sweep : {'forward','backward','symmetric'} Direction of sweep omega : { float} Relaxation parameter typically in (0, 2) if omega != 1.0, then algorithm becomes SOR on A A.H Dinv : { ndarray} Inverse of diag(A A.H), (length N) Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Brandt, Ta'asan. "Multigrid Method For Nearly Singular And Slightly Indefinite Problems." 1985. NASA Technical Report Numbers: ICASE-85-57; NAS 1.26:178026; NASA-CR-178026; .. [2] Kaczmarz. Angenaeherte Aufloesung von Systemen Linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A 35, 355-57. 1937 Examples -------- >>> ## Use NE Gauss-Seidel as a Stand-Alone Solver >>> from pyamg.relaxation import * >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((10,10), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> gauss_seidel_ne(A, x0, b, iterations=10, sweep='symmetric') >>> print norm(b-A*x0) 8.47576806771 >>> # >>> ## Use NE Gauss-Seidel as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('gauss_seidel_ne', {'sweep' : 'symmetric'}), ... postsmoother=('gauss_seidel_ne', {'sweep' : 'symmetric'})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A,x,b = make_system(A, x, b, formats=['csr']) # Dinv for A*A.H if Dinv == None: Dinv = numpy.ravel(get_diagonal(A, norm_eq=2, inv=True)) if sweep == 'forward': row_start,row_stop,row_step = 0,len(x),1 elif sweep == 'backward': row_start,row_stop,row_step = len(x)-1,-1,-1 elif sweep == 'symmetric': for iter in xrange(iterations): gauss_seidel_ne(A, x, b, iterations=1, sweep='forward', omega=omega, Dinv=Dinv) gauss_seidel_ne(A, x, b, iterations=1, sweep='backward', omega=omega, Dinv=Dinv) return else: raise ValueError("valid sweep directions are 'forward', 'backward', and 'symmetric'") for i in xrange(iterations): amg_core.gauss_seidel_ne(A.indptr, A.indices, A.data, x, b, row_start, row_stop, row_step, Dinv, omega)
def jacobi_ne(A, x, b, iterations=1, omega=1.0): """Perform Jacobi iterations on the linear system A A.H x = A.H b (Also known as Cimmino relaxation) Parameters ---------- A : csr_matrix Sparse NxN matrix x : ndarray Approximate solution (length N) b : ndarray Right-hand side (length N) iterations : int Number of iterations to perform omega : scalar Damping parameter Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Brandt, Ta'asan. "Multigrid Method For Nearly Singular And Slightly Indefinite Problems." 1985. NASA Technical Report Numbers: ICASE-85-57; NAS 1.26:178026; NASA-CR-178026; .. [2] Kaczmarz. Angenaeherte Aufloesung von Systemen Linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A 35, 355-57. 1937 .. [3] Cimmino. La ricerca scientifica ser. II 1. Pubbliz. dell'Inst. pre le Appl. del Calculo 34, 326-333, 1938. Examples -------- >>> ## Use NE Jacobi as a Stand-Alone Solver >>> from pyamg.relaxation import jacobi_ne >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((50,50), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> jacobi_ne(A, x0, b, iterations=10, omega=2.0/3.0) >>> print norm(b-A*x0) 49.3886046066 >>> # >>> ## Use NE Jacobi as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0}), ... postsmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A,x,b = make_system(A, x, b, formats=['csr']) sweep = slice(None) (row_start,row_stop,row_step) = sweep.indices(A.shape[0]) temp = numpy.zeros_like(x) # Dinv for A*A.H Dinv = get_diagonal(A, norm_eq=2, inv=True) # Create uniform type, and convert possibly complex scalars to length 1 arrays [omega] = type_prep(A.dtype, [omega]) for i in range(iterations): delta = (numpy.ravel(b - A*x)*numpy.ravel(Dinv)).astype(A.dtype) amg_core.jacobi_ne(A.indptr, A.indices, A.data, x, b, delta, temp, row_start, row_stop, row_step, omega)
def gmres_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern, maxiter, tol, weighting='local', Cpt_params=None): ''' Helper function for energy_prolongation_smoother(...). Use GMRES to smooth T by solving A T = 0, subject to nullspace and sparsity constraints. Parameters ---------- A : {csr_matrix, bsr_matrix} SPD sparse NxN matrix Should be at least nonsymmetric or indefinite T : {bsr_matrix} Tentative prolongator, a NxM sparse matrix (M < N). This is initial guess for the equation A T = 0. Assumed that T B_c = B_f B : {array} Near-nullspace modes for coarse grid, i.e., B_c. Has shape (M,k) where k is the number of coarse candidate vectors. BtBinv : {array} 3 dimensional array such that, BtBinv[i] = pinv(B_i.H Bi), and B_i is B restricted to the neighborhood (in the matrix graph) of dof of i. Sparsity_Pattern : {csr_matrix, bsr_matrix} Sparse NxM matrix This is the sparsity pattern constraint to enforce on the eventual prolongator maxiter : int maximum number of iterations tol : float residual tolerance for A T = 0 weighting : {string} 'block', 'diagonal' or 'local' construction of the diagonal preconditioning Cpt_params : {tuple} Tuple of the form (bool, dict). If the Cpt_params[0] = False, then the standard SA prolongation smoothing is carried out. If True, then dict must be a dictionary of parameters containing, (1) P_I: P_I.T is the injection matrix for the Cpts, (2) I_F: an identity matrix for only the F-points (i.e. I, but with zero rows and columns for C-points) and I_C: the C-point analogue to I_F. Returns ------- T : {bsr_matrix} Smoothed prolongator using GMRES to solve A T = 0, subject to the constraints, T B_c = B_f, and T has no nonzero outside of the sparsity pattern in Sparsity_Pattern. See Also -------- The principal calling routine, pyamg.aggregation.smooth.energy_prolongation_smoother ''' #For non-SPD system, apply GMRES with Diagonal Preconditioning # Preallocate space for new search directions AV = bsr_matrix((numpy.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype), Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape) ) # Preallocate for Givens Rotations, Hessenberg matrix and Krylov Space xtype = scipy.sparse.sputils.upcast(A.dtype, T.dtype, B.dtype) Q = [] # Givens Rotations V = [] # Krylov Space vs = [] # vs store the pointers to each column of V. # This saves a considerable amount of time. H = numpy.zeros( (maxiter+1, maxiter+1), dtype=xtype) # Upper Hessenberg matrix, which is then # converted to upper tri with Givens Rots # GMRES will be run with diagonal preconditioning if weighting == 'diagonal': Dinv = get_diagonal(A, norm_eq=False, inv=True) elif weighting == 'block': Dinv = get_block_diag(A, blocksize=A.blocksize[0], inv_flag=True) Dinv = bsr_matrix( (Dinv, numpy.arange(Dinv.shape[0]), numpy.arange(Dinv.shape[0]+1)), shape = A.shape) elif weighting == 'local': # Based on Gershgorin estimate D = numpy.abs(A)*numpy.ones((A.shape[0],1), dtype=A.dtype) Dinv = numpy.zeros_like(D) Dinv[D != 0] = 1.0 / numpy.abs(D[D != 0]) else: raise ValueError('weighting value is invalid') # Calculate initial residual # Equivalent to R = -A*T; R = R.multiply(Sparsity_Pattern) # with the added constraint that R has an explicit 0 wherever # R is 0 and Sparsity_Pattern is not R = bsr_matrix((numpy.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype), Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape) ) pyamg.amg_core.incomplete_mat_mult_bsr(A.indptr, A.indices, numpy.ravel(A.data), T.indptr, T.indices, numpy.ravel(T.data), R.indptr, R.indices, numpy.ravel(R.data), T.shape[0]/T.blocksize[0], T.shape[1]/T.blocksize[1], A.blocksize[0], A.blocksize[1], T.blocksize[1]) R.data *= -1.0 #Apply diagonal preconditioner if weighting == 'local' or weighting == 'diagonal': R = scale_rows(R, Dinv) else: R = Dinv*R # Enforce R*B = 0 Satisfy_Constraints(R, B, BtBinv) if R.nnz == 0: print "Error in sa_energy_min(..). Initial R no nonzeros on a level. Returning tentative prolongator\n" return T # This is the RHS vector for the problem in the Krylov Space normr = numpy.sqrt((R.data.conjugate()*R.data).sum()) g = numpy.zeros((maxiter+1,), dtype=xtype) g[0] = normr # First Krylov vector # V[0] = r/normr if normr > 0.0: V.append((1.0/normr)*R) #print "Energy Minimization of Prolongator --- Iteration 0 --- r = " + str(normr) i = -1 #vect = numpy.ravel((A*T).data) #print "Iteration " + str(i+1) + " Energy = %1.3e"%numpy.sqrt( (vect.conjugate()*vect).sum() ) #print "Iteration " + str(i+1) + " Normr %1.3e"%normr while i < maxiter-1 and normr > tol: i = i+1 # Calculate new search direction # Equivalent to: AV = A*V; AV = AV.multiply(Sparsity_Pattern) # with the added constraint that explicit zeros are in AP wherever # AP = 0 and Sparsity_Pattern does not AV.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr(A.indptr, A.indices, numpy.ravel(A.data), V[i].indptr, V[i].indices, numpy.ravel(V[i].data), AV.indptr, AV.indices, numpy.ravel(AV.data), T.shape[0]/T.blocksize[0], T.shape[1]/T.blocksize[1], A.blocksize[0], A.blocksize[1], T.blocksize[1]) if weighting == 'local' or weighting == 'diagonal': AV = scale_rows(AV, Dinv) else: AV = Dinv*AV # Enforce AV*B = 0 Satisfy_Constraints(AV, B, BtBinv) V.append(AV.copy()) # Modified Gram-Schmidt for j in xrange(i+1): # Frobenius inner-product H[j,i] = (V[j].conjugate().multiply(V[i+1])).sum() V[i+1] = V[i+1] - H[j,i]*V[j] # Frobenius Norm H[i+1,i] = numpy.sqrt( (V[i+1].data.conjugate()*V[i+1].data).sum() ) # Check for breakdown if H[i+1,i] != 0.0: V[i+1] = (1.0/H[i+1,i])*V[i+1] # Apply previous Givens rotations to H if i > 0: apply_givens(Q, H[:,i], i) # Calculate and apply next complex-valued Givens Rotation if H[i+1, i] != 0: h1 = H[i, i]; h2 = H[i+1, i]; h1_mag = numpy.abs(h1) h2_mag = numpy.abs(h2) if h1_mag < h2_mag: mu = h1/h2 tau = numpy.conjugate(mu)/numpy.abs(mu) else: mu = h2/h1 tau = mu/numpy.abs(mu) denom = numpy.sqrt( h1_mag**2 + h2_mag**2 ) c = h1_mag/denom s = h2_mag*tau/denom; Qblock = numpy.array([[c, numpy.conjugate(s)], [-s, c]], dtype=xtype) Q.append(Qblock) # Apply Givens Rotation to g, # the RHS for the linear system in the Krylov Subspace. g[i:i+2] = scipy.dot(Qblock, g[i:i+2]) # Apply effect of Givens Rotation to H H[i, i] = scipy.dot(Qblock[0,:], H[i:i+2, i]) H[i+1, i] = 0.0 normr = numpy.abs(g[i+1]) #print "Iteration " + str(i+1) + " Normr %1.3e"%normr # End while loop # Find best update to x in Krylov Space, V. Solve (i x i) system. if i != -1: y = scipy.linalg.solve(H[0:i+1,0:i+1], g[0:i+1]) for j in range(i+1): T = T + y[j]*V[j] #vect = numpy.ravel((A*T).data) #print "Final Iteration " + str(i) + " Energy = %1.3e"%numpy.sqrt( (vect.conjugate()*vect).sum() ) # Ensure identity at C-pts if Cpt_params[0]: T = Cpt_params[1]['I_F']*T + Cpt_params[1]['P_I'] return T
def jacobi_prolongation_smoother(S, T, C, B, omega=4.0/3.0, degree=1, filter=False, weighting='diagonal'): """Jacobi prolongation smoother Parameters ---------- S : {csr_matrix, bsr_matrix} Sparse NxN matrix used for smoothing. Typically, A. T : {csr_matrix, bsr_matrix} Tentative prolongator C : {csr_matrix, bsr_matrix} Strength-of-connection matrix B : {array} Near nullspace modes for the coarse grid such that T*B exactly reproduces the fine grid near nullspace modes omega : {scalar} Damping parameter filter : {boolean} If true, filter S before smoothing T. This option can greatly control complexity. weighting : {string} 'block', 'diagonal' or 'local' weighting for constructing the Jacobi D 'local': Uses a local row-wise weight based on the Gershgorin estimate. Avoids any potential under-damping due to inaccurate spectral radius estimates. 'block': If A is a BSR matrix, use a block diagonal inverse of A 'diagonal': Classic Jacobi D = diagonal(A) Returns ------- P : {csr_matrix, bsr_matrix} Smoothed (final) prolongator defined by P = (I - omega/rho(K) K) * T where K = diag(S)^-1 * S and rho(K) is an approximation to the spectral radius of K. Notes ----- If weighting is not 'local', then results using Jacobi prolongation smoother are not precisely reproducible due to a random initial guess used for the spectral radius approximation. For precise reproducibility, set numpy.random.seed(..) to the same value before each test. Examples -------- >>> from pyamg.aggregation import jacobi_prolongation_smoother >>> from pyamg.gallery import poisson >>> from scipy.sparse import coo_matrix >>> import numpy >>> data = numpy.ones((6,)) >>> row = numpy.arange(0,6) >>> col = numpy.kron([0,1],numpy.ones((3,))) >>> T = coo_matrix((data,(row,col)),shape=(6,2)).tocsr() >>> T.todense() matrix([[ 1., 0.], [ 1., 0.], [ 1., 0.], [ 0., 1.], [ 0., 1.], [ 0., 1.]]) >>> A = poisson((6,),format='csr') >>> P = jacobi_prolongation_smoother(A,T,A,numpy.ones((2,1))) >>> P.todense() matrix([[ 0.64930164, 0. ], [ 1. , 0. ], [ 0.64930164, 0.35069836], [ 0.35069836, 0.64930164], [ 0. , 1. ], [ 0. , 0.64930164]]) """ # preprocess weighting if weighting == 'block': if isspmatrix_csr(S): weighting = 'diagonal' elif isspmatrix_bsr(S): if S.blocksize[0] == 1: weighting = 'diagonal' if filter: ## # Implement filtered prolongation smoothing for the general case by # utilizing satisfy constraints if isspmatrix_bsr(S): numPDEs = S.blocksize[0] else: numPDEs = 1 # Create a filtered S with entries dropped that aren't in C C = UnAmal(C, numPDEs, numPDEs) S = S.multiply(C) S.eliminate_zeros() if weighting == 'diagonal': # Use diagonal of S D_inv = get_diagonal(S, inv=True) D_inv_S = scale_rows(S, D_inv, copy=True) D_inv_S = (omega/approximate_spectral_radius(D_inv_S))*D_inv_S elif weighting == 'block': # Use block diagonal of S D_inv = get_block_diag(S, blocksize=S.blocksize[0], inv_flag=True) D_inv = bsr_matrix( (D_inv, numpy.arange(D_inv.shape[0]), \ numpy.arange(D_inv.shape[0]+1)), shape = S.shape) D_inv_S = D_inv*S D_inv_S = (omega/approximate_spectral_radius(D_inv_S))*D_inv_S elif weighting == 'local': # Use the Gershgorin estimate as each row's weight, instead of a global # spectral radius estimate D = numpy.abs(S)*numpy.ones((S.shape[0],1), dtype=S.dtype) D_inv = numpy.zeros_like(D) D_inv[D != 0] = 1.0 / numpy.abs(D[D != 0]) D_inv_S = scale_rows(S, D_inv, copy=True) D_inv_S = omega*D_inv_S else: raise ValueError('Incorrect weighting option') if filter: ## # Carry out Jacobi, but after calculating the prolongator update, U, # apply satisfy constraints so that U*B = 0 P = T for i in range(degree): U = (D_inv_S*P).tobsr(blocksize=P.blocksize) ## # Enforce U*B = 0 # (1) Construct array of inv(Bi'Bi), where Bi is B restricted to row # i's sparsity pattern in Sparsity Pattern. This array is used # multiple times in Satisfy_Constraints(...). BtBinv = compute_BtBinv(B, U) # (2) Apply satisfy constraints Satisfy_Constraints(U, B, BtBinv) ## # Update P P = P - U else: ## # Carry out Jacobi as normal P = T for i in range(degree): P = P - (D_inv_S*P) return P
def cgnr_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern, maxiter, tol, weighting='local', Cpt_params = None): ''' Helper function for energy_prolongation_smoother(...) Use CGNR to smooth T by solving A T = 0, subject to nullspace and sparsity constraints. Parameters ---------- A : {csr_matrix, bsr_matrix} SPD sparse NxN matrix Should be at least nonsymmetric or indefinite T : {bsr_matrix} Tentative prolongator, a NxM sparse matrix (M < N). This is initial guess for the equation A T = 0. Assumed that T B_c = B_f B : {array} Near-nullspace modes for coarse grid, i.e., B_c. Has shape (M,k) where k is the number of coarse candidate vectors. BtBinv : {array} 3 dimensional array such that, BtBinv[i] = pinv(B_i.H Bi), and B_i is B restricted to the neighborhood (in the matrix graph) of dof of i. Sparsity_Pattern : {csr_matrix, bsr_matrix} Sparse NxM matrix This is the sparsity pattern constraint to enforce on the eventual prolongator maxiter : int maximum number of iterations tol : float residual tolerance for A T = 0 weighting : {string} 'block', 'diagonal' or 'local' construction of the diagonal preconditioning IGNORED here, only 'diagonal' preconditioning is used. Cpt_params : {tuple} Tuple of the form (bool, dict). If the Cpt_params[0] = False, then the standard SA prolongation smoothing is carried out. If True, then dict must be a dictionary of parameters containing, (1) P_I: P_I.T is the injection matrix for the Cpts, (2) I_F: an identity matrix for only the F-points (i.e. I, but with zero rows and columns for C-points) and I_C: the C-point analogue to I_F. Returns ------- T : {bsr_matrix} Smoothed prolongator using CGNR to solve A T = 0, subject to the constraints, T B_c = B_f, and T has no nonzero outside of the sparsity pattern in Sparsity_Pattern. See Also -------- The principal calling routine, pyamg.aggregation.smooth.energy_prolongation_smoother ''' #For non-SPD system, apply CG on Normal Equations with Diagonal Preconditioning (requires transpose) Ah = A.H Ah.sort_indices() # Preallocate AP = bsr_matrix((numpy.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype), Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape) ) # D for A.H*A Dinv = get_diagonal(A, norm_eq=1, inv=True) # Calculate initial residual # Equivalent to R = -Ah*(A*T); R = R.multiply(Sparsity_Pattern) # with the added constraint that R has an explicit 0 wherever # R is 0 and Sparsity_Pattern is not R = bsr_matrix((numpy.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype), Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape) ) AT = -1.0*A*T R.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr(Ah.indptr, Ah.indices, numpy.ravel(Ah.data), AT.indptr, AT.indices, numpy.ravel(AT.data), R.indptr, R.indices, numpy.ravel(R.data), T.shape[0]/T.blocksize[0], T.shape[1]/T.blocksize[1], Ah.blocksize[0], Ah.blocksize[1], T.blocksize[1]) # Enforce R*B = 0 Satisfy_Constraints(R, B, BtBinv) if R.nnz == 0: print "Error in sa_energy_min(..). Initial R no nonzeros on a level. Returning tentative prolongator\n" return T #Calculate Frobenius norm of the residual resid = R.nnz #numpy.sqrt((R.data.conjugate()*R.data).sum()) #print "Energy Minimization of Prolongator --- Iteration 0 --- r = " + str(resid) i = 0 while i < maxiter and resid > tol: vect = numpy.ravel((A*T).data) #print "Iteration " + str(i) + " Energy = %1.3e"%numpy.sqrt( (vect.conjugate()*vect).sum() ) #Apply diagonal preconditioner Z = scale_rows(R, Dinv) #Frobenius innerproduct of (R,Z) = sum(rk.*zk) newsum = (R.conjugate().multiply(Z)).sum() if newsum < tol: # met tolerance, so halt break #P is the search direction, not the prolongator, which is T. if(i == 0): P = Z else: beta = newsum/oldsum P = Z + beta*P oldsum = newsum #Calculate new direction # Equivalent to: AP = Ah*(A*P); AP = AP.multiply(Sparsity_Pattern) # with the added constraint that explicit zeros are in AP wherever # AP = 0 and Sparsity_Pattern does not AP_temp = A*P AP.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr(Ah.indptr, Ah.indices, numpy.ravel(Ah.data), AP_temp.indptr, AP_temp.indices, numpy.ravel(AP_temp.data), AP.indptr, AP.indices, numpy.ravel(AP.data), T.shape[0]/T.blocksize[0], T.shape[1]/T.blocksize[1], Ah.blocksize[0], Ah.blocksize[1], T.blocksize[1]) del AP_temp # Enforce AP*B = 0 Satisfy_Constraints(AP, B, BtBinv) #Frobenius inner-product of (P, AP) alpha = newsum/(P.conjugate().multiply(AP)).sum() #Update the prolongator, T T = T + alpha*P # Ensure identity at C-pts if Cpt_params[0]: T = Cpt_params[1]['I_F']*T + Cpt_params[1]['P_I'] #Update residual R = R - alpha*AP i += 1 #Calculate Frobenius norm of the residual resid = R.nnz #numpy.sqrt((R.data.conjugate()*R.data).sum()) #print "Energy Minimization of Prolongator --- Iteration " + str(i) + " --- r = " + str(resid) vect = numpy.ravel((A*T).data) #print "Final Iteration " + str(i) + " Energy = %1.3e"%numpy.sqrt( (vect.conjugate()*vect).sum() ) return T
def cg_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern, maxiter, tol, weighting='local', Cpt_params = None): ''' Helper function for energy_prolongation_smoother(...) Use CG to smooth T by solving A T = 0, subject to nullspace and sparsity constraints. Parameters ---------- A : {csr_matrix, bsr_matrix} SPD sparse NxN matrix T : {bsr_matrix} Tentative prolongator, a NxM sparse matrix (M < N). This is initial guess for the equation A T = 0. Assumed that T B_c = B_f B : {array} Near-nullspace modes for coarse grid, i.e., B_c. Has shape (M,k) where k is the number of coarse candidate vectors. BtBinv : {array} 3 dimensional array such that, BtBinv[i] = pinv(B_i.H Bi), and B_i is B restricted to the neighborhood (in the matrix graph) of dof of i. Sparsity_Pattern : {csr_matrix, bsr_matrix} Sparse NxM matrix This is the sparsity pattern constraint to enforce on the eventual prolongator maxiter : int maximum number of iterations tol : float residual tolerance for A T = 0 weighting : {string} 'block', 'diagonal' or 'local' construction of the diagonal preconditioning Cpt_params : {tuple} Tuple of the form (bool, dict). If the Cpt_params[0] = False, then the standard SA prolongation smoothing is carried out. If True, then dict must be a dictionary of parameters containing, (1) P_I: P_I.T is the injection matrix for the Cpts, (2) I_F: an identity matrix for only the F-points (i.e. I, but with zero rows and columns for C-points) and I_C: the C-point analogue to I_F. Returns ------- T : {bsr_matrix} Smoothed prolongator using conjugate gradients to solve A T = 0, subject to the constraints, T B_c = B_f, and T has no nonzero outside of the sparsity pattern in Sparsity_Pattern. See Also -------- The principal calling routine, pyamg.aggregation.smooth.energy_prolongation_smoother ''' # Preallocate AP = bsr_matrix((numpy.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype), Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape) ) # CG will be run with diagonal preconditioning if weighting == 'diagonal': Dinv = get_diagonal(A, norm_eq=False, inv=True) elif weighting == 'block': Dinv = get_block_diag(A, blocksize=A.blocksize[0], inv_flag=True) Dinv = bsr_matrix( (Dinv, numpy.arange(Dinv.shape[0]), numpy.arange(Dinv.shape[0]+1)), shape = A.shape) elif weighting == 'local': # Based on Gershgorin estimate D = numpy.abs(A)*numpy.ones((A.shape[0],1), dtype=A.dtype) Dinv = numpy.zeros_like(D) Dinv[D != 0] = 1.0 / numpy.abs(D[D != 0]) else: raise ValueError('weighting value is invalid') # Calculate initial residual # Equivalent to R = -A*T; R = R.multiply(Sparsity_Pattern) # with the added constraint that R has an explicit 0 wherever # R is 0 and Sparsity_Pattern is not R = bsr_matrix((numpy.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype), Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape) ) pyamg.amg_core.incomplete_mat_mult_bsr(A.indptr, A.indices, numpy.ravel(A.data), T.indptr, T.indices, numpy.ravel(T.data), R.indptr, R.indices, numpy.ravel(R.data), T.shape[0]/T.blocksize[0], T.shape[1]/T.blocksize[1], A.blocksize[0], A.blocksize[1], T.blocksize[1]) R.data *= -1.0 # Enforce R*B = 0 Satisfy_Constraints(R, B, BtBinv) if R.nnz == 0: print "Error in sa_energy_min(..). Initial R no nonzeros on a level. Returning tentative prolongator\n" return T #Calculate Frobenius norm of the residual resid = R.nnz ##numpy.sqrt((R.data.conjugate()*R.data).sum()) #print "Energy Minimization of Prolongator --- Iteration 0 --- r = " + str(resid) i = 0 while i < maxiter and resid > tol: #Apply diagonal preconditioner if weighting == 'local' or weighting == 'diagonal': Z = scale_rows(R, Dinv) else: Z = Dinv*R #Frobenius inner-product of (R,Z) = sum( numpy.conjugate(rk).*zk) newsum = (R.conjugate().multiply(Z)).sum() if newsum < tol: # met tolerance, so halt break #P is the search direction, not the prolongator, which is T. if(i == 0): P = Z else: beta = newsum/oldsum P = Z + beta*P oldsum = newsum # Calculate new direction and enforce constraints # Equivalent to: AP = A*P; AP = AP.multiply(Sparsity_Pattern) # with the added constraint that explicit zeros are in AP wherever # AP = 0 and Sparsity_Pattern does not !!!! AP.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr(A.indptr, A.indices, numpy.ravel(A.data), P.indptr, P.indices, numpy.ravel(P.data), AP.indptr, AP.indices, numpy.ravel(AP.data), T.shape[0]/T.blocksize[0], T.shape[1]/T.blocksize[1], A.blocksize[0], A.blocksize[1], P.blocksize[1]) # Enforce AP*B = 0 Satisfy_Constraints(AP, B, BtBinv) #Frobenius inner-product of (P, AP) alpha = newsum/(P.conjugate().multiply(AP)).sum() #Update the prolongator, T T = T + alpha*P # Ensure identity at C-pts if Cpt_params[0]: T = Cpt_params[1]['I_F']*T + Cpt_params[1]['P_I'] #Update residual R = R - alpha*AP i += 1 #Calculate Frobenius norm of the residual resid = R.nnz #numpy.sqrt((R.data.conjugate()*R.data).sum()) #print "Energy Minimization of Prolongator --- Iteration " + str(i) + " --- r = " + str(resid) return T
def gmres_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern, maxiter, tol, weighting='local', Cpt_params=None, cost=[0.0]): ''' Helper function for energy_prolongation_smoother(...). Use GMRES to smooth T by solving A T = 0, subject to nullspace and sparsity constraints. Parameters ---------- A : {csr_matrix, bsr_matrix} SPD sparse NxN matrix Should be at least nonsymmetric or indefinite T : {bsr_matrix} Tentative prolongator, a NxM sparse matrix (M < N). This is initial guess for the equation A T = 0. Assumed that T B_c = B_f B : {array} Near-nullspace modes for coarse grid, i.e., B_c. Has shape (M,k) where k is the number of coarse candidate vectors. BtBinv : {array} 3 dimensional array such that, BtBinv[i] = pinv(B_i.H Bi), and B_i is B restricted to the neighborhood (in the matrix graph) of dof of i. Sparsity_Pattern : {csr_matrix, bsr_matrix} Sparse NxM matrix This is the sparsity pattern constraint to enforce on the eventual prolongator maxiter : int maximum number of iterations tol : float residual tolerance for A T = 0 weighting : {string} 'block', 'diagonal' or 'local' construction of the diagonal preconditioning Cpt_params : {tuple} Tuple of the form (bool, dict). If the Cpt_params[0] = False, then the standard SA prolongation smoothing is carried out. If True, then dict must be a dictionary of parameters containing, (1) P_I: P_I.T is the injection matrix for the Cpts, (2) I_F: an identity matrix for only the F-points (i.e. I, but with zero rows and columns for C-points) and I_C: the C-point analogue to I_F. Returns ------- T : {bsr_matrix} Smoothed prolongator using GMRES to solve A T = 0, subject to the constraints, T B_c = B_f, and T has no nonzero outside of the sparsity pattern in Sparsity_Pattern. See Also -------- The principal calling routine, pyamg.aggregation.smooth.energy_prolongation_smoother ''' # For non-SPD system, apply GMRES with Diagonal Preconditioning # Preallocate space for new search directions uones = np.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype) AV = sparse.bsr_matrix( (uones, Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape)) # Preallocate for Givens Rotations, Hessenberg matrix and Krylov Space xtype = sparse.sputils.upcast(A.dtype, T.dtype, B.dtype) Q = [] # Givens Rotations V = [] # Krylov Space # vs = [] # vs store the pointers to each column of V for speed # Upper Hessenberg matrix, converted to upper tri with Givens Rots H = np.zeros((maxiter + 1, maxiter + 1), dtype=xtype) # GMRES will be run with diagonal preconditioning if weighting == 'diagonal': Dinv = get_diagonal(A, norm_eq=False, inv=True) elif weighting == 'block': Dinv = get_block_diag(A, blocksize=A.blocksize[0], inv_flag=True) Dinv = sparse.bsr_matrix( (Dinv, np.arange(Dinv.shape[0]), np.arange(Dinv.shape[0] + 1)), shape=A.shape) elif weighting == 'local': # Based on Gershgorin estimate D = np.abs(A) * np.ones((A.shape[0], 1), dtype=A.dtype) Dinv = np.zeros_like(D) Dinv[D != 0] = 1.0 / np.abs(D[D != 0]) cost[0] += 1.0 else: raise ValueError('weighting value is invalid') # Calculate initial residual # Equivalent to R = -A*T; R = R.multiply(Sparsity_Pattern) # with the added constraint that R has an explicit 0 wherever # R is 0 and Sparsity_Pattern is not uones = np.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype) R = sparse.bsr_matrix( (uones, Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape)) pyamg.amg_core.incomplete_mat_mult_bsr( A.indptr, A.indices, np.ravel(A.data), T.indptr, T.indices, np.ravel(T.data), R.indptr, R.indices, np.ravel(R.data), int(T.shape[0] / T.blocksize[0]), int(T.shape[1] / T.blocksize[1]), A.blocksize[0], A.blocksize[1], T.blocksize[1]) R.data *= -1.0 # T is block diagonal, using sparsity pattern of R with # incomplete=True significantly overestimates complexity. # More accurate to use full mat-mat with block diagonal T. cost[0] += mat_mat_complexity(A, T, incomplete=False) / float(A.nnz) # Apply diagonal preconditioner if weighting == 'local' or weighting == 'diagonal': R = scale_rows(R, Dinv) else: R = Dinv * R cost[0] += R.nnz / float(A.nnz) # Enforce R*B = 0 temp_cost = [0.0] Satisfy_Constraints(R, B, BtBinv, cost=temp_cost) cost[0] += temp_cost[0] / float(A.nnz) if R.nnz == 0: print("Error in sa_energy_min(..). Initial R no nonzeros on a level. \ Returning tentative prolongator\n") return T # This is the RHS vector for the problem in the Krylov Space normr = np.sqrt((R.data.conjugate() * R.data).sum()) g = np.zeros((maxiter + 1, ), dtype=xtype) g[0] = normr # First Krylov vector # V[0] = r/normr if normr > 0.0: V.append((1.0 / normr) * R) i = -1 while i < maxiter - 1 and normr > tol: i = i + 1 # Calculate new search direction # Equivalent to: AV = A*V; AV = AV.multiply(Sparsity_Pattern) # with the added constraint that explicit zeros are in AP wherever # AP = 0 and Sparsity_Pattern does not AV.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr( A.indptr, A.indices, np.ravel(A.data), V[i].indptr, V[i].indices, np.ravel(V[i].data), AV.indptr, AV.indices, np.ravel(AV.data), int(T.shape[0] / T.blocksize[0]), int(T.shape[1] / T.blocksize[1]), A.blocksize[0], A.blocksize[1], T.blocksize[1]) cost[0] += mat_mat_complexity(A, AV, incomplete=True) / float(A.nnz) if weighting == 'local' or weighting == 'diagonal': AV = scale_rows(AV, Dinv) else: AV = Dinv * AV cost[0] += AV.nnz / float(A.nnz) # Enforce AV*B = 0 temp_cost = [0.0] Satisfy_Constraints(AV, B, BtBinv, cost=temp_cost) V.append(AV.copy()) cost[0] += temp_cost[0] / float(A.nnz) # Modified Gram-Schmidt for j in range(i + 1): # Frobenius inner-product H[j, i] = (V[j].conjugate().multiply(V[i + 1])).sum() V[i + 1] = V[i + 1] - H[j, i] * V[j] cost[0] += 2.0 * max(V[i + 1].nnz, V[j].nnz) / float(A.nnz) # Frobenius Norm H[i + 1, i] = np.sqrt( (V[i + 1].data.conjugate() * V[i + 1].data).sum()) cost[0] += V[i + 1].nnz / float(A.nnz) # Check for breakdown if H[i + 1, i] != 0.0: V[i + 1] = (1.0 / H[i + 1, i]) * V[i + 1] cost[0] += V[i + 1].nnz / float(A.nnz) # Apply previous Givens rotations to H if i > 0: apply_givens(Q, H[:, i], i) # Calculate and apply next complex-valued Givens Rotation if H[i + 1, i] != 0: h1 = H[i, i] h2 = H[i + 1, i] h1_mag = np.abs(h1) h2_mag = np.abs(h2) if h1_mag < h2_mag: mu = h1 / h2 tau = np.conjugate(mu) / np.abs(mu) else: mu = h2 / h1 tau = mu / np.abs(mu) denom = np.sqrt(h1_mag**2 + h2_mag**2) c = h1_mag / denom s = h2_mag * tau / denom Qblock = np.array([[c, np.conjugate(s)], [-s, c]], dtype=xtype) Q.append(Qblock) # Apply Givens Rotation to g, # the RHS for the linear system in the Krylov Subspace. g[i:i + 2] = sp.dot(Qblock, g[i:i + 2]) # Apply effect of Givens Rotation to H H[i, i] = sp.dot(Qblock[0, :], H[i:i + 2, i]) H[i + 1, i] = 0.0 normr = np.abs(g[i + 1]) # End while loop # Find best update to x in Krylov Space, V. Solve (i x i) system. if i != -1: y = la.solve(H[0:i + 1, 0:i + 1], g[0:i + 1]) for j in range(i + 1): T = T + y[j] * V[j] cost[0] += max(T.nnz, V[j].nnz) / float(A.nnz) # Ensure identity at C-pts if Cpt_params[0]: T = Cpt_params[1]['I_F'] * T + Cpt_params[1]['P_I'] return T
def cgnr_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern, maxiter, tol, weighting='local', Cpt_params=None, cost=[0.0]): ''' Helper function for energy_prolongation_smoother(...) Use CGNR to smooth T by solving A T = 0, subject to nullspace and sparsity constraints. Parameters ---------- A : {csr_matrix, bsr_matrix} SPD sparse NxN matrix Should be at least nonsymmetric or indefinite T : {bsr_matrix} Tentative prolongator, a NxM sparse matrix (M < N). This is initial guess for the equation A T = 0. Assumed that T B_c = B_f B : {array} Near-nullspace modes for coarse grid, i.e., B_c. Has shape (M,k) where k is the number of coarse candidate vectors. BtBinv : {array} 3 dimensional array such that, BtBinv[i] = pinv(B_i.H Bi), and B_i is B restricted to the neighborhood (in the matrix graph) of dof of i. Sparsity_Pattern : {csr_matrix, bsr_matrix} Sparse NxM matrix This is the sparsity pattern constraint to enforce on the eventual prolongator maxiter : int maximum number of iterations tol : float residual tolerance for A T = 0 weighting : {string} 'block', 'diagonal' or 'local' construction of the diagonal preconditioning IGNORED here, only 'diagonal' preconditioning is used. Cpt_params : {tuple} Tuple of the form (bool, dict). If the Cpt_params[0] = False, then the standard SA prolongation smoothing is carried out. If True, then dict must be a dictionary of parameters containing, (1) P_I: P_I.T is the injection matrix for the Cpts, (2) I_F: an identity matrix for only the F-points (i.e. I, but with zero rows and columns for C-points) and I_C: the C-point analogue to I_F. Returns ------- T : {bsr_matrix} Smoothed prolongator using CGNR to solve A T = 0, subject to the constraints, T B_c = B_f, and T has no nonzero outside of the sparsity pattern in Sparsity_Pattern. See Also -------- The principal calling routine, pyamg.aggregation.smooth.energy_prolongation_smoother ''' # For non-SPD system, apply CG on Normal Equations with Diagonal # Preconditioning (requires transpose) Ah = A.H Ah.sort_indices() # Preallocate uones = np.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype) AP = sparse.bsr_matrix( (uones, Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape)) # D for A.H*A Dinv = get_diagonal(A, norm_eq=1, inv=True) # Calculate initial residual # Equivalent to R = -Ah*(A*T); R = R.multiply(Sparsity_Pattern) # with the added constraint that R has an explicit 0 wherever # R is 0 and Sparsity_Pattern is not uones = np.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype) R = sparse.bsr_matrix( (uones, Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape)) AT = -1.0 * A * T cost[0] += T.nnz / float(T.shape[0]) R.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr(Ah.indptr, Ah.indices, np.ravel(Ah.data), AT.indptr, AT.indices, np.ravel(AT.data), R.indptr, R.indices, np.ravel(R.data), int(T.shape[0] / T.blocksize[0]), int(T.shape[1] / T.blocksize[1]), Ah.blocksize[0], Ah.blocksize[1], T.blocksize[1]) # T is block diagonal, sparsity of AT should be well contained # in R. incomplete=True significantly overestimates complexity # with R. More accurate to use full mat-mat with block diagonal T. cost[0] += mat_mat_complexity(Ah, AT, incomplete=False) / float(A.nnz) # Enforce R*B = 0 temp_cost = [0.0] Satisfy_Constraints(R, B, BtBinv, cost=temp_cost) cost[0] += temp_cost[0] / float(A.nnz) if R.nnz == 0: print("Error in sa_energy_min(..). Initial R no nonzeros on a level. \ Returning tentative prolongator\n") return T # Calculate Frobenius norm of the residual resid = R.nnz # np.sqrt((R.data.conjugate()*R.data).sum()) i = 0 while i < maxiter and resid > tol: # Apply diagonal preconditioner Z = scale_rows(R, Dinv) cost[0] += R.nnz / float(A.nnz) # Frobenius innerproduct of (R,Z) = sum(rk.*zk) newsum = (R.conjugate().multiply(Z)).sum() cost[0] += R.nnz / float(A.nnz) if newsum < tol: # met tolerance, so halt break # P is the search direction, not the prolongator, which is T. if (i == 0): P = Z oldsum = newsum else: beta = newsum / oldsum P = Z + beta * P cost[0] += max(Z.nnz, P.nnz) / float(A.nnz) oldsum = newsum # Calculate new direction # Equivalent to: AP = Ah*(A*P); AP = AP.multiply(Sparsity_Pattern) # with the added constraint that explicit zeros are in AP wherever # AP = 0 and Sparsity_Pattern does not AP_temp = A * P cost[0] += P.nnz / float(P.shape[0]) AP.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr( Ah.indptr, Ah.indices, np.ravel(Ah.data), AP_temp.indptr, AP_temp.indices, np.ravel(AP_temp.data), AP.indptr, AP.indices, np.ravel(AP.data), int(T.shape[0] / T.blocksize[0]), int(T.shape[1] / T.blocksize[1]), Ah.blocksize[0], Ah.blocksize[1], T.blocksize[1]) cost[0] += mat_mat_complexity(A, AP, incomplete=True) / float(A.nnz) del AP_temp # Enforce AP*B = 0 temp_cost = [0.0] Satisfy_Constraints(AP, B, BtBinv, cost=temp_cost) cost[0] += temp_cost[0] / float(A.nnz) # Frobenius inner-product of (P, AP) alpha = newsum / (P.conjugate().multiply(AP)).sum() cost[0] += max(P.nnz, AP.nnz) / float(A.nnz) # Update the prolongator, T T = T + alpha * P cost[0] += max(T.nnz, P.nnz) / float(A.nnz) # Ensure identity at C-pts if Cpt_params[0]: T = Cpt_params[1]['I_F'] * T + Cpt_params[1]['P_I'] # Update residual R = R - alpha * AP cost[0] += max(R.nnz, AP.nnz) / float(A.nnz) # Calculate Frobenius norm of the residual resid = R.nnz # np.sqrt((R.data.conjugate()*R.data).sum()) i += 1 return T
def cg_prolongation_smoothing(A, T, B, BtBinv, Sparsity_Pattern, maxiter, tol, weighting='local', Cpt_params=None, cost=[0.0]): ''' Helper function for energy_prolongation_smoother(...) Use CG to smooth T by solving A T = 0, subject to nullspace and sparsity constraints. Parameters ---------- A : {csr_matrix, bsr_matrix} SPD sparse NxN matrix T : {bsr_matrix} Tentative prolongator, a NxM sparse matrix (M < N). This is initial guess for the equation A T = 0. Assumed that T B_c = B_f B : {array} Near-nullspace modes for coarse grid, i.e., B_c. Has shape (M,k) where k is the number of coarse candidate vectors. BtBinv : {array} 3 dimensional array such that, BtBinv[i] = pinv(B_i.H Bi), and B_i is B restricted to the neighborhood (in the matrix graph) of dof of i. Sparsity_Pattern : {csr_matrix, bsr_matrix} Sparse NxM matrix This is the sparsity pattern constraint to enforce on the eventual prolongator maxiter : int maximum number of iterations tol : float residual tolerance for A T = 0 weighting : {string} 'block', 'diagonal' or 'local' construction of the diagonal preconditioning Cpt_params : {tuple} Tuple of the form (bool, dict). If the Cpt_params[0] = False, then the standard SA prolongation smoothing is carried out. If True, then dict must be a dictionary of parameters containing, (1) P_I: P_I.T is the injection matrix for the Cpts, (2) I_F: an identity matrix for only the F-points (i.e. I, but with zero rows and columns for C-points) and I_C: the C-point analogue to I_F. Returns ------- T : {bsr_matrix} Smoothed prolongator using conjugate gradients to solve A T = 0, subject to the constraints, T B_c = B_f, and T has no nonzero outside of the sparsity pattern in Sparsity_Pattern. See Also -------- The principal calling routine, pyamg.aggregation.smooth.energy_prolongation_smoother ''' # Preallocate AP = sparse.bsr_matrix( (np.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype), Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape)) # CG will be run with diagonal preconditioning if weighting == 'diagonal': Dinv = get_diagonal(A, norm_eq=False, inv=True) elif weighting == 'block': Dinv = get_block_diag(A, blocksize=A.blocksize[0], inv_flag=True) Dinv = sparse.bsr_matrix( (Dinv, np.arange(Dinv.shape[0]), np.arange(Dinv.shape[0] + 1)), shape=A.shape) elif weighting == 'local': # Based on Gershgorin estimate D = np.abs(A) * np.ones((A.shape[0], 1), dtype=A.dtype) Dinv = np.zeros_like(D) Dinv[D != 0] = 1.0 / np.abs(D[D != 0]) cost[0] += 1 else: raise ValueError('weighting value is invalid') # Calculate initial residual # Equivalent to R = -A*T; R = R.multiply(Sparsity_Pattern) # with the added constraint that R has an explicit 0 wherever # R is 0 and Sparsity_Pattern is not uones = np.zeros(Sparsity_Pattern.data.shape, dtype=T.dtype) R = sparse.bsr_matrix( (uones, Sparsity_Pattern.indices, Sparsity_Pattern.indptr), shape=(Sparsity_Pattern.shape)) pyamg.amg_core.incomplete_mat_mult_bsr( A.indptr, A.indices, np.ravel(A.data), T.indptr, T.indices, np.ravel(T.data), R.indptr, R.indices, np.ravel(R.data), int(T.shape[0] / T.blocksize[0]), int(T.shape[1] / T.blocksize[1]), A.blocksize[0], A.blocksize[1], T.blocksize[1]) R.data *= -1.0 # T is block diagonal, using sparsity pattern of R with # incomplete=True significantly overestimates complexity. # More accurate to use full mat-mat with block diagonal T. cost[0] += mat_mat_complexity(A, T, incomplete=False) / float(A.nnz) # Enforce R*B = 0 temp_cost = [0.0] Satisfy_Constraints(R, B, BtBinv, cost=temp_cost) cost[0] += temp_cost[0] / float(A.nnz) if R.nnz == 0: print("Error in sa_energy_min(..). Initial R no nonzeros on a level. \ Returning tentative prolongator\n") return T # Calculate Frobenius norm of the residual resid = R.nnz # np.sqrt((R.data.conjugate()*R.data).sum()) i = 0 while i < maxiter and resid > tol: # Apply diagonal preconditioner if weighting == 'local' or weighting == 'diagonal': Z = scale_rows(R, Dinv) else: Z = Dinv * R cost[0] += R.nnz / float(A.nnz) # Frobenius inner-product of (R,Z) = sum( np.conjugate(rk).*zk) newsum = (R.conjugate().multiply(Z)).sum() cost[0] += Z.nnz / float(A.nnz) if newsum < tol: # met tolerance, so halt break # P is the search direction, not the prolongator, which is T. if (i == 0): P = Z oldsum = newsum else: beta = newsum / oldsum P = Z + beta * P cost[0] += max(Z.nnz, P.nnz) / float(A.nnz) oldsum = newsum # Calculate new direction and enforce constraints # Equivalent to: AP = A*P; AP = AP.multiply(Sparsity_Pattern) # with the added constraint that explicit zeros are in AP wherever # AP = 0 and Sparsity_Pattern does not !!!! AP.data[:] = 0.0 pyamg.amg_core.incomplete_mat_mult_bsr( A.indptr, A.indices, np.ravel(A.data), P.indptr, P.indices, np.ravel(P.data), AP.indptr, AP.indices, np.ravel(AP.data), int(T.shape[0] / T.blocksize[0]), int(T.shape[1] / T.blocksize[1]), A.blocksize[0], A.blocksize[1], P.blocksize[1]) cost[0] += mat_mat_complexity(A, AP, incomplete=True) / float(A.nnz) # Enforce AP*B = 0 temp_cost = [0.0] Satisfy_Constraints(AP, B, BtBinv, cost=temp_cost) cost[0] += temp_cost[0] / float(A.nnz) # Frobenius inner-product of (P, AP) alpha = newsum / (P.conjugate().multiply(AP)).sum() cost[0] += max(P.nnz, AP.nnz) / float(A.nnz) # Update the prolongator, T T = T + alpha * P cost[0] += max(P.nnz, T.nnz) / float(A.nnz) # Ensure identity at C-pts if Cpt_params[0]: T = Cpt_params[1]['I_F'] * T + Cpt_params[1]['P_I'] # Update residual R = R - alpha * AP cost[0] += max(R.nnz, AP.nnz) / float(A.nnz) # Calculate Frobenius norm of the residual resid = R.nnz # np.sqrt((R.data.conjugate()*R.data).sum()) i += 1 return T
def gauss_seidel_nr(A, x, b, iterations=1, sweep='forward', omega=1.0, Dinv=None): """Perform Gauss-Seidel iterations on the linear system A.H A x = A.H b Parameters ---------- A : csr_matrix Sparse NxN matrix x : { ndarray } Approximate solution (length N) b : { ndarray } Right-hand side (length N) iterations : { int } Number of iterations to perform sweep : {'forward','backward','symmetric'} Direction of sweep omega : { float} Relaxation parameter typically in (0, 2) if omega != 1.0, then algorithm becomes SOR on A.H A Dinv : { ndarray} Inverse of diag(A.H A), (length N) Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems, Second Edition", SIAM, pp. 247-9, 2003 http://www-users.cs.umn.edu/~saad/books.html Examples -------- >>> ## Use NR Gauss-Seidel as a Stand-Alone Solver >>> from pyamg.relaxation import * >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((10,10), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> gauss_seidel_nr(A, x0, b, iterations=10, sweep='symmetric') >>> print norm(b-A*x0) 8.45044864352 >>> # >>> ## Use NR Gauss-Seidel as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('gauss_seidel_nr', {'sweep' : 'symmetric'}), ... postsmoother=('gauss_seidel_nr', {'sweep' : 'symmetric'})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A, x, b = make_system(A, x, b, formats=['csc']) # Dinv for A.H*A if Dinv == None: Dinv = numpy.ravel(get_diagonal(A, norm_eq=1, inv=True)) if sweep == 'forward': col_start, col_stop, col_step = 0, len(x), 1 elif sweep == 'backward': col_start, col_stop, col_step = len(x) - 1, -1, -1 elif sweep == 'symmetric': for iter in xrange(iterations): gauss_seidel_nr(A, x, b, iterations=1, sweep='forward', omega=omega, Dinv=Dinv) gauss_seidel_nr(A, x, b, iterations=1, sweep='backward', omega=omega, Dinv=Dinv) return else: raise ValueError( "valid sweep directions are 'forward', 'backward', and 'symmetric'" ) ## # Calculate initial residual r = b - A * x for i in xrange(iterations): amg_core.gauss_seidel_nr(A.indptr, A.indices, A.data, x, r, col_start, col_stop, col_step, Dinv, omega)
def gauss_seidel_ne(A, x, b, iterations=1, sweep='forward', omega=1.0, Dinv=None): """Perform Gauss-Seidel iterations on the linear system A A.H x = b (Also known as Kaczmarz relaxation) Parameters ---------- A : csr_matrix Sparse NxN matrix x : { ndarray } Approximate solution (length N) b : { ndarray } Right-hand side (length N) iterations : { int } Number of iterations to perform sweep : {'forward','backward','symmetric'} Direction of sweep omega : { float} Relaxation parameter typically in (0, 2) if omega != 1.0, then algorithm becomes SOR on A A.H Dinv : { ndarray} Inverse of diag(A A.H), (length N) Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Brandt, Ta'asan. "Multigrid Method For Nearly Singular And Slightly Indefinite Problems." 1985. NASA Technical Report Numbers: ICASE-85-57; NAS 1.26:178026; NASA-CR-178026; .. [2] Kaczmarz. Angenaeherte Aufloesung von Systemen Linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A 35, 355-57. 1937 Examples -------- >>> ## Use NE Gauss-Seidel as a Stand-Alone Solver >>> from pyamg.relaxation import * >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((10,10), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> gauss_seidel_ne(A, x0, b, iterations=10, sweep='symmetric') >>> print norm(b-A*x0) 8.47576806771 >>> # >>> ## Use NE Gauss-Seidel as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('gauss_seidel_ne', {'sweep' : 'symmetric'}), ... postsmoother=('gauss_seidel_ne', {'sweep' : 'symmetric'})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A, x, b = make_system(A, x, b, formats=['csr']) # Dinv for A*A.H if Dinv == None: Dinv = numpy.ravel(get_diagonal(A, norm_eq=2, inv=True)) if sweep == 'forward': row_start, row_stop, row_step = 0, len(x), 1 elif sweep == 'backward': row_start, row_stop, row_step = len(x) - 1, -1, -1 elif sweep == 'symmetric': for iter in xrange(iterations): gauss_seidel_ne(A, x, b, iterations=1, sweep='forward', omega=omega, Dinv=Dinv) gauss_seidel_ne(A, x, b, iterations=1, sweep='backward', omega=omega, Dinv=Dinv) return else: raise ValueError( "valid sweep directions are 'forward', 'backward', and 'symmetric'" ) for i in xrange(iterations): amg_core.gauss_seidel_ne(A.indptr, A.indices, A.data, x, b, row_start, row_stop, row_step, Dinv, omega)
def jacobi_ne(A, x, b, iterations=1, omega=1.0): """Perform Jacobi iterations on the linear system A A.H x = A.H b (Also known as Cimmino relaxation) Parameters ---------- A : csr_matrix Sparse NxN matrix x : ndarray Approximate solution (length N) b : ndarray Right-hand side (length N) iterations : int Number of iterations to perform omega : scalar Damping parameter Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Brandt, Ta'asan. "Multigrid Method For Nearly Singular And Slightly Indefinite Problems." 1985. NASA Technical Report Numbers: ICASE-85-57; NAS 1.26:178026; NASA-CR-178026; .. [2] Kaczmarz. Angenaeherte Aufloesung von Systemen Linearer Gleichungen. Bull. Acad. Polon. Sci. Lett. A 35, 355-57. 1937 .. [3] Cimmino. La ricerca scientifica ser. II 1. Pubbliz. dell'Inst. pre le Appl. del Calculo 34, 326-333, 1938. Examples -------- >>> ## Use NE Jacobi as a Stand-Alone Solver >>> from pyamg.relaxation import jacobi_ne >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((50,50), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> jacobi_ne(A, x0, b, iterations=10, omega=2.0/3.0) >>> print norm(b-A*x0) 49.3886046066 >>> # >>> ## Use NE Jacobi as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0}), ... postsmoother=('jacobi_ne', {'iterations' : 2, 'omega' : 4.0/3.0})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A, x, b = make_system(A, x, b, formats=['csr']) sweep = slice(None) (row_start, row_stop, row_step) = sweep.indices(A.shape[0]) temp = numpy.zeros_like(x) # Dinv for A*A.H Dinv = get_diagonal(A, norm_eq=2, inv=True) # Create uniform type, and convert possibly complex scalars to length 1 arrays [omega] = type_prep(A.dtype, [omega]) for i in range(iterations): delta = (numpy.ravel(b - A * x) * numpy.ravel(Dinv)).astype(A.dtype) amg_core.jacobi_ne(A.indptr, A.indices, A.data, x, b, delta, temp, row_start, row_stop, row_step, omega)
def gauss_seidel_nr(A, x, b, iterations=1, sweep='forward', omega=1.0, Dinv=None): """Perform Gauss-Seidel iterations on the linear system A.H A x = A.H b Parameters ---------- A : csr_matrix Sparse NxN matrix x : { ndarray } Approximate solution (length N) b : { ndarray } Right-hand side (length N) iterations : { int } Number of iterations to perform sweep : {'forward','backward','symmetric'} Direction of sweep omega : { float} Relaxation parameter typically in (0, 2) if omega != 1.0, then algorithm becomes SOR on A.H A Dinv : { ndarray} Inverse of diag(A.H A), (length N) Returns ------- Nothing, x will be modified in place. References ---------- .. [1] Yousef Saad, "Iterative Methods for Sparse Linear Systems, Second Edition", SIAM, pp. 247-9, 2003 http://www-users.cs.umn.edu/~saad/books.html Examples -------- >>> ## Use NR Gauss-Seidel as a Stand-Alone Solver >>> from pyamg.relaxation import * >>> from pyamg.gallery import poisson >>> from pyamg.util.linalg import norm >>> import numpy >>> A = poisson((10,10), format='csr') >>> x0 = numpy.zeros((A.shape[0],1)) >>> b = numpy.ones((A.shape[0],1)) >>> gauss_seidel_nr(A, x0, b, iterations=10, sweep='symmetric') >>> print norm(b-A*x0) 8.45044864352 >>> # >>> ## Use NR Gauss-Seidel as the Multigrid Smoother >>> from pyamg import smoothed_aggregation_solver >>> sa = smoothed_aggregation_solver(A, B=numpy.ones((A.shape[0],1)), ... coarse_solver='pinv2', max_coarse=50, ... presmoother=('gauss_seidel_nr', {'sweep' : 'symmetric'}), ... postsmoother=('gauss_seidel_nr', {'sweep' : 'symmetric'})) >>> x0=numpy.zeros((A.shape[0],1)) >>> residuals=[] >>> x = sa.solve(b, x0=x0, tol=1e-8, residuals=residuals) """ A,x,b = make_system(A, x, b, formats=['csc']) # Dinv for A.H*A if Dinv == None: Dinv = numpy.ravel(get_diagonal(A, norm_eq=1, inv=True)) if sweep == 'forward': col_start,col_stop,col_step = 0,len(x),1 elif sweep == 'backward': col_start,col_stop,col_step = len(x)-1,-1,-1 elif sweep == 'symmetric': for iter in xrange(iterations): gauss_seidel_nr(A, x, b, iterations=1, sweep='forward', omega=omega, Dinv=Dinv) gauss_seidel_nr(A, x, b, iterations=1, sweep='backward', omega=omega, Dinv=Dinv) return else: raise ValueError("valid sweep directions are 'forward', 'backward', and 'symmetric'") ## # Calculate initial residual r = b - A*x for i in xrange(iterations): amg_core.gauss_seidel_nr(A.indptr, A.indices, A.data, x, r, col_start, col_stop, col_step, Dinv, omega)
def jacobi_prolongation_smoother(S, T, C, B, omega=4.0 / 3.0, degree=1, filter=False, weighting='diagonal', cost=[0.0]): """Jacobi prolongation smoother Parameters ---------- S : {csr_matrix, bsr_matrix} Sparse NxN matrix used for smoothing. Typically, A. T : {csr_matrix, bsr_matrix} Tentative prolongator C : {csr_matrix, bsr_matrix} Strength-of-connection matrix B : {array} Near nullspace modes for the coarse grid such that T*B exactly reproduces the fine grid near nullspace modes omega : {scalar} Damping parameter filter : {boolean} If true, filter S before smoothing T. This option can greatly control complexity. weighting : {string} 'block', 'diagonal' or 'local' weighting for constructing the Jacobi D 'local': Uses a local row-wise weight based on the Gershgorin estimate. Avoids any potential under-damping due to inaccurate spectral radius estimates. 'block': If A is a BSR matrix, use a block diagonal inverse of A 'diagonal': Classic Jacobi D = diagonal(A) Returns ------- P : {csr_matrix, bsr_matrix} Smoothed (final) prolongator defined by P = (I - omega/rho(K) K) * T where K = diag(S)^-1 * S and rho(K) is an approximation to the spectral radius of K. Notes ----- If weighting is not 'local', then results using Jacobi prolongation smoother are not precisely reproducible due to a random initial guess used for the spectral radius approximation. For precise reproducibility, set numpy.random.seed(..) to the same value before each test. Examples -------- >>> from pyamg.aggregation import jacobi_prolongation_smoother >>> from pyamg.gallery import poisson >>> from scipy.sparse import coo_matrix >>> import numpy as np >>> data = np.ones((6,)) >>> row = np.arange(0,6) >>> col = np.kron([0,1],np.ones((3,))) >>> T = coo_matrix((data,(row,col)),shape=(6,2)).tocsr() >>> T.todense() matrix([[ 1., 0.], [ 1., 0.], [ 1., 0.], [ 0., 1.], [ 0., 1.], [ 0., 1.]]) >>> A = poisson((6,),format='csr') >>> P = jacobi_prolongation_smoother(A,T,A,np.ones((2,1))) >>> P.todense() matrix([[ 0.64930164, 0. ], [ 1. , 0. ], [ 0.64930164, 0.35069836], [ 0.35069836, 0.64930164], [ 0. , 1. ], [ 0. , 0.64930164]]) """ # preprocess weighting if weighting == 'block': if sparse.isspmatrix_csr(S): weighting = 'diagonal' elif sparse.isspmatrix_bsr(S): if S.blocksize[0] == 1: weighting = 'diagonal' if filter: # Implement filtered prolongation smoothing for the general case by # utilizing satisfy constraints if sparse.isspmatrix_bsr(S): numPDEs = S.blocksize[0] else: numPDEs = 1 # Create a filtered S with entries dropped that aren't in C C = UnAmal(C, numPDEs, numPDEs) S = S.multiply(C) S.eliminate_zeros() cost[0] += 1.0 if weighting == 'diagonal': # Use diagonal of S D_inv = get_diagonal(S, inv=True) D_inv_S = scale_rows(S, D_inv, copy=True) D_inv_S = (omega / approximate_spectral_radius(D_inv_S)) * D_inv_S # 15 WU to find spectral radius, 2 to scale D_inv_S twice cost[0] += 17 elif weighting == 'block': # Use block diagonal of S D_inv = get_block_diag(S, blocksize=S.blocksize[0], inv_flag=True) D_inv = sparse.bsr_matrix( (D_inv, np.arange(D_inv.shape[0]), np.arange(D_inv.shape[0] + 1)), shape=S.shape) D_inv_S = D_inv * S # 15 WU to find spectral radius, 2 to scale D_inv_S twice D_inv_S = (omega / approximate_spectral_radius(D_inv_S)) * D_inv_S cost[0] += 17 elif weighting == 'local': # Use the Gershgorin estimate as each row's weight, instead of a global # spectral radius estimate D = np.abs(S) * np.ones((S.shape[0], 1), dtype=S.dtype) D_inv = np.zeros_like(D) D_inv[D != 0] = 1.0 / np.abs(D[D != 0]) D_inv_S = scale_rows(S, D_inv, copy=True) D_inv_S = omega * D_inv_S cost[0] += 3 else: raise ValueError('Incorrect weighting option') if filter: # Carry out Jacobi, but after calculating the prolongator update, U, # apply satisfy constraints so that U*B = 0 P = T for i in range(degree): if sparse.isspmatrix_bsr(P): U = (D_inv_S * P).tobsr(blocksize=P.blocksize) else: U = D_inv_S * P cost[0] += P.nnz / float(S.nnz) # (1) Enforce U*B = 0. Construct array of inv(Bi'Bi), where Bi is B # restricted to row i's sparsity pattern in Sparsity Pattern. This # array is used multiple times in Satisfy_Constraints(...). temp_cost = [0.0] BtBinv = compute_BtBinv(B, U, cost=temp_cost) cost[0] += temp_cost[0] / float(S.nnz) # (2) Apply satisfy constraints temp_cost = [0.0] Satisfy_Constraints(U, B, BtBinv, cost=temp_cost) cost[0] += temp_cost[0] / float(S.nnz) # Update P P = P - U cost[0] += max(P.nnz, U.nnz) / float(S.nnz) else: # Carry out Jacobi as normal P = T for i in range(degree): P = P - (D_inv_S * P) cost[0] += P.nnz / float(S.nnz) return P
def evolution_strength_of_connection(A, B=None, epsilon=4.0, k=2, proj_type="l2", weighting='diagonal', symmetrize_measure=True, cost=[0]): """ Construct strength of connection matrix using an Evolution-based measure Parameters ---------- A : {csr_matrix, bsr_matrix} Sparse NxN matrix B : {string, array} If B=None, then the near nullspace vector used is all ones. If B is an (NxK) array, then B is taken to be the near nullspace vectors. epsilon : scalar Drop tolerance k : integer ODE num time steps, step size is assumed to be 1/rho(DinvA) proj_type : {'l2','D_A'} Define norm for constrained min prob, i.e. define projection weighting : {string} 'block', 'diagonal' or 'local' construction of the D-inverse used to precondition A before "evolving" delta-functions. The local option is the cheapest. Returns ------- Atilde : {csr_matrix} Sparse matrix of strength values References ---------- .. [1] Olson, L. N., Schroder, J., Tuminaro, R. S., "A New Perspective on Strength Measures in Algebraic Multigrid", submitted, June, 2008. Examples -------- >>> import numpy as np >>> from pyamg.gallery import stencil_grid >>> from pyamg.strength import evolution_strength_of_connection >>> n=3 >>> stencil = np.array([[-1.0,-1.0,-1.0], ... [-1.0, 8.0,-1.0], ... [-1.0,-1.0,-1.0]]) >>> A = stencil_grid(stencil, (n,n), format='csr') >>> S = evolution_strength_of_connection(A, np.ones((A.shape[0],1))) """ # local imports for evolution_strength_of_connection from pyamg.util.utils import scale_rows, get_block_diag, scale_columns from pyamg.util.linalg import approximate_spectral_radius # ==================================================================== # Check inputs if epsilon < 1.0: raise ValueError("expected epsilon > 1.0") if k <= 0: raise ValueError("number of time steps must be > 0") if proj_type not in ['l2', 'D_A']: raise ValueError("proj_type must be 'l2' or 'D_A'") if (not sparse.isspmatrix_csr(A)) and (not sparse.isspmatrix_bsr(A)): raise TypeError("expected csr_matrix or bsr_matrix") # ==================================================================== # Format A and B correctly. # B must be in mat format, this isn't a deep copy if B is None: Bmat = np.mat(np.ones((A.shape[0], 1), dtype=A.dtype)) else: Bmat = np.mat(B) # Is matrix A CSR? if (not sparse.isspmatrix_csr(A)): numPDEs = A.blocksize[0] csrflag = False else: numPDEs = 1 csrflag = True # Pre-process A. We need A in CSR, to be devoid of explicit 0's, have # sorted indices and be scaled by D-inverse if weighting == 'block': Dinv = get_block_diag(A, blocksize=numPDEs, inv_flag=True) Dinv = sparse.bsr_matrix( (Dinv, np.arange(Dinv.shape[0]), np.arange(Dinv.shape[0] + 1)), shape=A.shape) Dinv_A = (Dinv * A).tocsr() cost[0] += 1 elif weighting == 'diagonal': D = A.diagonal() Dinv = get_diagonal(A, norm_eq=False, inv=True) Dinv[D == 0] = 1.0 Dinv_A = scale_rows(A, Dinv, copy=True) cost[0] += 1 elif weighting == 'local': D = np.abs(A) * np.ones((A.shape[0], 1), dtype=A.dtype) Dinv = np.zeros_like(D) Dinv[D != 0] = 1.0 / np.abs(D[D != 0]) Dinv[D == 0] = 1.0 Dinv_A = scale_rows(A, Dinv, copy=True) cost[0] += 1 else: raise ValueError('Unrecognized weighting for Evolution measure') A = A.tocsr() A.eliminate_zeros() A.sort_indices() # Handle preliminaries for the algorithm dimen = A.shape[1] NullDim = Bmat.shape[1] if weighting == 'diagonal' or weighting == 'block': # Get spectral radius of Dinv*A, scales the time step size for the ODE rho_DinvA = approximate_spectral_radius(Dinv_A) cost[0] += 15 # 15 lanczos iterations to approximate spectral radius else: # Using local weighting, no need for spectral radius rho_DinvA = 1.0 # Calculate D_A for later use in the minimization problem if proj_type == "D_A": D = A.diagonal() D_A = sparse.spdiags([D], [0], dimen, dimen, format='csr') else: D_A = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype) # Calculate (I - delta_t Dinv A)^k # We transpose the product, so that we can efficiently access # the columns in CSR format. We want the columns (not rows) because # strength is based on the columns of (I - delta_t Dinv A)^k, i.e., # relaxed delta functions # Calculate the number of time steps that can be done by squaring, and # the number of time steps that must be done incrementally nsquare = int(np.log2(k)) ninc = k - 2**nsquare # Calculate one time step I = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype) Atilde = (I - (1.0 / rho_DinvA) * Dinv_A) Atilde = Atilde.T.tocsr() cost[0] += 1 # Construct a sparsity mask for Atilde that will restrict Atilde^T to the # nonzero pattern of A, with the added constraint that row i of Atilde^T # retains only the nonzeros that are also in the same PDE as i. mask = A.copy() # Restrict to same PDE if numPDEs > 1: row_length = np.diff(mask.indptr) my_pde = np.mod(np.arange(dimen), numPDEs) my_pde = np.repeat(my_pde, row_length) mask.data[np.mod(mask.indices, numPDEs) != my_pde] = 0.0 del row_length, my_pde mask.eliminate_zeros() # If the total number of time steps is a power of two, then there is # a very efficient computational short-cut. Otherwise, we support # other numbers of time steps, through an inefficient algorithm. if ninc > 0: warn("The most efficient time stepping for the Evolution Strength\ Method is done in powers of two.\nYou have chosen " + str(k) + " time steps.") JacobiStep = csr_matrix(Atilde, copy=True) # Calculate (Atilde^nsquare)^T = (Atilde^T)^nsquare for i in range(nsquare): cost[0] += mat_mat_complexity(Atilde, Atilde) Atilde = Atilde * Atilde for i in range(ninc): cost[0] += mat_mat_complexity(Atilde, JacobiStep) Atilde = Atilde * JacobiStep del JacobiStep # Apply mask to Atilde, zeros in mask have already been eliminated at # start of routine. mask.data[:] = 1.0 Atilde = Atilde.multiply(mask) Atilde.eliminate_zeros() Atilde.sort_indices() cost[0] += Atilde.nnz / float(A.nnz) elif nsquare == 0: if numPDEs > 1: # Apply mask to Atilde, zeros in mask have already been eliminated # at start of routine. mask.data[:] = 1.0 Atilde = Atilde.multiply(mask) Atilde.eliminate_zeros() Atilde.sort_indices() else: # Use computational short-cut for case (ninc == 0) and (nsquare > 0) # Calculate Atilde^k only at the sparsity pattern of mask. for i in range(nsquare - 1): cost[0] += mat_mat_complexity(Atilde, Atilde) Atilde = Atilde * Atilde # Call incomplete mat-mat mult AtildeCSC = Atilde.tocsc() AtildeCSC.sort_indices() mask.sort_indices() Atilde.sort_indices() amg_core.incomplete_mat_mult_csr(Atilde.indptr, Atilde.indices, Atilde.data, AtildeCSC.indptr, AtildeCSC.indices, AtildeCSC.data, mask.indptr, mask.indices, mask.data, dimen) cost[0] += mat_mat_complexity(Atilde, mask, incomplete=True) / float( A.nnz) del AtildeCSC, Atilde Atilde = mask Atilde.eliminate_zeros() Atilde.sort_indices() del Dinv, Dinv_A, mask # Calculate strength based on constrained min problem of # min( z - B*x ), such that # (B*x)|_i = z|_i, i.e. they are equal at point i # z = (I - (t/k) Dinv A)^k delta_i # # Strength is defined as the relative point-wise approx. error between # B*x and z. We don't use the full z in this problem, only that part of # z that is in the sparsity pattern of A. # # Can use either the D-norm, and inner product, or l2-norm and inner-prod # to solve the constrained min problem. Using D gives scale invariance. # # This is a quadratic minimization problem with a linear constraint, so # we can build a linear system and solve it to find the critical point, # i.e. minimum. # # We exploit a known shortcut for the case of NullDim = 1. The shortcut is # mathematically equivalent to the longer constrained min. problem if NullDim == 1: # Use shortcut to solve constrained min problem if B is only a vector # Strength(i,j) = | 1 - (z(i)/b(j))/(z(j)/b(i)) | # These ratios can be calculated by diagonal row and column scalings # Create necessary vectors for scaling Atilde # Its not clear what to do where B == 0. This is an # an easy programming solution, that may make sense. Bmat_forscaling = np.ravel(Bmat) Bmat_forscaling[Bmat_forscaling == 0] = 1.0 DAtilde = Atilde.diagonal() DAtildeDivB = np.ravel(DAtilde) / Bmat_forscaling cost[0] += Atilde.shape[0] / float(A.nnz) # Calculate best approximation, z_tilde, in span(B) # Importantly, scale_rows and scale_columns leave zero entries # in the matrix. For previous implementations this was useful # because we assume data and Atilde.data are the same length below data = Atilde.data.copy() Atilde.data[:] = 1.0 Atilde = scale_rows(Atilde, DAtildeDivB) Atilde = scale_columns(Atilde, np.ravel(Bmat_forscaling)) cost[0] += 2.0 * Atilde.nnz / float(A.nnz) # If angle in the complex plane between z and z_tilde is # greater than 90 degrees, then weak. We can just look at the # dot product to determine if angle is greater than 90 degrees. angle = np.real(Atilde.data) * np.real(data) +\ np.imag(Atilde.data) * np.imag(data) angle = angle < 0.0 angle = np.array(angle, dtype=bool) cost[0] += Atilde.nnz / float(A.nnz) if Atilde.dtype is 'complex': cost[0] += Atilde.nnz / float(A.nnz) # Calculate Approximation ratio Atilde.data = Atilde.data / data cost[0] += Atilde.nnz / float(A.nnz) # If approximation ratio is less than tol, then weak connection weak_ratio = (np.abs(Atilde.data) < 1e-4) # Calculate Approximation error Atilde.data = abs(1.0 - Atilde.data) cost[0] += Atilde.nnz / float(A.nnz) # Set small ratios and large angles to weak Atilde.data[weak_ratio] = 0.0 Atilde.data[angle] = 0.0 # Set near perfect connections to 1e-4 Atilde.eliminate_zeros() Atilde.data[Atilde.data < np.sqrt(np.finfo(float).eps)] = 1e-4 del data, weak_ratio, angle else: # For use in computing local B_i^H*B, precompute the element-wise # multiply of each column of B with each other column. We also scale # by 2.0 to account for BDB's eventual use in a constrained # minimization problem BDBCols = int(np.sum(np.arange(NullDim + 1))) BDB = np.zeros((dimen, BDBCols), dtype=A.dtype) counter = 0 for i in range(NullDim): for j in range(i, NullDim): BDB[:, counter] = 2.0 *\ (np.conjugate(np.ravel(np.asarray(B[:, i]))) * np.ravel(np.asarray(D_A * B[:, j]))) counter = counter + 1 cost[0] += B.shape[0] / float(A.nnz) # Choose tolerance for dropping "numerically zero" values later t = Atilde.dtype.char eps = np.finfo(np.float).eps feps = np.finfo(np.single).eps geps = np.finfo(np.longfloat).eps _array_precision = {'f': 0, 'd': 1, 'g': 2, 'F': 0, 'D': 1, 'G': 2} tol = {0: feps * 1e3, 1: eps * 1e6, 2: geps * 1e6}[_array_precision[t]] # Use constrained min problem to define strength. # This function is doing similar to NullDim=1 with more bad guys. # Complexity accounts for computing the block inverse, and # hat{z_i} = B_i*x, hat{z_i} .* hat{z_i}, # hat{z_i} = hat{z_i} / z_i, and abs(1.0 - hat{z_i}). cost[0] += (Atilde.nnz * (3 + NullDim) + (NullDim**3) * dimen) / float(A.nnz) amg_core.evolution_strength_helper( Atilde.data, Atilde.indptr, Atilde.indices, Atilde.shape[0], np.ravel(np.asarray(B)), np.ravel(np.asarray((D_A * np.conjugate(B)).T)), np.ravel(np.asarray(BDB)), BDBCols, NullDim, tol) Atilde.eliminate_zeros() # All of the strength values are real by this point, so ditch the complex # part Atilde.data = np.array(np.real(Atilde.data), dtype=float) # Apply drop tolerance if epsilon != np.inf: cost[0] += Atilde.nnz / float(A.nnz) amg_core.apply_distance_filter(dimen, epsilon, Atilde.indptr, Atilde.indices, Atilde.data) Atilde.eliminate_zeros() # Set diagonal to 1.0, as each point is strongly connected to itself. I = sparse.eye(dimen, dimen, format="csr") I.data -= Atilde.diagonal() Atilde = Atilde + I cost[0] += Atilde.shape[0] / float(A.nnz) # If converted BSR to CSR, convert back and return amalgamated matrix, # i.e. the sparsity structure of the blocks of Atilde if not csrflag: Atilde = Atilde.tobsr(blocksize=(numPDEs, numPDEs)) n_blocks = Atilde.indices.shape[0] blocksize = Atilde.blocksize[0] * Atilde.blocksize[1] CSRdata = np.zeros((n_blocks, )) amg_core.min_blocks(n_blocks, blocksize, np.ravel(np.asarray(Atilde.data)), CSRdata) # Atilde = sparse.csr_matrix((data, row, col), shape=(*,*)) Atilde = sparse.csr_matrix((CSRdata, Atilde.indices, Atilde.indptr), shape=(int(Atilde.shape[0] / numPDEs), int(Atilde.shape[1] / numPDEs))) # Standardized strength values require small values be weak and large # values be strong. So, we invert the algebraic distances computed here Atilde.data = 1.0 / Atilde.data cost[0] += Atilde.nnz / float(A.nnz) # Scale C by the largest magnitude entry in each row Atilde = scale_rows_by_largest_entry(Atilde) cost[0] += Atilde.nnz / float(A.nnz) # Symmetrize if symmetrize_measure: Atilde = 0.5 * (Atilde + Atilde.T) cost[0] += Atilde.nnz / float(A.nnz) return Atilde
def evolution_strength_of_connection(A, B=None, epsilon=4.0, k=2, proj_type="l2", weighting='diagonal', symmetrize_measure=True, cost=[0]): """ Construct strength of connection matrix using an Evolution-based measure Parameters ---------- A : {csr_matrix, bsr_matrix} Sparse NxN matrix B : {string, array} If B=None, then the near nullspace vector used is all ones. If B is an (NxK) array, then B is taken to be the near nullspace vectors. epsilon : scalar Drop tolerance k : integer ODE num time steps, step size is assumed to be 1/rho(DinvA) proj_type : {'l2','D_A'} Define norm for constrained min prob, i.e. define projection weighting : {string} 'block', 'diagonal' or 'local' construction of the D-inverse used to precondition A before "evolving" delta-functions. The local option is the cheapest. Returns ------- Atilde : {csr_matrix} Sparse matrix of strength values References ---------- .. [1] Olson, L. N., Schroder, J., Tuminaro, R. S., "A New Perspective on Strength Measures in Algebraic Multigrid", submitted, June, 2008. Examples -------- >>> import numpy as np >>> from pyamg.gallery import stencil_grid >>> from pyamg.strength import evolution_strength_of_connection >>> n=3 >>> stencil = np.array([[-1.0,-1.0,-1.0], ... [-1.0, 8.0,-1.0], ... [-1.0,-1.0,-1.0]]) >>> A = stencil_grid(stencil, (n,n), format='csr') >>> S = evolution_strength_of_connection(A, np.ones((A.shape[0],1))) """ # local imports for evolution_strength_of_connection from pyamg.util.utils import scale_rows, get_block_diag, scale_columns from pyamg.util.linalg import approximate_spectral_radius # ==================================================================== # Check inputs if epsilon < 1.0: raise ValueError("expected epsilon > 1.0") if k <= 0: raise ValueError("number of time steps must be > 0") if proj_type not in ['l2', 'D_A']: raise ValueError("proj_type must be 'l2' or 'D_A'") if (not sparse.isspmatrix_csr(A)) and (not sparse.isspmatrix_bsr(A)): raise TypeError("expected csr_matrix or bsr_matrix") # ==================================================================== # Format A and B correctly. # B must be in mat format, this isn't a deep copy if B is None: Bmat = np.mat(np.ones((A.shape[0], 1), dtype=A.dtype)) else: Bmat = np.mat(B) # Is matrix A CSR? if (not sparse.isspmatrix_csr(A)): numPDEs = A.blocksize[0] csrflag = False else: numPDEs = 1 csrflag = True # Pre-process A. We need A in CSR, to be devoid of explicit 0's, have # sorted indices and be scaled by D-inverse if weighting == 'block': Dinv = get_block_diag(A, blocksize=numPDEs, inv_flag=True) Dinv = sparse.bsr_matrix((Dinv, np.arange(Dinv.shape[0]), np.arange(Dinv.shape[0] + 1)), shape=A.shape) Dinv_A = (Dinv * A).tocsr() cost[0] += 1 elif weighting == 'diagonal': D = A.diagonal() Dinv = get_diagonal(A, norm_eq=False, inv=True) Dinv[D == 0] = 1.0 Dinv_A = scale_rows(A, Dinv, copy=True) cost[0] += 1 elif weighting == 'local': D = np.abs(A)*np.ones((A.shape[0], 1), dtype=A.dtype) Dinv = np.zeros_like(D) Dinv[D != 0] = 1.0 / np.abs(D[D != 0]) Dinv[D == 0] = 1.0 Dinv_A = scale_rows(A, Dinv, copy=True) cost[0] += 1 else: raise ValueError('Unrecognized weighting for Evolution measure') A = A.tocsr() A.eliminate_zeros() A.sort_indices() # Handle preliminaries for the algorithm dimen = A.shape[1] NullDim = Bmat.shape[1] if weighting == 'diagonal' or weighting == 'block': # Get spectral radius of Dinv*A, scales the time step size for the ODE rho_DinvA = approximate_spectral_radius(Dinv_A) cost[0] += 15 # 15 lanczos iterations to approximate spectral radius else: # Using local weighting, no need for spectral radius rho_DinvA = 1.0 # Calculate D_A for later use in the minimization problem if proj_type == "D_A": D = A.diagonal() D_A = sparse.spdiags([D], [0], dimen, dimen, format='csr') else: D_A = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype) # Calculate (I - delta_t Dinv A)^k # We transpose the product, so that we can efficiently access # the columns in CSR format. We want the columns (not rows) because # strength is based on the columns of (I - delta_t Dinv A)^k, i.e., # relaxed delta functions # Calculate the number of time steps that can be done by squaring, and # the number of time steps that must be done incrementally nsquare = int(np.log2(k)) ninc = k - 2**nsquare # Calculate one time step I = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype) Atilde = (I - (1.0/rho_DinvA)*Dinv_A) Atilde = Atilde.T.tocsr() cost[0] += 1 # Construct a sparsity mask for Atilde that will restrict Atilde^T to the # nonzero pattern of A, with the added constraint that row i of Atilde^T # retains only the nonzeros that are also in the same PDE as i. mask = A.copy() # Restrict to same PDE if numPDEs > 1: row_length = np.diff(mask.indptr) my_pde = np.mod(np.arange(dimen), numPDEs) my_pde = np.repeat(my_pde, row_length) mask.data[np.mod(mask.indices, numPDEs) != my_pde] = 0.0 del row_length, my_pde mask.eliminate_zeros() # If the total number of time steps is a power of two, then there is # a very efficient computational short-cut. Otherwise, we support # other numbers of time steps, through an inefficient algorithm. if ninc > 0: warn("The most efficient time stepping for the Evolution Strength\ Method is done in powers of two.\nYou have chosen " + str(k) + " time steps.") JacobiStep = csr_matrix(Atilde, copy=True) # Calculate (Atilde^nsquare)^T = (Atilde^T)^nsquare for i in range(nsquare): cost[0] += mat_mat_complexity(Atilde,Atilde) Atilde = Atilde*Atilde for i in range(ninc): cost[0] += mat_mat_complexity(Atilde,JacobiStep) Atilde = Atilde*JacobiStep del JacobiStep # Apply mask to Atilde, zeros in mask have already been eliminated at # start of routine. mask.data[:] = 1.0 Atilde = Atilde.multiply(mask) Atilde.eliminate_zeros() Atilde.sort_indices() cost[0] += Atilde.nnz / float(A.nnz) elif nsquare == 0: if numPDEs > 1: # Apply mask to Atilde, zeros in mask have already been eliminated # at start of routine. mask.data[:] = 1.0 Atilde = Atilde.multiply(mask) Atilde.eliminate_zeros() Atilde.sort_indices() else: # Use computational short-cut for case (ninc == 0) and (nsquare > 0) # Calculate Atilde^k only at the sparsity pattern of mask. for i in range(nsquare-1): cost[0] += mat_mat_complexity(Atilde,Atilde) Atilde = Atilde*Atilde # Call incomplete mat-mat mult AtildeCSC = Atilde.tocsc() AtildeCSC.sort_indices() mask.sort_indices() Atilde.sort_indices() amg_core.incomplete_mat_mult_csr(Atilde.indptr, Atilde.indices, Atilde.data, AtildeCSC.indptr, AtildeCSC.indices, AtildeCSC.data, mask.indptr, mask.indices, mask.data, dimen) cost[0] += mat_mat_complexity(Atilde,mask,incomplete=True) / float(A.nnz) del AtildeCSC, Atilde Atilde = mask Atilde.eliminate_zeros() Atilde.sort_indices() del Dinv, Dinv_A, mask # Calculate strength based on constrained min problem of # min( z - B*x ), such that # (B*x)|_i = z|_i, i.e. they are equal at point i # z = (I - (t/k) Dinv A)^k delta_i # # Strength is defined as the relative point-wise approx. error between # B*x and z. We don't use the full z in this problem, only that part of # z that is in the sparsity pattern of A. # # Can use either the D-norm, and inner product, or l2-norm and inner-prod # to solve the constrained min problem. Using D gives scale invariance. # # This is a quadratic minimization problem with a linear constraint, so # we can build a linear system and solve it to find the critical point, # i.e. minimum. # # We exploit a known shortcut for the case of NullDim = 1. The shortcut is # mathematically equivalent to the longer constrained min. problem if NullDim == 1: # Use shortcut to solve constrained min problem if B is only a vector # Strength(i,j) = | 1 - (z(i)/b(j))/(z(j)/b(i)) | # These ratios can be calculated by diagonal row and column scalings # Create necessary vectors for scaling Atilde # Its not clear what to do where B == 0. This is an # an easy programming solution, that may make sense. Bmat_forscaling = np.ravel(Bmat) Bmat_forscaling[Bmat_forscaling == 0] = 1.0 DAtilde = Atilde.diagonal() DAtildeDivB = np.ravel(DAtilde) / Bmat_forscaling cost[0] += Atilde.shape[0] / float(A.nnz) # Calculate best approximation, z_tilde, in span(B) # Importantly, scale_rows and scale_columns leave zero entries # in the matrix. For previous implementations this was useful # because we assume data and Atilde.data are the same length below data = Atilde.data.copy() Atilde.data[:] = 1.0 Atilde = scale_rows(Atilde, DAtildeDivB) Atilde = scale_columns(Atilde, np.ravel(Bmat_forscaling)) cost[0] += 2.0 * Atilde.nnz / float(A.nnz) # If angle in the complex plane between z and z_tilde is # greater than 90 degrees, then weak. We can just look at the # dot product to determine if angle is greater than 90 degrees. angle = np.real(Atilde.data) * np.real(data) +\ np.imag(Atilde.data) * np.imag(data) angle = angle < 0.0 angle = np.array(angle, dtype=bool) cost[0] += Atilde.nnz / float(A.nnz) if Atilde.dtype is 'complex': cost[0] += Atilde.nnz / float(A.nnz) # Calculate Approximation ratio Atilde.data = Atilde.data/data cost[0] += Atilde.nnz / float(A.nnz) # If approximation ratio is less than tol, then weak connection weak_ratio = (np.abs(Atilde.data) < 1e-4) # Calculate Approximation error Atilde.data = abs(1.0 - Atilde.data) cost[0] += Atilde.nnz / float(A.nnz) # Set small ratios and large angles to weak Atilde.data[weak_ratio] = 0.0 Atilde.data[angle] = 0.0 # Set near perfect connections to 1e-4 Atilde.eliminate_zeros() Atilde.data[Atilde.data < np.sqrt(np.finfo(float).eps)] = 1e-4 del data, weak_ratio, angle else: # For use in computing local B_i^H*B, precompute the element-wise # multiply of each column of B with each other column. We also scale # by 2.0 to account for BDB's eventual use in a constrained # minimization problem BDBCols = int(np.sum(np.arange(NullDim + 1))) BDB = np.zeros((dimen, BDBCols), dtype=A.dtype) counter = 0 for i in range(NullDim): for j in range(i, NullDim): BDB[:, counter] = 2.0 *\ (np.conjugate(np.ravel(np.asarray(B[:, i]))) * np.ravel(np.asarray(D_A * B[:, j]))) counter = counter + 1 cost[0] += B.shape[0] / float(A.nnz) # Choose tolerance for dropping "numerically zero" values later t = Atilde.dtype.char eps = np.finfo(np.float).eps feps = np.finfo(np.single).eps geps = np.finfo(np.longfloat).eps _array_precision = {'f': 0, 'd': 1, 'g': 2, 'F': 0, 'D': 1, 'G': 2} tol = {0: feps*1e3, 1: eps*1e6, 2: geps*1e6}[_array_precision[t]] # Use constrained min problem to define strength. # This function is doing similar to NullDim=1 with more bad guys. # Complexity accounts for computing the block inverse, and # hat{z_i} = B_i*x, hat{z_i} .* hat{z_i}, # hat{z_i} = hat{z_i} / z_i, and abs(1.0 - hat{z_i}). cost[0] += ( Atilde.nnz*(3+NullDim) + (NullDim**3)*dimen ) / float(A.nnz) amg_core.evolution_strength_helper(Atilde.data, Atilde.indptr, Atilde.indices, Atilde.shape[0], np.ravel(np.asarray(B)), np.ravel(np.asarray( (D_A * np.conjugate(B)).T)), np.ravel(np.asarray(BDB)), BDBCols, NullDim, tol) Atilde.eliminate_zeros() # All of the strength values are real by this point, so ditch the complex # part Atilde.data = np.array(np.real(Atilde.data), dtype=float) # Apply drop tolerance if epsilon != np.inf: cost[0] += Atilde.nnz / float(A.nnz) amg_core.apply_distance_filter(dimen, epsilon, Atilde.indptr, Atilde.indices, Atilde.data) Atilde.eliminate_zeros() # Set diagonal to 1.0, as each point is strongly connected to itself. I = sparse.eye(dimen, dimen, format="csr") I.data -= Atilde.diagonal() Atilde = Atilde + I cost[0] += Atilde.shape[0] / float(A.nnz) # If converted BSR to CSR, convert back and return amalgamated matrix, # i.e. the sparsity structure of the blocks of Atilde if not csrflag: Atilde = Atilde.tobsr(blocksize=(numPDEs, numPDEs)) n_blocks = Atilde.indices.shape[0] blocksize = Atilde.blocksize[0]*Atilde.blocksize[1] CSRdata = np.zeros((n_blocks,)) amg_core.min_blocks(n_blocks, blocksize, np.ravel(np.asarray(Atilde.data)), CSRdata) # Atilde = sparse.csr_matrix((data, row, col), shape=(*,*)) Atilde = sparse.csr_matrix((CSRdata, Atilde.indices, Atilde.indptr), shape=(int(Atilde.shape[0] / numPDEs), int(Atilde.shape[1] / numPDEs))) # Standardized strength values require small values be weak and large # values be strong. So, we invert the algebraic distances computed here Atilde.data = 1.0/Atilde.data cost[0] += Atilde.nnz / float(A.nnz) # Scale C by the largest magnitude entry in each row Atilde = scale_rows_by_largest_entry(Atilde) cost[0] += Atilde.nnz / float(A.nnz) # Symmetrize if symmetrize_measure: Atilde = 0.5*(Atilde + Atilde.T) cost[0] += Atilde.nnz / float(A.nnz) return Atilde